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Prey communities in patchy environments
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Introduction
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Individuals should exploit a spatiaily variable environment so0 as to increase their
Darwinian fitness. Predators should aggregate in patches with relatively high densi-
ties of high-quality prey, and prey should in turn seek refuges providing protection
from predators. This paper explores some of the consequences of such behavior for
the coexistence of prey species in a patchy environment. It is argued that an aggrega-
tive predator response can lead to indirect interactions among otherwise non-inter-
acting prey species co-occurring in a patch. In many circumstances, the interaction
shouid be (—,—) (apparent competition), although in some situations other interac-
tions may occur. If refuges are in short supply, then prey may compete for occupancy
of refuges. Several models of such competition are presented. If predators act as
density-independent mortality agents on prey outside refuges, it is shown for a simple
model that two prey species cannot coexist when competing for a single refuge.
Coexistence may be permitted if: (1) each prey has an exclusive refuge, (2) the
dominant prey species experiences strong intraspecific interference, (3) there are
trade-offs in competitive ability for refuges and for food resources, (4) the predator
has a numericai response, and the prey that is subordinate in competition for refuge
can better withstand predation (i.e., is superior in apparent competition). These
meodels highlight the potential importance of spatial heterogeneity for understanding
prey community structure.

R. D. Holt, Museum of Natural History, and Dept of Systematics and Ecology, Univ.
of Kansas, Lawrence, KS 66045, USA.

ture of phytophagous insect communities. In freshwater
communities, predators seem to be conspicuously suc-

A perennial problem in community ecology is to gauge
the relative importance of competition and predation as
factors structuring natural communities (e.g., Paine
1966, Lubchenco 1986). In some circumstances, the ef-
fects of predators are dramatic and seem to over-sha-
dow the influence of competition for resources. In an
early review of field studies, Connell (1975: 475) stated
that “predation should be regarded as being of primary
importance, either directly determining the species
composition [of a community] or in preventing compet-
itive exclusion.” In a more recent review, Sih et al.
(1985) critically examined 131 field studies of predation
in which predator numbers were manipulated and prey
responses monitored; 121 of these studies documented a
large response by one or more prey species to a change
in predator numbers. Strong et al. (1984) suggested that
natural enemies, particularly parasitoids (see Lawton
1986), play a predominant role in determining the struc-
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cessful in preventing species invasions, thus limiting the
species composition of local communities (Thorp 1986).
Even the ungulate communities of East Africa, which
are affected by resource limitation and partitioning, are
also significantly influenced by predation (Sinclair
1985).

A large body of theory now exists which examines the
joint effects of predation and competition on species
coexistence (Slobodkin 1961, Cramer and May 1972,
Van Valen 1974, Roughgarden and Feldman 1975, Co-
mins and Hassell 1976, 1987, Yodzis 1976, 1978, 1986,
Abrams 1977, Holt 1977, 1984, 1985b, Fujii 1977, Vance
1978, Armstrong 1979, Teramoto et al. 1979, Hanski
1981, Levin 1981, Noy-Meir 1981, Takeuchi and Adachi
1983). Most of this literature has been preoccupied with
how predation modifies pre-existing competitive inter-
actions, particularly in spatially homogeneous environ-
ments. The upshot of this work is that predation may
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either enhance or reduce the chances of coexistence for
competing species; the exact outcome depends upon the
interplay of a number of factors, including the degree to
which predators are limited by their prey (Holt 1977,
Noy-Meir 1981), the relation between predator prefer-
ences and prey competitive abilities (Lubchenco 1978),
the predator’s propensity for switching (Teramoto et al.
1979), and non-linearities in the competitive interaction
(Abrams 1977, Holt 1985b). There is a growing appre-
ciation that shared predation can have important and
interesting consequences for prey community structure,
even if there is little or no interspecific competition
among prey for limiting resources. In particular, a nu-
merical response by a predator population to its prey
may generate a quasi-competitive interaction between
alternative prey species, such that each prey suffers a
reduction in abundance because the other prey is pre-
sent. One prey may even by excluded indirectly by the
other. Formal models exploring the implications of such
apparent competition are presented in Holt (1977,
1984). Jeffries and Lawton (1984) review the idea and
describe a number of field studies suggesting the influ-
ence of apparent competition, and Schmitt (in press)
has recently provided an experimental demonstration of
the predicted effect in a subtidal reef system. Moreover,
the consequences of predation for species coexistence
depend upon the spatial heterogeneity or patchiness of
the environment. Theoretical analyses of the factors
stabilizing the interaction between single predator and
single prey populations often emphasize the singular
importance of spatial dynamics. The causal mechanisms
that have been examined theoretically include: the dis-
persion of predator and prey over many patches loosely
coupled by passive dispersal (Crowley 1981); aggrega-
tive predator numerical responses (Hassell and May
1974); refuges from predation (Murdoch and Oaten
1975, McNair 1986); extinction-colonization dynamics
(Hastings 1977, Caswell 1978); and spatial variation in
population growth parameters (e.g., prey . intrinsic
growth rates) which with passive dispersal leads to a
“source-sink” population structure (Holt 1984, 1985a).
Given the mounting empirical evidence that spatial het-
erogeneity is important in determining the species rich-
ness of communities strongly structured by predation
(see, e.g., Menge and Lubchenco 1981 for benthic ma-
rine communities), it seems desirable to examine theo-
retically how spatial heterogeneity and patchiness might
modify the interaction between alternative prey medi-
ated through their shared predator.

In a spatially heterogeneous, patchy environment,
predators can increase the rate at which they accrue
resources by seeking out areas with dense concentra-
tions of prey relative to other areas; in the absence of
direct interference amongst predators, this generates an
aggregative numerical response. Prey, in turn, can
lower their expected mortality rate by preferentially
residing in refuges, areas with relatively few or no pred-
ators. In this paper, I examine how these behavioral
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strategies can influence the character of interactions
between alternative prey species in spatially hetero-
geneous environments. Elsewhere (Holt 1984, Holt and
Kotler, in press) I have argued that an aggregative
numerical response by predators to the prey in a patch
can generate (—,—) interactions among otherwise non-
competing prey species. In the first part of the paper, I
extend these ideas by explicitly incorporating the dy-
namics of prey recruitment and show that one prey type
may exclude another from a patch because of an aggre-
gative predator response. I examine two ends of a spec-
trum of possibilities: 1) prey dynamics in a single patch,
when predators can forage over a large number of
patches, 2) prey dynamics in two patches, between
which predators can move as they forage. In these mod-
els, the interaction between alternative prey is mediated
indirectly though changes in the behavior and spatial
distribution of predators in a patchy environment.

When predators leave a patch because prey numbers
there are too low, relative to other patches, the remain-
ing prey enjoy a kind of implicit refuge from predation.
From the prey’s point of view, models with an aggrega-
tive predator response thus bear a family resemblance
to models with absolute spatial refuges from predation.
In the second part of the paper, I examine a series of
simple models in which refuges from predation are
available in limited supply to two co-occurring prey
species. Given that prey selectively occupy refuges
when space is available, this sets up a direct competitive
interaction between prey. In contrast to more tradi-
tional kinds of competition (e.g., the competitive inter-
actions modelled in the theoretical literature cited
above), however, the fitness consequences of such com-
petition depend entirely upon the action of predators,
as measured by the increased mortality rate experienced
by prey outside refuges. These models suggest that at
times predation may increase competition by forcing
prey to contend for access to refuges, a “resource” that
would be unimportant in the absence of predators. A
qualitative conclusion common to both parts of the pa-
per is that if predation is intense, the sustained coexis-
tence of alternative prey species may require that prey
show habitat partitioning, with each prey in its own
distinct patch type or refuge.

Predator aggregation and prey species coexistence

Prey dynamics in a single patch in a multi-patch environment

Predators should tend to aggregate in patches which
have a high abundance of prey relative to other patches.
While foraging in a single patch a predator shouid.
through exploitation, lower prey availability there, thus
gradually making that patch a less profitable place to
forage for both itself and other predators. Considerable
attention has been given to developing criteria for pre-
dicting when predators should abandon one patch and
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" move On.‘to gféeﬁer i)as‘tvl'xres, (Pyke 1984), Accdrt“:ling't‘o, ;

the marginal value theorem of Charnov (1976), a patch

; shéuld;,bg\lcft when the instantaneous rate of foraging .
- ,y‘i'eld‘:in,‘thewpatch, denoted here by Y, drops to an .
. . .average rate.of yield over all patches, Y, including cOsts . ...

. in time and energy of, moving among patches. The for-
"._aging rule for predators in a patchy environment is quite

~simple: enter a given patch if Y > Y, and leave it if Y <
- Y.1 will consider first.the. dynamics of two prey species

. in a single patch, given a predator that ranges over
-..many patches. With enough patches, one can assume

- . that for all pragtical purposes Y is a fixed constant; this

‘allows us to explore within-patch interactions between

. alternative prey, given an invariant patch use criterion
. for the predator. Below, 1 examine the opposite ex-
‘treme of predators moving between just two patches.

The instantaneous rate of yield from foraging in the

. patch is assumed to be a continuous function .of the

density of each prey, Y(R,, R;). For most predator-prey
systems, it is reasonable to assume that an increase in
~ the abundance of either prey will increase the predator’s
~ rate of yield, i.e., 3Y/3R; > 0. However, in some cir-
cumstances, foraging yield may decline with an increase
. . in the availability of one prey type (i.e., 3Y/2R, > 0,

. . but 3Y/3Ry < 0). This might occur, for instance, if the ’

second prey is.of low quality but is rare or absent in
most patches in which the predator forages. The pre-
.dator might then inadvertently (and. suboptimally) in-
clude this item in its diet on those infrequent occasions
when this prey type is encountered. The issue of when
an increase in prey. availability might decrease total
predator foraging yield is discussed in detail in Holt
(1983) and Holt and Kotler (in press).

Fig. 1 graphically depicts several ways the marginal
value theorem for patch use can be applied to a patch
containing two prey types. The curves Y(R,, R;) = ¥
separate. those combinations of prey densities for which
_ . predators should be willing to enter and forage in the
~ patch. (i.e., Y > Y) from those for which predators

. should leave the patch (i.e., Y < Y). These curves are

examples of isolegs (Rosenzweig 1981), for they repre-
sent switchpoints between qualitatively different pre-
datory.behaviors. -

Exploitation will tend to depress prey‘abuﬁdances to

values within or on an isoleg. To predict the con-

sequences of this for prey coexistence, we allow prey

recruitment and exploitation by predators to occur sim-
 uitaneously: '

de/dt = G,(Rl) - aiP,

. thfe R;,is thg dénsit§ of prey i; P is the predator .

.~ -density-in the patch; a, is the attack rate per prey, per
. predator; and G; is the instantaneous growth rate of
. prey i.(except for losses to predation). To simplify. the
. following analysis, we will assume that attack coeffi-
. cients are constants, and that dG/dR; < 0. In other

words, the predator has a linear functional response to
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Fig. 1.-Predator isolegs and the curve of prey equilibrium den-

: sities: (a) Predator isoleg: predator foraging rate increases with
- the density-of each prey. The isoleg has a negative slope. At
. the isoleg, foraging yield just equals the average rate of yield

over the éntire habitat (including movement ‘costs). The isoleg
separates-préy densities at which predators enter the patch
from:prey densities 4t which-predators leave. (b) Predator iso- -
leg: predator foraging rate decreases with increasing density of
prey 2. The isoleg has.a positive slope. (¢) Curve of moving
prey equilibria. Prey dynamics aré assumed to be fast com-
pared to predator dynami¢s. Prey’ densities decrease with in-
credsing predator density. P, along-a turve determined by prey.
recruitment (see text).
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each prey type, and each prey experiences intraspecific
negative density-dependence. There is no direct inter-
specific competition, but the two prey species may
nonetheless interact because predators respond to the
total number of prey in the patch in deciding whether to
enter or leave. The prey’s intrinsic growth rate will be
denoted by r;. We further assume that predators enter
the patch when prey densities are to the right of the
isoleg, and leave the patch to the left, at rates slow
enough for prey densities to equilibrate (to a first-order
approximation), tracking the siowly changing number
of predators. Hence, G, (R;) = a; P (the asterisk de-
notes the moving equilibrium), and thus

Gi(Rp)/a, = Gy(Ry)/a,.

The density of prey 2 can be expressed as a function. of
the density of prey 1:

R; = f(R;) = G7'(8,G\(R)/ay),

because G; decreases monotonically with R, dRy/dR; >
0. In the (R;, R;) plane, this moving equilibrium is
represented by a curve with positive slope (Fig. 1c). The
curve pictorially depicts the prey densities realized at
various predator densities. This curve has a terminus at
(K;, K,) when P = 0. If r/a, > ry/a,, prey 2 is (just)
driven to local extinction when P = r,/a,. At this density
of predators, prey 1 equilibrates at a density determined
from G,(R;) = a,P = a,(rya,). The prey equilibrium
curve intersects the R-axis at this value of R;; if r/a; <
ry/a,, the curve intersects the R,-axis instead.

In Fig. 2 I put these ingredients together tg predict
how the final equilibrial abundance of each prey is
influenced by the presence of the aiternative prey, given
that the predator’s isoleg has a negative slope (i.e., the
predator benefits from an increase in the density of
either prey). The predator and its prey are in demo-
graphic equilibrium in the patch when the prey equilib-
rium curve intersects the predator isoleg. In Fig. 2a, we
compare the final densities achieved by each prey when
alone, to their joint densities when together. It can be
seen that each prey suffers a reduction in its equilibrial
population size due to the presence of the alternative
prey. The essential reason for this is that with two prey
types present, rather than. just one, more predators
must enter the patch, or predators must stay longer,
before foraging yield can be depressed to the threshold
departure level. This increase in the number of pre-
dators or the length of their foraging bouts within a
patch reduces the density of each prey below the density
it exhibits when alone in the patch.

If prey grow logistically, i.e., G, = r,Ri(1 - R/K}),
the equilibrium curve is a straight line intersecting the
R,-axis at R, = K,(1 - (r/a,)/(r/a;)) (assuming that
r/a, > r/a,). If at this density of prey 1, Y > Y, then
prey 1 is able to attract enough predators to the patch to
exclude prey 2; this alternative prey is less able to with-
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Fig. 2. Apparent competition due to an aggregative predator
response. (a) The patch departure isoleg has a negative slope.
The solid dots mark three possible equilibria: each prey alone.
and together in a patch. At these states, neither predator densi-
ties nor prey densities are changing. Each prey species is de-
pressed in abundance by the presence of an alternative prey.
The arrows along the line with positive slope denote changes
expected in prey densities as P changes; P increases to the right
of the isoleg because predators enter the patch, and decreases
to the left as predators leave the patch. (b) Exclusion due to
within-patch apparent competition. Prey 1 attracts enough pre-
dators to the patch to exclude prey 2.

stand predation than prey 1, either because of a lower
intrinsic growth rate or a higher rate of mortality from
predation. Prey 2 is.more likely to be excluded from the
patch at large values for K, and r,. Hence, an increase in
the productivity of prey 1 that increases either its intrin-
sic rate of increase or its carrying capacity will tend to
reduce the equilibrial density of an alternative prey
species, even to the point of local extinction. An exam-
ple of such exclusion is shown in Fig. 2b.

Similar points. were made in Holt (1977). with the
difference that in the predator-prey systems considered
there the predator population as a whole was assumed
to be food-limited. The numerical response by the pre-
dator to each of its prey generated an indirect (—,-)
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Fig. 3. Isolegs with positive slopes lead to a (+,—) interaction
between aiternative prey. (a) Prey 2 reduces patch quality
below that required to attract predators to the patch (arrows
denote changes in prey densities, tracking slow changes in P).
(b) An increase in the carrying capacity of prey 2 increases
equilibrial densities for both species. The prey equilibrium
curve assumes that each prey follows a logistic growth law
when alone. This implies that prey densities lie along a straight
line. An increase in K, increases the slope of the equilibrium
line. The solid dots denote equilibrial prey densities when
predator numbers are stationary in a patch. The small arrows
indicate how an increase in K, affects this equilibrium. (c) An
increase in the carrying capacity of prey 1 decreases both prey
species’ densities. As in (3b), the prey grow logistically. An
increase in K, decreases the siope of the line of prey densities.
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interaction between alternative prey. By contrast, in the
present model the total population of predators may be
rigidly limited by factors other than food availability.
On a local, within-patch scale, however, alternative
prey species may nevertheless experience a (—,—) inter-
action because of the tendency of predators to aggre-
gate and stay longer in patches with a greater total
density of prey.

These conclusons change when the predator isoleg
has a positive slope, which is to say that the presence of
one of the two prey types reduces overall foraging
yields. In the cases shown in Fig. 3, prey 2 reduces the
predator’s foraging yield in the patch, and predators will
entirely bypass the patch uniess prey 1 is present and
sufficiently abundant (Fig. 3a). The presence of the
preferred prey tends to increase predation upon the less
preferred prey. However, the preferred prey species
benefits from the presence of a less preferred prey. An
increase in the carrying capacity of prey 2 decreases
patch quality and increases the equilibrial density of
both prey species (Fig. 3b). By contrast, an increase in
the carrying capacity of prey 1 decreases the equilibrial
density of both species (Fig. 3c). In short, these al-
ternative prey exhibit a (+,-) interaction (much like a
model-mimic system).

This model suggests that prey which are similar in
quality should tend to suffer reciprocal reductions in
local density when they overlap in a patchy environ-
ment. Each prey species should thus be selected to
avoid patches already occupied by the other prey spe-
cies. This can lead to the evolution of habitat partit-
ioning among prey species (Holt and Kotler, in press).
By contrast, if alternative prey are highly dissimilar in
quality (or in the tactics required to capture them),
foraging on the low-quality prey may reduce the pre-
dator’s capacity to capture or utilize the other prey
enough to reduce overall foraging yield. If so, a high
quality prey may benefit from occupying patches al-
ready inhabited by a low quality prey. However, the low
quality prey species does not enjoy a corresponding
advantage and in fact is disadvantaged by the presence
of the high quality prey species. The scenario leading to
a (+,—) interaction requires the predator to have a
suboptimal diet within the patch; a priori, it seems likely
that this will be less common than situations in which
the predator benefits from both prey. (Departure rules
other than the marginal value rule can lead to (+,+)
interactions (Holt and Kotler, in press).)

Prey dynamics in a two-patch environment

I have been assuming that in choosing to enter or leave
a particular patch, predators compare . instantaneous
rates of yield from foraging to a constant benchmark
value that represents the average fruits of foraging over
many patches. This assumption is inappropriate if pred-
ators are moving among only a few patches. I now turn
to the question of how optimal predator foraging in a
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two-patch environment influences prey coexistence. Let
Y, be the rate of yieild when a predator forages in patch
i. If predators can move to whichever of the two patches
provides the greater yield, without incurring travelling
costs or interference from other predators, they should
aggregate in the patch with higher yield. If predators at
equilibrium are found in both patches, their numbers
should be distributed such Y, = Y, (Fretwell 1972,
Rosenzweig 1985, Holt 1985a).

Given this criterion for an optimal distribution of
predators, we can examine its consequences for the
interaction between co-occurring prey species. We con-
sider in turn two limiting cases: (1) a food-limited pred-
ator, and (2) a predator fixed in population size at a
constant level by factors other than food availability.

The first case was explored in Holt (1984). There it
was shown that optimal habitat selection by predators
has the effect of decoupling the prey communities found
in different habitat patches. The densities of alternative
prey species within any patch are reciprocally reduced
by apparent competition, but the equilibrial abundances
of prey in one patch are independent of the availability
or productivity of prey in other patches, essentially be-
cause the number of predators found in any given patch
is adjusted to reflect just the productivity of that patch.

When the predator population is fixed in size, it is no
longer true that prey communities in different patches
are independent. Yet alternative prey within a patch
may still experience apparent competition. Here, I first
characterize the equilibrial distribution of the predator
population and a single prey population found in each
of two patches and then examine how these distribu-
tions are modified by the introduction of a second prey
species into one of the patches. \

The variables of the system are P;, the number of the

predators found in patch i, and R;;, the number of prey i

in patch j. The total number of predators is fixed at P, +
P, = P. We assume that each prey species experiences
intraspecific density-dependence within, but not be-
tween, patches. As before, for simplicity we assume
that the predator has a linear functional response to
each prey type, and that components of predator fitness
other than foraging success are equal in the two patches.
The growth rate of prey i in patch j is

dRy/dt = R; (g; (Ry) ~ a; P) = R;; (Fy),

where g; is the inherent per capita growth rate of prey i
in patch j in the absence of predators, a;; is the rate of
attack upon prey i in patch j, and F;; is a net per capita
growth rate. The predator’s rate of yield from foraging
in patch j is

where b; is the value to the predator of each captured

item of type i. _
Our first task is to describe the equilibrial distribution
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of the predator and one prey species, say prey 1. The
above. growth equation for prey i assumes that there is
no prey movement between patches. Hence, for the:
total prey population to be in demographic equilibrium,
its growth rate in each patch must be equal to zero: F;,
= F|, = 0. What if prey were free to move between the
two patches? Habitat selection theory (Rosenzweig
1985) predicts that at the evolutionarily stable state
(ESS, Maynard Smith 1982) for the population, fit-
nesses are equal across habitats. Hence, at the ESS, F,
= F,,. Moreover, if the total prey population is to be in
demographic equilibrium, its average growth rate must
equal zero: '

RyFy + RyFp = 0.

Hence, once again, at equilibrium F,; = F, = 0. For the
predator population tc be at its ESS, foraging yields (a
proxy for fitness) must likewise be equal across habitats,
so aybRy; = a;,b|Ry,, or (2;/a;;)Ry; = R;5. Substituting
into F, = F;; = 0 leads to

gu((a/a)Ry) + (afa)gu(Ry) = agP.

This can in principle be solved for R;,, which can then
be substituted into F,, = 0 to find P| = g,,(R},)/a;; and
P, = P - P,. (The asterisk denotes equilibrium). Be-
cause g; decreases monotonically with increasing R;,
equilibrial prey density in both patches declines with
increasing total predator numbers, as it should.

At equilibrium, the proportion of the prey population
that is in habitat 1 is

Ri/(R}, + R) = ap/(ay, + ap) = q.

The observed distribution of prey 1 thus reflects only its
relative vulnerabilities to attack in the two patches and
is independent of spatial variation in other growth pa-
rameters (e.g., r.or K in a logistic model). Such var-
iation instead leads to spatial variation in predator num-
bers. When a,, = a,,, R}, = R},, and the fraction of the
predator population in patch 1 is g,,/(g;; + g:3). Preda-
tor numbers tend to be biased toward the patch in which
the prey population is most productive.

We now introduce a second prey, restricted to patch
2. The predator ESS requires Y, = Y,. or

a,biRy = apbR;; + anb,Ry.

The equilibrial proportion of prey 1 in habitat 1 is
ayf(a;; + ay = apb.Ry/OIRY) > q (if Ry, > 0).

Thus, adding a second prey species to patch 2 reduces
the equilibrial proportion of the population of prey 1
found in that patch. Were the second prey to be re-

moved, the equilibrial proportion of the first prey’s
population in patch 2 would increase back to q. Hence,
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shared predation in a two-patch environment may lead
to ecological compression and release for otherwise
non-interacting, alternative prey species, even if the
predator population as a whole does not show a numer-
ical response to its prey. These effects should be ob-
served both for relatively immobile prey (i.e., prey with
low dispersal rates between patches) and for prey which
can exhibit optimal habitat selection equalizing fitnesses
across patches.

For the second prey to persist, it must be able to
increase when rare. With just prey 1 present, the num-
ber of predators in patch 2 is P; = g,(Ri;)/a;;. When
prey 2 is rare and restricted to patch 2, its per capita rate
of increase is ry, — a,,P,. If this quantity is positive, prey
2 invades, increases in density, and enriches patch 2
relative to patch 1. Predators should then leave patch 1
and enter patch 2 until foraging yields are once again
equal across patches. This relaxes predation on prey 1 in
patch 1, but increases predation on individuals of prey 1
in patch 2. Thus, by attracting predators, the second
prey has an indirect competitive effect on aiternative
prey with which it co-occurs, while simultaneously ex-
erting an indirect mutualistic effect on alternative prey
found in the other patch. The net effect on total prey
numbers over both patches combined of adding a sec-
ond prey may be either to reduce or to increase the
population of the original prey (Hoit, unpubl.). The
basic conclusion from these models is that in most cir-
cumstances, predators which utilize patches so as to
maximize foraging rates impose (-,-) interactions
upon alternative prey within a patch. If each prey type is
relatively superior at withstanding predation in a patch,
this apparent competition may select for habitat or
patch partitioning between the prey species.

Competition for refuges

In the models presented above, prey within a single
patch enjoy a kind of refuge because of optimal foraging
behavior by predators: if the number of prey in one
patch is too low relative to other patches, predators will
switch their attention elsewhere. This density-depend-
ent response by predators might make it advantageous
for some prey individuals in a patch to reduce their risk
of mortality by excluding other prey, thereby making
the patch unprofitable for predator foraging. In other
words, predation may generate a kind of direct competi-
tion among prey for occupancy of refuges from preda-
tion. Moreover, as will be shown below, any model
which assumes that a constant number of prey individu-
als can escape predation in spatial refuges generates a
kind of direct competition for space among prey.

In this section I develop a series of interrelated mod-
els which explore the consequences of such competition
for refuges. To see how the structure of these modeis
links in a natural way to the models of predator foraging
in a patchy environment considered above, consider
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again a single prey species in one patch within a system
of many patches. Let the threshold density of prey at
which predators leave the patch be R (corresponding to
Y). If R, < R, then no prey is attacked; if R, > R, all
prey are attacked at the rate a,P. In predator-prey mod-
els that incorporate constant-number absolute refuges
from predation (see, e.g., Murdoch and Oaten 1975,
McNair 1986), the relation between prey density and
predator attack is as follows: if R, < R, no prey is
attacked; if R, > R, the excess of prey outside the
refuge, R, — R, is exposed to attack. The “refuge”
implicit in the models of predator foraging in a patchy
environment presented above is all-or-nothing, for
when predators are present all prey are vulnerable to
attack; with absolute refuges, by contrast, the prey pop-
ulation is internally heterogeneous, with some prey in-
dividuals enjoying immunity from attack even at high
total prey densities. Incorporating absolute refuges in
this manner .in effect introduces an element of direct
competition between prey into predator-prey systems.
This point can be illustrated with the following simple
model. Let the prey population grow exponentially at
rate r; without predation, and let prey outside the ref-
uge incur an additional constant rate of mortality m,. If
the mortality outside the refuge comes from predation,
assuming that mortality is constant implies that the
predator shows a linear total response (numerical x
functional response) to an increased availability of its
prey (e.g., constant attack rate without a numerical
response). This assumption will be relaxed below. The
model is

dR
-a—tl =R, if R, S R;

(A1)
dR,

—— =rR,

& - (R, - R)m,, if R, > R.

The prey population equilibrates at a size

m
R;=R< : )zK,,
m -

given that m; > r,. But this condition implies that the
population would be driven to extinction were it not for
the refuge. The population can be stationary in size
because it is divided into two sub-populations: one part
is inside the refuge growing at rate r,, the other part is
outside the refuge, declining at a rate r, — m,, but
persisting because of continual replenishment from the
refuge.

This model implicitly incorporates intraspecific com-
petition for access to the refuge, as can be seen from the
form of the per capita growth rate for R, > R:

1 dR, Rm,
Rl dt = (rl - ml) + Rl (Az)
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Fig. 4. Intraspecific density-dependence in a refuge model.
There is a threshold change from exponential growth to nega-
tive density-dependence when population size exceeds the ref-
uge size R (the figure assumes that m’ > m > r).

This describes a hyperbolic growth model (see Fig. 4).

If there exists intraspecific competition over access to
a refuge, we might also expect similar prey species to
compete for refuges. The above model can be general-
ized in a natural way to two prey types as follows. If
prey species 1 is alone, a randomly chosen individual is
expected to be in the refuge with probability R/R, when
R, > R. If the two prey species have equal competitive
abilities, and there are R, individuals of species 2, the
probability of occupation of the refuge by an individual
of species 1 should be reduced to R/(R, + R,), given
that R, + R, > R. The simplest way to incorporate
unequal competitive abilities between species is to as-
sume that the relative probability for an individual of

one species to be in the refuge is constant, relative to an .

individual of another species, if the total number of prey
individuals exceeds the size of the refuge. This occurs if
the fraction of the population of prey 1 in the refuge is
R/(R, + BR,), and the fraction of the population of prey
2 found in the refuge is BR/R, + BR,). If N, is the
number of prey i found in the refuge, then

N, R,

The parameter § measures the ability of species 2 to
compete for access to the refuge, relative to species 1.
The two-species generalization of model (A2) is

1 dR, Rm, A3)
R ar - - m) R (
1 dR, BRm, Ad)
R, ot = "~ ™)+ R, (

In this model, which can be interpreted as a case of
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competition for a singie resource (see below), coexis-
tence is impossible. Setting each equation equal to zero,
one finds that there is no non-trivial solution of the
above model with both species present, except in the
unlikely event that K, = BK, (where K; = Rm/(m; —
r;)). At equilibrium, this model leads to parallel linear
isoclines. If species 1 is present at equilibrium and spe-
cies 2 invades, the initial growth rate of species 2 is r —
m, + Rmy/K,. After substitution, we find that species 2
is excluded if

This inequality also ensures that species 1 can invade
when species 2 is resident at its equilibrium density. If
the inequality is reversed, species 1 is excluded by spe-
cies 2.

Direct competitive dominance is not sufficient to win
the interaction. Even if B > 1 (i.e., individuals of spe-
cies 2 are relatively dominant), species 1 may win if it
has the higher value of r/m;, which measures its ability
to withstand predation outside the refuge. Hence, a
prey species may emerge triumphant in competition for
refuges because of its superiority in directly contending
for the refuge, or its higher intrinsic growth rate, or its
better ability at excluding the predator outside the ref-
uge.

When prey densities are high enough to fill the ref-
uge, this model of competition for refuges is structurally
identical to Schoener’s (1973, 1974, 1975, 1976) models
for exploitative competition. He explicitly derives his
population models from models of individual feeding;
competition occurs because a fixed quantity of energy is
partitioned among the members of one of more energy-
limited populations. In Schoener’s models, an amount ,
of energy is available for competition, is entirely con-
sumed by the population(s), and instantly renews. Since
the resource is divided equitably among the N, individu-
als within consumer population 1 when it is alone, the
per capita growth rate scales like /N, — C,, where C,
denotes the density-independent maintenance and re-
placement costs for an individual of species 1. If there is
a second consumer population present subsisting on the
same resource base, whose relative propensity at grab-
bing the resource is measured by §’, the growth equa-
tion for species 1 will have the form

i .
° (wrm-c)

where Q converts energy into numbers (Schoener uses
the symbol R, instead of Q). Eq. (A5) is structurally
identical to (A3) when R, > R. As noted in Schoener
(1973, 1975), hyperbolic (concave) growth curves are
commonly observed in laboratory population growth

1 dN,

N, dt (A5)
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experiments. This model for exploitative competition
provides a simple mechanistic interpretation of such
phenomena. Schoener’s interpretation of competitive
coexistence and exclusive is cast entirely in terms of
resource overlap, relative efficiencies of resource use,
and direct interference between competing consumers.
The above models for absolute refuges from mortality
start from a very different mechanistic assumption —
that what is important in population regulation is to
escape mortality factors, as in (Al) - and arrive at
equations whose structure is the same as Schoener’s
models for exploitative competition. The reason is that
in both situations. individuals in a population are con-
ceived to divide a constant amount of something, be it
refuges or food, among themselves.

There are two differences between the classes of
models worth pointing out. First, their parameters can
be related as follows (comparing Eq. (A3) with (AS)): {
<=> Rm,, and C; <=> m; — r,. The two independent
input and output parameters of model (AS) are in-
trinsically coupled in the refuge competition model. The
“input” term Rm, is the number of deaths that did not
occur in population i because the R individuals in the
refuge were not subject to the mortality factor acting at
rate m;. Secondly, in model (AS5) the per capita growth
rate uniformly decreases in a hyperbolic fashion at all
population densities and is unbounded as N; — 0 (this
assumption is modified in Schoener 1978); in the refuge
model there is a sharp transition at R; = R between
exponential growth and damped population growth.

Once we have made this identification between the
two systems it is straightforward to construct analogues
of Schoener’s models in which there is a mixture of
exploitative and interference competition for prey pop-
ulations experiencing competition over refuges. I here
briefly outline several such models. Models 1, 2, and 3
correspond to models analyzed by Schoener; models 4
and 5 are new, although one can readily devise parallel
equations for exploitative competition.

MODEL 1: Exclusive and overlapping refuges

Prey species may overlap only partially in the refuges
they can exploit. When species i is rare, let us assume it
preferentially occupies and exclusive refuge (R;), with
the excess R; = R; — R competing with the other species
for access to the shared refuge O. Interspecific competi-
tion for the shared refuge is described by (A3) and
(A4). The growth equation for prey 1 is

R
g - RN Rim TR

(R,> R, i=12),

+ Ri(r, = m,),

with an analogous equation for prey 2.
Interspecific competition occurs among those individ-
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uals outside the exclusive refuges over access to the
shared refuge. For a single species, the model reduces to
(A1) with R = R, + O; without exclusive refuges, the
model reduces to (A3) and (A4). It is clear that coexis-
tence is assured if each species has an exclusive refuge.
It is straightforward to show that at high mortality lev-
els, the species subordinate in direct competition for the
refuge (e.g., species 1 if B < 1) is restricted to its
exclusive refuge. If species 2 is dominant in direct com-
petition for the shared refuge, but has no exclusive
refuge, it can be excluded by species 1 if

m,0B/(m,—1,) < R, where R; = (r,R,+m,0)/(m,—r,).

Possession of an exclusive refuge may thus permit an

" intrinsically weaker competitor for a shared refuge to

oust the other species, reversing the outcome of compe-
tition for refuges.

MODEL 2: Lotka-Volterra competition with exclusive
refuges from mortality

A number of authors (Abrams 1977, Yodzis 1978, Holt
1985b) have discussed the effect of constant rates of
density-independent mortality on coexistence in the
Lotka-Volterra competition model. When two species
have the same intrinsic growth rate r;, and density-
independent mortality hits them uniformly, changes in
the level of mortality do not alter the conditions for
coexistence (i.e., K; > o;K;, i,j = 1,2, 1 # j). What is
the effect of intraspecific and interspecific competition
for refuges from mortality on coexistence in this model?
As a partial answer to this question, let each species
have its own exclusive refuge. The growth equation for
species 1 is

1 dR, 1 Oqu Rim, R R
R] dt _rl(l-K]—K‘ 2)—ml+ Rl > |> ’
1 dR, R, a,

R] dt = l(l - E;- K| RZ)’ Rl § R'

and similarly for species 2. In the absence of species 2,
R; = K, if R, 2 K,, and

if R, < K. Species 2 may invade if K, > a,,R;, which is
less stringent than the condition for invasion in the
absence of the mortality factor, (K, > a,K; Z ayR)).

As we uniformly increase the severity of the mortality
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factor, R; approaches R;. The maximum relaxation of
the competitive constraints on coexistence is reached at
K, > ayR,, K > a,;R,. For a given m, the equilibrial
prey population size increases with R,. Consequently,
we will see a greater relaxation of competitive con-
straints with increasing mortality if exclusive refuges are
scarce relative to the carrying capacities of the species,
than if refuges are common. Were we to measure the
intensity of predation, we might observe increasing
niche overlap along axes other than those responsible
for the division of refuges as the intensity of predation
increases.

MODEL 3: Completely overlapping refuges,
intraspecific interference

If each prey interacts aggressively within its own species
such that per capita growth rates decline linearly with R;
even in the absence of predation, two prey can overlap
completely in the refuges they utilize yet still coexist.
Adding a term for direct interference to (A2) and (A4)
leads to the following model:

1 dR, Rm,

El' E‘=m—ilRl + (rp=my)

and (B1)
1R, pm,

= e — LR, + (T, =
R, &t ~R +pR, 2Rt (- m)

The parameter i; measures the severity of intraspecific
interference. For simplicity, consider the case where r,
=rn=r,m=m=m,i, =i =i and f < 1. Without the
interference term, species 1 excludes species 2. With
interference and in the absence of species 2,

r-m\? Rm?”?
N (x)*a .

Species 1 can always invade. Species 2 invades if

r—=m

2

R; =

BRm 0 r . BR
- ——=>0,or—>1-—-77.
(r - m) + R or — R

R monotonically decreases with increasing i. This im-
plies that the two species can coexist if self-interference
in species 1 is great enough. Manipulating this expres-
sion shows that an increase in the availability of the
refuge (R) or the intrinsic rate of growth (r) makes
invasion more likely; an increase in m decreases the
chances of coexistence and restricts the range in § com-
patible with coexistence.
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MODEL 4: Completely overlapping resources and
refuges

Two similar species that contend for refuges may also at
the same time compete for other resources. In certain
systems competition may be represented best by models
like the Lotka-Volterra (for example, if resources grow
according to the logistic equation and consumers have a
linear functional response (MacArthur 1970)). In oth-
ers. such as consumer-detritus systems, Schoener’s
model (AS) is more appropriate. We now ask whether
two competitors which completely share both refuges
and food resources can coexist. In (A3) and (A4) we
replace r; by the energetic input term of (AS). With
uniform mortality, the per capita rates of growth of the
two prey species are described by

1 dR, I Rm
R, & R +PR, R +pR, ™
(B2)
1 dR, B BRm
- —= + - m.
R, dt R, +PBR, R +BR

These equations assume that the joint densities are high
enough both to completely fill the refuge, and to allow
consumer satiation on the resource to be ignored. Each
prey when alone achieves the equilibrial density R* =
I/m + R. Each species can increase when rare provided

| S G | I
_B_’.;+ER>;1-+R (species 1)
and (B3)

I I
B o BR > —+ R (species 2).

A necessary condition for these two inequalities to be
jointly satisfied is that either 8’ > l and < 1,0orf < 1
and B’ > 1: one species must be better at contending for
the shared resource, the other at acquiring access to the
refuge. Moreover, coexistence is more likely if both
refuges and resources are roughly equal in importance.
As m— o, the inequalities (B3) approach 1/ > 1 and B
> 1, i.e. dominance in the refuge becomes all-impor-
tant. Similarly, as [ increases, competition for resources
predominates; as R increases, competition for refuges
determines which species persists. This appears slightly
counter-intuitive, since it says that competition for the
resource with the more rapid renewal rate determines
the outcome of competition. This result depends upon
the assumption of continuous population growth in
(B2), which combines the effects of resources (via
births) and refuges (via deaths forgone) additively to
give the net population growth. Had we used a differ-
ence equation model of population growth, one that
incorporated competition for food resources during one
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season, and competition to hide from mortality factors
during another, the requisite with the slowest renewal
rate could have been found to be most critical in deter-
mining overall competitive success.

MODEL 5: Completely overlapping refuges, food-
Bmited predator

So far, we have considered the outcome of competition
for refuges only in environments where the intensity of
predation (m;) on individuals outside refuges is deter-
mined independently of the number of exposed prey. If
the predator has a non-linear total response to its prey
{a numerical response or a non-linear functional re-
sponse). the intensity of predation should be a depend-
ent variable in the system. The consequences of compe-
tition for refuges then becomes considerably more com-
plex. The expected decrease in the per capita growth
rate of a prey population caused by predation is given
by the probability that an individual will be exposed to
predation - an increasing function of prey density ~
times the rate of mortality, given that the individual is
outside the refuge - an increasing function of predator
density. But predator density, in turn, should depend
on tie cumulative number of prey individuals that have
become available for consumption outside refuges. The
net effect of one prey species upon another thus de-
pends upon the joint effect of direct competition for
shared refuges, and apparent competition due to shared
predation. A simple model for analyzing this mixture of
direct and indirect competitive interactions is for each
prey to grow independently according to a logistic equa-
tion in the absence of predation, to compete for a refuge
in accord with Eqs (A3) and (A4), and to be fed on by a
predator whose rate of growth increases linearly with
the density of prey outside refuges. This model is:

= r, 1 - Kl 1"’ a] - R] + ﬂRz
dR, R, BR
< =" (1 - K2> 1- a,P (1 R T PR,

(B4)

1 dR,
R, dt

|-

We assume that the total prey density is high enough to
fill the refuge.
This model is related to the models discussed above
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as follows. If P is fixed, the model reduces to (B1)
above, with a,P = m;. The logistic term represents in-
traspecific density-dependence (e.g., interference),
which, as we have seen, tends to promote prey species
coexistence. However, because the maintenance of the
predator population depends upon the availability of
prey outside the refuge, the predator is vulnerable to
extinction at low prey carrying capacities. The condition
for predator persistence is found by substituting K; = R,
into the above equation for (dP/dt)/P. I assume that this
expression is positive, thus ensuring that the predator
can increase when rare and the prey are at their respec-
tive carrying capacities. Predator persistence is ensured
if the K; are sufficiently large. I will further assume that
each prey can support the predator when aione.

In the model with fixed mortality rates and no in-
traspecific interference presented above, prey coexis-
tence was shown to be mpossnble Therefore, it is of
particular interest to examine the effect of variable mor-
tality rates (induced by the predator’s numerical re-
sponse) in the limit K; — ». The two prey species will
coexist if each can increase when rare. Let P] denote the
predator’s equilibrial density when only prey i is pre-
sent. If prey species j # i is absent, the predator and
prey i equilibrate at the following stable point equilib-

rium:
C/aibi>
K,

Several authors have noted that in the one-prey one-
predator version of (B4), where K, — «, absolute ref-
uges always stabilize the predator-prey interaction
(Murdoch and Oaten 1975, Maynard Smith 1974). Al-
lowmg K; to be finite just enhances local stability. Prey
species 2 will increase when rare provided

. BR
l‘z—azP, 1_—R—;— >0,

and species 1 will increase when rare if

> |1 R 0
l', - alpz - BR; > 0.

Looking at the latter expression, we see that prey 2
when resident reduces the growth rate of invadir;%lprey
1 in two distinct ways: by forcing a fraction (1 — R/BR;)
of prey 1 to reside outside the refuge (i.e., direct com-
petition), and through supporting a density P; of the
predator outside the refuge which can attack these ex-
posed individuals of prey 1 (i.e., apparent competition).
An increase in the productivity of prey 2 (through an
increase in either r, or K,), through its effect on P}
makes invasion by prey 1 more difficult. It is convenient
to define the following quantities:

R = R C p: r, (R + Clap, .
=R ab’ ' a\ Clab, -
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= the fraction of population i found

f = R outside the refuge, when alone
and at equilibrium;
Al = 1 - _E:
PR = the fraction of population i found'
BR outside the refuge when rare, and
A=] - E the other prey is at equilibrium;

= the fractional reduction of prey i
below its carrying capacity K,.

(-

The conditions for coexistence are:

X fl r,/a, A1A2 ;
(2 invades) <> X;I > ;27; > -—fz— <> (1 invades)

(BS)

This expression can be manipulated to examine coexis-
tence and exclusion for several interesting special cases:

12) No refuges: A; = 1 and f; = 1. BS reduces to the
condition for coexistence between two prey species dis-
cussed in Holt (1977, 1984). Prey coexistence requires
sufficiently strong negative density-dependence in the
prey with higher r/a;. In the limit K, — =, the prey
species with higher r/a; (which in the limit is the number
of predators that can be sustained by this prey) can
exclude the alternative prey.

2) Equal competitive abilities: R > 0, but = 1. The
refuge is divided equitably between the two prey. A/f;
= 1, and B5 becomes identical to the condition for
coexistence in the absence of refuges. The availability of
refuges thus affects coexistence under apparent compe-
tition only if one prey is superior at seizing the refuge,
ie.p#1. -

3) Fine-grained predation upon available prey, K, — :
Leta, = a, = a, b, = b,, and K, = K, — . With such
even-handed predation, f; = f, = f. With these symm-
etry assumptions, f is the fraction of the total number of
prey outside the refuge when the system is at equilib-
rium. It is thus a measure of the intensity of predation
outside the refuge; at low f, most prey are restricted to
the refuge. The two prey would grow exponentiaily
were the predator to be removed from the system. The
two prey coexist if

£ n_1=(1-0p
1-Bl-D 5 f

(B6)

If B = 1, coexistence is impossible for r, # r,; the prey
with higher r; dominates. By convention, we let prey 1
be dominant in competing for the refuge (0 = § < 1).
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Fig. 5. Parameter combinations permitting coexistence in the
model of competition for a single refuge with a food-limited
predator. The quantity f is a measure of the intensity of preda-
tion; low f corresponds to few prey outside the refuge. The
quantity B is a measure of the competitive ability of prey
species 2, relative to prey 1. Each pair of lines marked by equal
f-values demarcates a zone of parameter space allowing mutual
invasibility.

As f— 1, the two sides of (B6) converge on unity, and it
becomes more difficult for prey with unequal r; to coex-
ist. A sufficient condition for prey 1 to invade is § + f <
L. If prey 2 is to increase when rare, it is necessary that
r, > ry, and sufficient that r, > r/f. Hence, for any given
intensity of predation (measured by f), we can find a
range of the parameters r,, r,, and f§ allowing prey
coexistence. Fig. 5 illustrates how the parameter region
allowing prey species coexistence varies with f. Coexis-
tence occurs only if the competitive dominant has the
lower intrinsic growth rate. Moreover, coexistence is
easier to achieve if there is a strong trade-off between
competitive ability (B) and intrinsic growth rate (r,) (the
region near the origin in Fig. 5).

In the absence of refuges and with uniform rates of
predation the prey species with the higher r; wouid
exclude the alternative prey in the limit K; ~» <. In the
model (A3, A4) of competition for refuges in the face of
fixed levels of density-independent mortality, I showed
that coexistence was. impossible. I have now demon-
strated that with a structurally similar model, by letting
the mortality term vary in accordance with prey abun-
dance because of the predator’s numerical response.
coexistence is possible. The reason is essentially that the
simultaneous operation of direct competition (over ref-
uges) and apparent competition (through the predator’s
numerical response) provides two limiting factors in-
stead of just one. A prey species with low r will support
few predators, which allows another prey with higher r
to invade. If the low r prey is dominant in competing for
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available refuges, it can invade regardless of the number
of predators sustained by the prey with higher r. Thus,
coexistence ‘is possible if the prey that can support the

higher density of predators is subordinate in direct com-

petition for the refuge.

Discussion

Recent years have seen an explosion of theory and
experimentation concerned with understanding forag-
ing behavior by consumers (see review in Pyke 1984)
and escape behavior by prey (e.g., Sih 1979, Abrams
1986). That branch of behavioral ecology known as
optimal foraging theory is designed to predict the influ-
ence of natural selection on feeding behaviors, given
certain assumption about the relation between foraging
rates and fitness, on the one hand, and constraints on
phenotypic variation, on the other (Pyke 1984). Some
authors have begun to develop the elements of a paral-
lel optimal escape theory, although this line of research
has not yet proliferated to match the current extent of
optimal foraging theory.

If optimal foraging models adequately predict the
behavior of predators, and optimal escape models the
behavior of prey, such models can be used to build more
realistic models of predator-prey population dynamics
and, more broadly, the structure of interactions in food
webs. Because the effectiveness of predator foraging
strategies and prey escape strategies are interdepend-
ent, such population dynamic models may eventually
need to incorporate game theoretic reasoning (Parker
1985). Hassell and May (1985) and Schoener (1986)
survey recent work linking models of individual preda-
tor behavior to population dynamics and stress the de-
pendence of models of popuiation dynamics and com-
munity structure on assumptions made about individual
behavior.

In this paper, I have used some simpie ideas from
behavioral ecology to generate predictions about how
prey species may interact in a heterogenous environ-
ment. | have argued that mobile predators foraging on
immobile prey tend to impose (—,—) interactions on
prey species found within a patch (with some excep-
tions, see above and Holt and Kotler, in press). The
models presented here suggest that the expected (—,~)
interaction between alternative prey species within a
patch may be observed whether predators are drawn
from numerous patches, or shuttle between just two
patches. This indirect interaction arises because gener-
alist predators should respond to spatial variation in the
total availability of suitable prey, rather than to var-
iation in each prey species separately. All else being
equal, this should promote the global coexistence of
those prey species which utilize different patches in a
variegated environment. This result is buttressed by the
work of Hanski (1981) and Comins and Hassell (1987),
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who show in more detailed models that predator aggre-
gation enhances the likelihood of coexistence for com-
peting'prey in a patchy environment, when the two prey
are not tightly correlated in their spatial distribution. By
contrast, non-aggregative predators which forage ran-
domly across patches can be de-stabilizing.

Mobile prey should seek refuges from predation. I
have argued that if refuges-can be “filled up”, predation
can lead to a kind of competition as prey scramble to
occupy the refuge or interfere with other prey to pre-
vent them from entering. There has been considerable
debate over the relative importance of competition and
predation in natural communities (e.g., Connell 1975,
Sih et al. 1985; see Lubchenco 1986 for a nice example
of how to disentangle the effects of predation and com-
petition). However, any attempt to separate the effects
of competition and predation may be confounded by the
existence of competitive interactions that exist solely
because of predation, such as competition for refuges.
The models of this phenomenon presented above point
to several conclusions which are likely to hold in a
broader class of models. First, if one prey species per-
sists at a stable equilibrium only because of the exist-
ence of a refuge from a constant high level of predation
(e.g., due to a general predator supported by alterna-
tive foodstuffs), it cannot coexist with a second prey
species similarly dependent for its persistence on the
same refuge. Coexistence may be allowed by any of
several mechanisms: (1) each prey species may have an
exclusive refuge from predation; (2) the dominant com-
petitor for access to the refuge may experience strong
intraspecific competition; (3) competition for resources
may occur at the same time as competition for refuges,
and the prey species that is better able to exploit. the
resource is less effective in competing for the refuge.
Second, if the predator is itself limited by prey availabil-
ity, coexistence may occur because the prey that is
superior in apparent competition (mediated through a
numerical response by the predator population) is in-
ferior at directly competing for the refuge. The models
presented here suggest that future work on the effects of
predation on prey communities should pay close atten-
tion to predator movement strategies, the pattern of
availability of species-specific refuges for prey, and the
possible occurrence of direct competition among prey
for access to refuges. These modelis highlight the poten-
tial importance of spatial heterogeneity and patchiness
for maintaining the species richness of prey communi-
ties.
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