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It is widely recognized that both macroparasites and microparasites (in the
sense of Anderson and May 1979) can have a considerable impact on host pop-
ulation dynamics (see, e.g., Anderson and May 1979, 1981). The importance of
parasites in community dynamics has been widely disputed (Barbehenn 1969;
Rohde 1979; D. Brooks 1980; Holmes and Price 1980; Holmes 1982; Freeland
1983; review in Price et al. 1986), but in principle, their effects could greatly
influence the structure of species assemblages (Levin 1970).

To this end, theoretical studies (Dobson 1985; Holt and Pickering 1985; Ander-
son and May 1986; Hochberg et al. 1989) have examined the dynamics of multi-
species systems. Two of these studies (Holt and Pickering 1985; Anderson and
May 1986) have considered various cases of two host species that share an
infectious disease. They found that the parasite can play a substantial role in
determining species coexistence or exclusion, whether or not the host species
interact in the absence of the parasite. Dobson (1985) has investigated the compet-
itive dynamics of a pair of parasite species sharing a common host. He found that
the parasites’ pathogenicities, transmission abilities, and frequency distributions
among individual hosts are all instrumental in determining the competitive out-
come.

Most of the past modeling work on multispecies systems of microparasites
(Levin and Pimentel 1981; May and Anderson 1983; Anderson and May 1986) has
concentrated on the special case of invariably lethal parasites; infected hosts are
often assumed to suffer no loss in reproduction because of the disease. However,
many studies of invertebrates indicate that some infected hosts may survive the
initial onslaught of the infection (Salt 1970) and/or reproduce at slightly to greatly
decreased rates while infected (McLaughlin 1965; Breed and Olsen 1977). Levin
(1983a, 1983b) briefly considered models incorporating this effect and suggested
that decreased rates of reproduction of infected hosts and their recovery to the
susceptible state might give rise to sustained population cycles.

The models studied by Levin and others (May and Anderson 1983; Anderson
and May 1986) are also relevant to the current debate on the relative contributions
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of predation and competition to community structure and dynamics (Connell
1975; Tilman 1982; Schoener 1983; Holt 1984). Multiple parasitism, in which two
or more parasite species or strains attack the same host individual, presents a
rather intriguing combination of predatory (i.e., consumptive) and competitive
effects. When interference competition between parasite species occurs within
infected individuals, this may formally provide an example of intraguild predation
at the population level (Polis et al. 1989). The interference interaction among
parasites that generates such intraguild predation can be parasitic (see, e.g., Siegel
et al. 1986; for a review of hyperparasitism, see Sullivan 1987), competitive (see,
e.g., Beegle and Oatman 1975; Hochberg, in press), or a combination of the two
(Cossentine and Lewis 1988). For instance, Siegel et al. (1986) found that infection
by the microsporidian Nosema pyrusta of both the braconid parasitoid Macro-
centrus grandi and its lepidopteran host Ostrinia nubilalis resulted in fewer
parasitoids surviving to adulthood. Cossentine and Lewis (1988) found that the
same microsporidian had no significant effect on the ability of the tachinid
parasitoid Lydella thompsoni to eclose, but a related microsporidian in the genus
Nosema did. Apparently, the latter pathogen directly affected the parasitoid
larvae, whereas the former did not. Previous theoretical studies (Schoener 1976,
1978; Vance 1985) have recognized that interference interactions (e.g., aggres-
sion, intraguild predation) can influence competitive outcomes and even permit
the persistence (and hence a higher diversity) of competing species. Here we
extend this basic insight to host-parasite systems.

In this article we explore, in more depth, the role of cross-species infection in a
multiparasite system, similar to the one examined by Levin (1983a, 1983b). The
models considered here are most appropriate for characterizing microparasitic
(including viral, fungal, bacterial, and protozoan) infections of vertebrates or
invertebrates; however, the models could be suitably modified to encompass
other parasitic taxa (e.g., macroparasites and parasitoids). In particular, we aim to
compare and contrast three distinct dynamic roles that a parasite can play: (1) a
sort of ‘‘predator’’ of the host, (2) a predator of hosts that harbor a competing
parasite (i.e., an ‘‘intraguild’’ predator), and/or (3) a competitor with another
parasite for a limiting resource (i.e., healthy hosts). First, we briefly review the
dynamics of the one-host, one-parasite model of Anderson and May (1981). We
then consider the consequences of invasion by a second parasite species and
examine (1) the possible outcomes of invasion, (2) the effects of successful
invasion on the abundances of the host and its parasites, and (3) the stability of the
two-parasite equilibrium. Finally, we discuss the implications of our results for
the structure of simple parasite communities. Throughout the study, emphasis is
laid on intuitive explanations of the findings. A separate study focuses on hyper-
parasitism, in which one parasite can infect hosts only if another parasite species
is already present (R. D. Holt and M. E. Hochberg, unpublished manuscript).

ONE-HOST, ONE-PARASITE MODEL

In this section, we briefly review the basic one-host, one-parasite model of
Anderson and May (1981). The model does not take explicit account of long-lived
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Fi6. 1.—Schematic diagrams of some host-parasite interactions: a, one host and one
parasite; b, one-host, two-parasite system with pure exploitative parasitism between the
parasites; ¢, one host and two parasites with cross-transmission (facultative hyperparasit-
ism); d, obligate hyperparasitism. S, Susceptible hosts; I;, hosts infected with parasite i; I,
hosts infected with parasite 1; I,, hosts infected with parasite 2.

parasitic stages, latent periods of infection, or immunity. The assumptions of the
model are appropriate for many, but by no means all, infections of vertebrates or
invertebrates.

Susceptible hosts of density S are assumed to reproduce and die at per capita
rates of @ and b, respectively. These hosts can be infected, at a per capita rate of
B:I;, by parasites transmitted from infected hosts (of density I;). The term for
overall transmission rate, B;[;S, assumes that the population mixes homoge-
neously and that there are no long-lived external stages of the parasite. Once
infected, a host may recover to the susceptible state at a per capita rate of v;, give
birth to susceptible offspring at a per capita rate of a;;, vertically transmit the
parasite to its offspring at a per capita rate of a;,, or die from natural or disease-
induced causes at per capita rates of b and m;, respectively. The total per capita
rate of reproduction of infected individuals is thus a;; + a;,. The basic interaction
is schematically illustrated in figure la.

The model system is

ds/dt (a - b)S + (V,' + a,~1)1,- - B,'I,'S, (la)
dI,'/dt = B,'I,'S - (b + m; + v — ai’_’)Iia (lb)
which can be further simplified by lettingr = a — b, ¢; = v; + a;;,andd; = b + m;
— a;» + v Here, parameter r is the familiar intrinsic rate of increase of the
susceptible host, e; is a measure of the contribution (by birth or recovery) of

parasitized individuals to the healthy subpopulation, and d; represents the net rate
of loss of parasitized individuals. System (1a) and (1b) becomes

ds/dt =rS + e,-I,~ - B,'I,‘S, (IC)
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dl,‘/dt = B,'I,'S - d,'I,'. (ld)

Thus, although seven parameters are required to describe the mechanistic de-

tails of the system, four compound parameters encapsulate its dynamics. When

ai» = 0, the expected length of time an individual stays infected is 1/d;.
Equations (1¢) and (1d) have a unique equilibrium, S} and I}, given by

Si = dilB;, (2a)
I; = rd;/Bi(d; — e)). (2b)

The effect of most of the parameter values on the equilibrium levels of the host
(given by S} + I}) is straightforward. Increases in r and e; and decreases in {3; result
in higher populations of the host at equilibrium. The effect of parameter d,
however, is more complicated. Though not elaborated upon here, maximum
depression of the total host population occurs for parasites exhibiting intermediate
levels of pathogenicity; that is, d; = e; + (re;)"?.

The equilibrium exists and is stable if and only if » > 0 and

d,‘>€,‘>0. (3)

In other words, stability requires that the intrinsic rate of increase of the para-
sitized portion of the host population be negative (i.e., e; — d; < 0; thus, b +
m; > a;; + a;»; the death rate of infected individuals exceeds their own birthrate)
and that parasitized individuals contribute to the growth of the susceptible popula-
tion (i.e., e; > 0) by their recovery or births. Population trajectories converge
fastest and without oscillations to the equilibrium point for d; = e¢;; however, when
this limit is exceeded (d; < e;), the disease no longer regulates its host. If ¢; = 0
(e.g., because of a low recovery rate), the model leads to neutrally stable dynam-
ics. Indeed, the model in this limit is structurally identical to the classic Lotka-
Volterra predator-prey model. The two possible dynamic behaviors leading to a
positive host-parasite equilibrium are illustrated in figure 2.

TWO PARASITES COMPETING FOR A SHARED HOST

We now expand the one-host, one-parasite model to two parasite species or
strains competing for the same host. The conditions under which one parasite is
able to invade and/or resist extinction when competing with the second parasite
are characterized, and the consequences of successful parasitic coexistence for
the equilibrium host and parasitic abundances and for the long-term dynamics of
the system are then considered.

Model Development

The model presented here takes a form broadly similar to the models discussed
by Levin (19834, 1983b). The basic interactions are the same as for the one-host,
one-parasite model, except that in addition to infecting susceptible hosts, one
or both of the parasites can be transmitted to hosts infected with the opposing
parasite species (fig. 1¢).

The differential equations for healthy hosts (§), hosts infected with parasite
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Fic. 2.—Phase-space and typical trajectories for the one-host, one-parasite interaction. a,
Monotonic damping of the approach to the equilibrium point (e; = 0.6); b, cyclic damping
(e; = 0.02). Other parameter values: r = 1, 3; = 0.015,d; = 1. S = 0and I; = 0 are isoclines
for susceptible hosts and hosts infected with parasite i, respectively. The host-parasite equi-
librium is given by S', I;.

species 1 (I1), and hosts infected with parasite 2 (/) take the form

ds/dt = rS + 6111 + 6212 - B111S - [32128, (43.)
dli/dt = B[4S — diI; + 3(B1,B) 11>, (4b}
dlz/dt = lezs - d212 - 8(81,32)1112. (4C)

As before, the parameters r, e;, and d; compound several distinct biological
processes. The cross-transmission term 8 may be, in general, an increasing func-
tion of the rate of transmission to susceptible hosts, as represented by 3(B8,B2).
However, the two processes need not be coupled, for example, in obligate
hyperparasitism (for which & > 0 but B; = 0; see fig. 1d and, for further discus-
sion, R. D. Holt and M. E. Hochberg, unpublished manuscript). Parameter & can
be interpreted abstractly as a form of predation between the parasites, since (as
represented in eqq. [4]) cross-transmission entails the elimination of the inferior
parasite from multiply infected hosts. Positive values of § reflect parasite 1’s
superiority in cross-transmission, whereas parasite 2 is superior when 8 < 0. The
above model assumes that one parasite rapidly displaces the other in hosts par-
asitized by both.

The Outcomes of the Competitive Interaction

A basic quantity characterizing the demographic attributes of a parasite is its
basic reproductive rate, denoted by R; for parasite i. This is defined as the average
number of secondary infections produced by a single infected host during the time
that the host remains infected (i.e., before dying or recovering; Anderson 1980).
Were S constant, an individual infected with parasite i would infect an additional
B:S individuals and would stay infected an average length of time 1/d;. Hence,
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TABLE 1

SoME LIMITING CASES FOR INVASION AND COEXISTENCE OF THE PARASITES ASSUMING THAT B.d; > Bid,

Case Invasion by Parasite 1 Invasion by Parasite 2 Coexist?
1.3=0 never always no
d e rd
2. dSidt = 0 1 -2 1-4>___ es
d; " Bads - Bids 4~ Badi - Bid; Y
d e rd
3. 2-8_° L L 1-f>__ ™ no
d d d d B — Bid2 d  Badi — Budy
e rd rd
4. ¢, =0 - 2<— 1>— es
“ 4 " Baudy - Bids Bady — Pid: Y
d e rd
5.e,=0 t<—1" 1-&s__ ™ no
e Badi — Budz 4~ Badr - Bids
)
6. =d 3>0 1-&>___ ™ es
=@ 4~ B — Bidh Y
d
7. e=4d 1-2<____° 3<0 no
asa d " B - Bids
8. rd = Bod; — Bid> always never no
e B e B
9. % = - 2<—FL___ 1-=l>_ Pt es
B % " Budi - B 4 Badh - B Y
d
10. =0,8>0 L does not appl €s
B1 & " Bad, pply Ly
11. Bz/dz = Bl/dl 3>0 3<0 no

R; = B;S/d;. Parasite i, when growing alone with the host, depresses host densi-
ties to S = d;/B; (eq. [2a]), at which density the parasite’s basic reproductive rate
is unity. For simplicity, in our analysis of the two-parasite system, we let parasite
2 be the species with the higher R; (i.e., B,/d> > B,/d,).

If both parasites are present at positive densities—that is, /; > 0 and I, >
0—and each is able to regulate the host in the absence of its competitor
(i.e., condition 3 holds for parasite 1 and parasite 2 alone with the host; thus,
d; > e; and d, > e,), we can evaluate the conditions for their sustained coex-
istence through an analysis of the conditions for invasion. Some special cases
are presented in table 1.

Parasite 2 can invade the equilibrium between parasite 1 and the host only if
equation (4¢) is positive when evaluated at the equilibrium § = S}, I, = I}, and
I, = 0 or when

FS/(Bzdl - B]dz) <1 - el/dl. (53.)

Invasion is always successful if & < 0; in this case, parasite 2 is the more
successful infective agent for both susceptible hosts and hosts already infected
with the other parasite. Given that 8 > 0, invasion by parasite 2 is promoted by (1)
the high pathogenicity of parasite 1 (i.e., low ey, high d,), (2) parasite 2’s being a
sufficiently superior exploiter of susceptible hosts, compared with parasite 1, over



COEXISTENCE OF COMPETING PARASITES 523

their respective life spans, and (3) a small intrinsic rate of increase of the suscepti-
ble host population.

In like manner, if parasite 2 is near its equilibrium with the host, invasion by
parasite 1 requires

FS/(Bzdl - B]dz) >1 - €2/d2. (Sb)

Invasion is impossible if 8 < 0. Parasite 1 is more likely to invade if (1) it has a
sufficient advantage at interference, (2) its transmission success (as measured by
Bod; — Bidb) is not too different from that of parasite 2, (3) parasite 2 is marginally
regulatory, and (4) the intrinsic rate of increase of susceptible hosts is large. In
contrast to the case of invasion by parasite 2, increased pathogenicity of the
resident parasite may prevent invasion by parasite 1.

Were we to assume that B,d; < ,d,, note that a system marginally regulated by
its parasite (i.e., ¢; = d;) is virtually impervious to invasion by a competing
parasite unless the invader is better both at transmitting infection to healthy hosts
and at ousting the competitor from infected hosts (see table 1, cases 6 and 7).

It is useful to consider some special cases of this model (summarized in table 1).

Purely exploitative competition between parasites.—If 8 = 0, the parasite
species interact only indirectly through their joint exploitation of a shared host
population (fig. 15, table 1, case 1). From the above inequalities and the assump-
tion that B,/d, > B1/dy, it follows that species 2, if present at equilibrium, excludes
species 1 and can invade when it itself is rare. Sustained coexistence is thus
impossible. Given that parasite i is present, the equilibrium density of healthy
hosts is d;/8;. Hence, the parasite that depresses healthy host numbers to the
lower level when alone (i.e., has the higher R;) wins in competition with the
alternative parasite. This result parallels the usual interpretation of competitive
dominance in exploitative competition for a limiting resource (Tilman 1982), in
which the winner is the species that can persist at the lowest resource density.

Steady-state dynamics: effects on healthy hosts.— Assume that the healthy
host population equilibrates more quickly than do the infected host populations,
such that in equation (4a), dS/dt = 0 (see table 1, case 2). We do this in order to
compare the competitive interaction between the parasites with more traditional
analyses of two-species competitive and predator-prey systems. This separation
in time scales impiies that

SUy,I) = S = (eidy + exl)/(Bidy + Bala — 7). (6)

Steady-state assumptions are commonly used in the study of enzyme Kkinetics
(Segel 1988) and multispecies interactions (MacArthur 1970) to illuminate the
behavior of complicated dynamic systems.

Expressing the density of susceptible hosts as a function of infected hosts in this
fashion makes sense only if » < ;I + B./,. This means that the rate of growth
of the healthy population from self-recruitment is less than the rate at which it
is becoming infected (the demographic accounting stays in balance because of
recoveries and births to infected individuals). The quantity S(Z,, I>) describes how
the availability of susceptible hosts is dynamically influenced by the abundance
of the two kinds of infected hosts. Infection by parasite i depresses host availabil-
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ity (the terms B;I; in the denominator), whereas recovery and births enhance host
availability (the ¢;I; terms in the numerator). Even though the two parasites clearly
compete exploitatively for hosts, this representation of their interaction reveals
more complexity than is contained in most models of exploitative competition
(e.g., Schoener 1976; Tilman 1982).

If S(I;,0) > S, 1), the net effect of parasite 2 is to decrease the availability of
susceptible hosts. This occurs when

(er]y + ex)/(Bily + Baln — 1) < eyly/(Bydy — r) = Q) (7a)

or, rearranging terms, when
e/ < Oy). (7b)

Conversely, if S(1;,0) < S(I,, I,), parasite 2 enhances host availability, on balance,
which requires that

ex/B, > Q). (7¢)

Q declines monotonically with I, (for I, > r/B;) toward the limiting value of e,/B;.
Similar inequalities describe the impact of parasite 1 on host availability. Manipu-
lating these expressions reveals that parasite 2 always depresses host availability
if e5/B, < e1/By, but that if I, > re,(e;B> — e»B1), parasite 1 actually increases the
availability of susceptible hosts. Conversely, if e,/B, > e/B;, parasite 1 uniformly
diminishes host availability, whereas parasite 2 increases it at sufficiently high
densities of I;. Parallel conclusions follow from an examination of the marginal
effect of each parasite on host availability (i.e., the sign of 05(/;,1;)/dl;). The
quantity e;/8; measures the degree to which the pool of susceptible hosts is
replenished from individuals infected with parasite i, scaled against depletion by
infection. At sufficiently high I;, recoveries of and births to infected hosts are the
principal source of recruitment into the pool of susceptible hosts. The positive
effect of infection on host availability is one-sided; one of the two parasites always
depresses healthy-host availability. This component of the interaction thus shifts
from competitive (—,—) at a low density of the competing parasite to predatory
(+,—) at a high density of one of the parasites. Unlike in most competitive
interactions, an increase in the density of one of the ‘‘competitors’’ in infectious-
disease systems can (in the short term) benefit the other.

Steady-state dynamics: effects on parasitized hosts.—In our model, the com-
plex effects of the parasites on the exploitable resource (i.e., healthy hosts) are
overlain by a sort of predator-prey interaction resulting from cross-infection
(assuming that parasite 1 is the predator). Substituting approximation (6) into
equations (4b) and (4c) leads to

dly _ ;[Bileids + exy)

dt 11[3111 + Baly — 1 di + 812]’ (8a)
dl, _ Balerdy + exly) _

dt ’2[3111 L —r 2T ']' (8b)

At low values of I and I, the overall interaction between the parasites is clearly
competitive (—,—); at high densities, it becomes predatory (+,—).
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The isoclines of this model are hyperbolas. The examples depicted in figure
3 combine elements of standard textbook representations of competitive and
predator-prey interactions (figs. 3a,b). In each case, the isocline of species 2
has a negative slope. At the limit 8 = 0 (purely exploitative competition), the
isoclines are nonintersecting straight lines with negative slopes (fig. 3a). At the
limit B; = 0 (obligatory hyperparasitism), the isocline of parasite 1 is perpendicu-
lar to the I>-axis, emanating from I, = d,/d (fig. 3b). In the intermediate cases,
with both & > 0 and B; > 0 (figs. 3c—f), the isocline of species 1 often shows two
distinct behaviors, having a negative slope at low densities of parasite 2 (i.e., like a
standard competition isocline) but bending into an isocline of positive slope at
high densities of parasite 2 (as in a predator’s isocline). For instance, in figure 3c,
parasite 1 unilaterally excludes species 2, regardless of initial densities. However,
the population trajectories differ from those expected given either pure predation
or pure competition. At low densities of parasite 2, parasite 1 in effect attacks only
susceptible hosts. Because parasite 2 is a superior exploiter of healthy hosts, small
increases in its density depress the growth rate of parasite 1. As parasite 2
increases in density, there are fewer healthy hosts available, and the ability to
cross-infect enjoyed by parasite 1 becomes relatively more important. Lowering
the carrying capacity of parasite 1, or increasing that of parasite 2, may lead to
sustained coexistence at a stable node (fig. 3d).

Sometimes the isocline of parasite species 1 breaks into two disjunct pieces, one
with a negative slope, the other with a positive slope. Figure 3¢ shows an example
of this, further illustrating a case in which initial densities determine which of the
two parasites excludes the other. And finally, combinations of parameters can
lead to a stable point equilibrium and to species coexistence in this reduced
system (eqq.[8]) yet imply an unstable point equilibrium in the original three-
species system (eqq.[4]; fig. 3f). Nonetheless, the collapsed system suggests
some of the range of behaviors to be expected in the full model (e.g., oscillations).

The Conditions for Sustained Coexistence

Figures 4 and 5 show various possible outcomes of the three-species system.
The conditions under which both parasites simultaneously invade the system can
be compactly restated from inequalities (5a) and (Sb) as (fig. 4, region D; fig. 5b):

1 — exld, < rd3/(Bady — Bida) <1 — e4/d;. )

This also ensures the existence of a unique three-species equilibrium point:
S* = (diey — dre))/Q, (10a)
If = 7,/Q, (10b)
L =m0, (10¢)

where for notational convenience

Q = Bady — €1)) — Bildr — €2) — 13, (10d)
T = rdy — (B2di — Bida)(da — €2)/3, (10e)

Ty = (Body — Bida)(dy — e)/d — rd,. (10f)
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Fic. 3.—Phase diagrams of dynamic outcomes of one-host, two-parasite interaction in the
I,,I, plane when dS/dt = 0. a, Standard competitive interaction resulting in parasite 2
competitively excluding parasite 1 (5 = 0); b, standard predator-prey interaction resulting in
coexistence (e, = 0.8, 3; = 0,and & = 0.01); ¢, unilateral exclusion of parasite 2 by parasite |
(e, = 0.7, e; = 0.4, and B, = 0.05); d, coexistence at constant population densities (3 =
0.005); e, exclusion of parasite 2 based on initial population densities (¢, = 0.7 and e, = 0.4);
f, stable point in the reduced system (this figure and eqq. [8a] and [8b]) but unstable point in
the three-species system (eqq. [4]; ¢; = 0.001, B; = 0.005, and & = 0.014). Isoclines for
infected hosts (I; = 0 and I, = 0 for parasites 1 and 2, respectively) and typical trajectories
(given by arrows) are based on equations (8a) and (8b). Shaded areas, Regions of infeasibility
under the assumption that dS/dt = 0. The equilibrium of each parasite in the absence of the
other: open square, host and parasite 1 (0,1}); open triangle, host with parasite 2 (I5,0); open
circle, the equilibrium between both parasites (/3,17). Parameter values, unless otherwise spec-
ified,r = 1,d, = 1,d, = 1, ¢; = 0.1, e, = 0.6, B; = 0.01, B, = 0.02, and & = 0.004.
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Fic. 4.—Effects of net interference of parasite 1 (3) and net exploitative advantage of
parasite 2 (B.d; — Bid, With By, di, and d, held constant) on the outcome of competition
between two parasites when each regulates the host in the absence of the competitor. A,
Parasite 1 wins; B, parasite 2 wins; C, competition contingent on initial densities; D, coexis-
tence at constant densities. Shaded region, Parameter space for which an unstable point
equilibrium occurs, resulting in persistent oscillations. Parameter values: e; = 0.001,
B: = 0.005, e; = 0.6. Parameters r, d;, and d, are each set to unity.

Note that the positivity of the constants 7, and 7, is equivalent to satisfying the
conditions for invasion, inequalities (5a) and (5b), respectively.
A necessary condition for inequalities (9) to hold is that

82/612 > el/dl . (11)

Thus, for coexistence, the parasite with the higher R; must be less pathogenic than
its competitor. Moreover, given our assumption that d,/B; > d-/B,,

3>0 (12)

is also necessary for coexistence. The condition d,/B; > d,/B, means that one
species is superior at exploiting the healthy host population, whereas the other is
superior at cross-infecting individuals already infected. This represents a kind of
niche partitioning between the two parasites.

Since the quantities 1 — e;/d, and 1 — e,/d, are constrained to be between 0 and
1 (because each parasite is assumed capable of reguiating the host), the ratio in the
center of inequality (9) is likewise constrained by

ro < BZdl - Ble- (13)

In other words, the advantage enjoyed in infecting healthy hosts by parasite 2
must sufficiently offset the interference advantage that parasite 1 possesses.
Finally, coexistence requires intermediate values for the intrinsic rate of in-
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F16. 5.—Population dynamics of the three-species system. a, Parasite 1 excludes parasite
2; b, coexistence at constant population densities; ¢, parasite 1 excludes parasite 2 on the
basis of initial densities (S = 50, I, = 30, and I, = 10); d, persistent oscillations. Parameter
values as for the respective cases in fig. 3c—f. S, Susceptible hosts; I, hosts infected with
parasite 1; I,, hosts infected with parasite 2.

crease of the susceptible hosts, or
(1 — exdr)(Bady — B1da)/d < r < (1 — ei/d)(Bad; — B1d2)/3. (14)

The parameter r can be thought of as a measure of host productivity. Thus, for this
system, parasite species’ richness is maximal at intermediate levels of host pro-
ductivity.

Note that if only one of the inequalities (9) holds, then one parasite unilaterally
excludes its competitor (fig. 4, region A or B, fig. 5a). The winner depends on
which of the inequalities holds. For instance, if inequality (5b) is true and inequal-
ity (5a) is false, parasite 1 always eliminates parasite 2 from the system. If both
conditions (5a) and (5b) are violated, then the system is‘reciprocally impervious to
invasion, and the winner depends on the initial population densities (fig. 4, region
C; fig. 5¢).

If parasites differ in their transmission rates but not in their demographic impact
on the hosts (i.e., B, > B, d >0, d; = d,, e; = e;), then from inequalities (9) there
can be no coexistence. One simple prediction of the model is that if two parasite
strains coexist in a single host population, the parasite that is better at cross-
infection should be more virulent (as measured by e/d) and have a lower R;.
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Fic. 6.—Possible states of the one-host, two-parasite system. The quantity g = r8/(B.d, —
B1d») and is constrained to the bounds of zero and unity. If ¢ > 1, then parasite 1 always
excludes parasite 2. Dotted lines, limits of parameter combinations in which the parasites can
stably regulate the host population (d; > e; > 0). @, The host can be regulated by either
parasite but shows weakly damped convergent oscillations to the point equilibrium. b, The
host cannot be regulated by the parasites. ¢, Parasite 2 can regulate the host, but parasite 1
cannot. These roles are reversed at point d. (See the text for further discussion.)

The quantity g = rd/(Bd; — B1d;) in inequalities (9) compounds host productiv-
ity and parasite cross-infectivity, scaled against a measure of the relative impact
each parasite has on the susceptible host population. Figure 6 shows the various
outcomes of this model stated in terms of g. As shown there and discussed below,
the rules describing the possible long-term state of the system also apply when the
host is not stably regulated by the parasite.

As in the familiar Lotka-Volterra model of competition, one parasite may in
general unilaterally exclude the other, the two may coexist, or there can be a
priority effect such that either parasite can exclude the other if it is initially
present in equilibrium with the host. Parasite coexistence hinges on three factors:
(1) host productivity must lie in an intermediate range (at low r, the parasite better
at direct exploitation of the host dominates; at high r, the parasite better at within-
host competition wins); (2) the parasite that is more effective at cross-infection
must be less effective at depressing the abundance of healthy hosts (i.e., have a
lower R;); (3) this parasite must also be more pathogenic (i.e., have a lower e;/d;).
By contrast, a priority effect is seen at intermediate host productivities if the
parasite with a lower R; is less pathogenic.

The Consequences of Invasion for Species Abundance

It is useful to consider how the equilibrium densities of the host and its parasites
depend on the model. Several examples are shown in figure 7. We see that the
populations of parasite 1 and the healthy host have similar reactions to many
parameter changes: both benefit from increases in r, 81, d>, 8, e}, and e, and from
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for fig. 3f. S, Susceptible hosts; I;, hosts infected with parasite 1; I,, hosts infected with
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COEXISTENCE OF COMPETING PARASITES 531

decreases in 3, and d,. The population of parasite 2, the dominant parasite in
terms of exploitative competition, reacts to these changes in just the opposite
way. Some interesting patterns emerge from these figures. Variation in §;, for
instance, has a negligible effect on the density of healthy hosts but sharply influ-
ences the relative density of the two parasites (fig. 7a).

We can restate condition (9) in terms of the equilibrium densities of the single-
and multiple-parasite systems to give

USY < (IF + ID)IS* < Ib/Sh. (15)

This implies that, in the absence of a competitor, the parasite with the greater
transmission rate will always be more prevalent than the better interferer (i.e.,
cross-transmitter). When the parasites coexist at a point equilibrium, the total
prevalence of infection is intermediate to the equilibrium single-species preva-
lences.

Alternatively, condition (9) can be expressed in terms of susceptible host
densities at equilibrium. Coexistence implies that

Sh< §* < 8. (16)

The invasion of parasite 2 into a host population regulated by parasite 1 always
depresses the equilibrium of susceptible hosts, whereas, by contrast, the suscepti-
ble-host density increases if parasite 1 invades a system regulated by parasite 2.

Invasion also entails a decrease in the density of the initially resident parasite,
regardless of which of the two parasites is the invader. This is intuitively obvious
when parasite 1 invades, since the better interferer usurps hosts from the popula-
tion of parasite 2. For this same reason, one might expect the density of parasite 1
to increase upon invasion by parasite 2. However, because of parasite 2’s advan-
tage at transmission (B.d; > Bid>), parasite 1 has fewer total hosts to exploit. The
net effect of parasite 2 is thus to depress the population of parasite 1. Hence, when
examined at equilibrium, this system is clearly competitive in the usual sense of
the word, in that each parasite population depresses the abundance of the alterna-
tive parasite, even though there are density combinations away from equilibrium
in which one parasite benefits from the other (see above).

The Stability of the Three-Species Equilibrium

Through numerical studies of the local stability criterion (see the Appendix), we
found that the equilibrium point defined by equations (10) may be unstable, giving
rise to what appear to be limit cycles (see figs. 4, 5d, 8). More complicated
oscillatory behavior (e.g., chaos) was not observed.

Limit cycles tend to occur if parasite 1 is at the limit of being able to regulate the
host in the absence of parasite 2, or e; = 0. When parasite 2 is added to this
interaction, persistent cyclic behavior results if parasite 2 has a slow but positive
growth rate, such that rd = B,d; — Bd,; or, in other words, the behavior becomes
cyclic as the destabilizing competitor (parasite 1) comes to dominate the system.

The approximate criteria for an unstable three-species equilibrium leading to
limit cycles can be expressed as

ep =0 (17a)
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Fi. 8.—Final trajectory (approximate) of limit cycle in three-dimensional space. Parame-
ters as for fig. 3f. S, Susceptible hosts; I;, hosts infected with parasite 1; I, hosts infected
with parasite 2.

and
a/dldz = Bz/rdz - Bl/rdl . (17b)

Thus, the advantage of parasite 1 at cross-transmission must be comparable in
magnitude to parasite 2’s superiority at transmission. As the difference in the
transmission efficiencies of the two parasites grows, so too does the requirement
that the transmission efficiency of parasite 1 to hosts infected with parasite 2 (i.e.,
d/d,d,) exceed the transmission efficiency of parasite 1 to healthy hosts (i.e.,
Birdy).

Alternatively, limit cycles ensue if the net effect of each parasite on the popula-
tion of susceptible hosts is negative and if the links between the host and each of
the parasites individually are stronger than the links among the three species taken
together. These conditions are elaborated upon in the Appendix.

The oscillations produced by the model can be understood intuitively as fol-
lows. The pathogenic parasite, parasite 1, depletes both of its resources (i.e.,
healthy hosts and hosts that harbor parasite 2) and then declines to densities that
are too low to regulate the host. The host is then able to escape temporarily the
regulatory influence of its parasites and grows at a nearly exponential rate. This
eruption of the susceptible host population is not immediately checked because
hosts infected by parasite 2 can be quickly cross-infected by parasite 1. Because
parasite 2 is better at directly infecting susceptible hosts, this reduces the regula-
tory potential of the combined parasite populations. The population of susceptible
hosts is then ultimately depleted by the combined actions of parasite 2 and
parasite 1. Our numerical studies suggest that these cycles are stable limit cy-
cles, although the possibility remains that more complex dynamic behavior could
occur.
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Nonstable Systems

In the above analyses, we assumed that each pathogen could, when alone,
regulate the host population at a locally stable equilibrium, which is to say that
d; > e; > 0. This assumption could be violated in either of two ways: the
equilibrium might exist but not be locally stable (i.e., e; = e, = 0), or the parasite
might not be able to check the growth of its host (i.e., d; < ¢;). We consider each of
these in turn.

Neutrally stable one-host, one-parasite systems.—When e; = e, = 0, the
system reduces to the classic Lotka-Volterra predator-prey model. This model
exhibits neutrally stable oscillations, a behavior that disappears with slight
changes in the model’s structure. This structural instability makes the model
unsuitable as a subject for exhaustive analysis, but this limiting case does highlight
several factors likely to be important in understanding the coexistence or exclu-
sion of parasites. When the quantities e; are quite small (e.g., as at point a in fig.
6), the algebra presented above suggests that if ¢ < 1, parasite 2 excludes parasite
1, whereas if g > 1, parasite 1 excludes parasite 2. Using the time-averaging
technique of Puccia and Levins (1985), one can readily show that if ¢ < 1 and
parasite 2 and the host are fluctuating cyclically around the point equilibrium,
averaged over the cycle, parasite 1 declines when rare; by contrast, parasite 2
shows a positive per capita rate of increase averaged over the cycles exhibited by
parasite 1 and the host. Thus, parasite 2 unilaterally excludes parasite 1. This
dominance is reversed if g > 1. Thus, the conditions for invasion derived assum-
ing that the resident species are at equilibrium also describe the long-term behav-
ior of the system away from equilibrium.

This special case of the model suggests that parasite coexistence is unlikely
when the pathogens greatly depress host fecundity and prevent host recovery. It
is somewhat counterintuitive that the recruitment of healthy hosts (by recovery or
birth) from infected hosts may be a necessary ingredient in parasite coexistence.

These statements about coexistence apply to closed systems viewed over the
long term. If the system is away from equilibrium for small ¢;, it shows a long
period of gradually damped oscillatory behavior, with fluctuations in both total
host numbers and disease prevalence. There can be transient phases when one
parasite increases following invasion, even though it will ultimately be excluded
from the local community near equilibrium. Such nonequilibrium behaviors open
the possibility of persistence of an inferior local competitor as a result of dispersal
among populations in a metapopulation of local host-parasite interactions, each
occasionally perturbed from equilibrium by localized disturbances.

Nonregulatory parasites.—When neither parasite can regulate the host, total
host population size (N = S + I; + I,) increases in an unbounded fashion. If for
parasite i, e; > d;, it cannot stabilize the host population. Anderson and May
(1981) showed that in this case the host population asymptotically grows exponen-
tially, with an ever-increasing fraction of the hosts being infected; the number of
healthy hosts, however, is bounded. Consider point b in figure 6, which corre-
sponds to the case for which neither parasite can regulate the host. If parasite 1 is
initially rare and if the host and parasite 2 are growing unchecked, eventually
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there will be a density of hosts infected with parasite 2 above which parasite 1 has
a positive per capita growth rate, irrespective of the density of healthy hosts. By
contrast, if parasite 2 is present, eventually the density of healthy hosts will reach
an asymptote, whereas the density of hosts infected with parasite 2 continues to
increase; this implies a continual increase in the rate at which parasite 2 is
supplanted by parasite 1, without a corresponding increase in infections of healthy
hosts by parasite 2. This suggests that parasite 1 supplants parasite 2 in this
unstable host-parasite interaction.

Now consider point c in figure 6. Once again, species 1 does not regulate the
host and, when initially present with the host, can increase to a density such that
species 2 is excluded. If species 2 is initially present at equilibrium with the host,
however, there are too few of it present to allow invasion by species 1. Thus, the
system can exist in either of two alternative states: parasite 1 and the (total) host
population growing exponentially, with parasite 2 excluded, or parasite 2 and the
host at a stable equilibrium, with parasite 1 excluded.

Finally, consider point d in figure 6. If parasite 2 is alone with the host, the
system is unstable; parasite 1 eventually invades when parasite 2 reaches suffi-
ciently high densities. Conversely, if parasite 1 is alone with the host at their joint,
locally stable equilibrium, parasite 2 can invade. Hence, the two parasites should
be able to coexist. Elsewhere (R. D. Holt and M. E. Hochberg, unpublished
manuscript), we discuss in more detail how, in this case, adding a second parasite
can either destabilize or stabilize a one-host, one-parasite interaction.

The essential point to emerge from these observations is that the criteria
demarcating the four possible states of the system (fig. 6) appear to be indepen-
dent of the parasites’ abilities to regulate the host population. Of course, if
parasites are nonregulatory in a natural host population, their interaction must
overlie other forms of density dependence, such as food limitation, that are
responsible for host regulation; this is likely to modify the conditions for parasite
coexistence and exclusion.

DISCUSSION

We have shown that the outcome of competition between two parasite species
or strains depends on their respective transmission abilities, pathogenicities, and
degree of interference within the host individual. Although the models considered
in this study are most appropriate for microparasitic infections (in the sense of
Anderson and May 1979), the general results are likely to apply more broadly to a
wide range of parasitic taxa (e.g., helminths, parasitoids).

The invasion of a competing parasite into an established host-parasite system
may result in one parasite’s unilaterally excluding the other from the system,
stable or oscillatory persistence of both parasites, or competitive exclusion of
either parasite with the winner contingent on initial population densities. Our
analyses extend and generalize the results of other studies on multiparasite sys-
tems (Levin and Pimentel 1981; Levin 1983a, 1983b; May and Anderson 1983;
Dobson 1985; Anderson and May 1986). For instance, persistent oscillations in the
three-species system are feasible if one parasite acts as a sort of intraguild
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predator of the other parasite, as well as a predator (or pathogen) of healthy hosts.
Our results indicate that high pathogenicity (in terms of low reproductive and
recovery ability on the part of diseased hosts) helps an easily transmitted parasite
to exclude competitively the less readily transmitted parasite, whereas the better
competitor within an individual host is more apt to exclude the easily transmitted
parasite from the system if its own pathogenicity is low.

The importance of low pathogenicities as a regulatory factor in simple host-
parasite models has been stressed in previous theoretical studies (e.g., Anderson
and May 1981). For many invertebrate diseases, total recovery by infected indi-
viduals or the ability to reproduce is not possible. Under such circumstances, the
single-parasite model with e = ( predicts that neutrally stable cycles should ensue.
Of course, other modifications of the model not considered here—such as a more
realistic structure of the parasite population (Hochberg 1989), nonlinear rates of
transmission (M. E. Hochberg, unpublished manuscript), or the presence of
refractive states of the host (Brown 1984)—could damp the oscillations in the
system.

More generally, for competitive coexistence to occur, one parasite must be
better at transmission, whereas the competing parasite must dominate at interfer-
ence competition within multiply infected hosts. This result is similar to studies
that have focused on species coexistence in parasitoid guilds (e.g., Force 1970;
Hassell 1978; Zwolfer 1979; Price 1980; May and Hassell 1981), in which some
parasitoids are better extrahost competitors (e.g., they have higher encounter
rates with healthy hosts), and others are better intrahost competitors (e.g., they
are better at ousting competitors from within the host). Unlike parasitoids, how-
ever, true parasites need not Kkill their hosts to complete their life cycle; hence,
host reproduction and/or recovery from infection is possible. Thus, low to moder-
ate parasite pathogenicity blurs the precision of this intrahost/extrahost trade-off.
The addition of nonrandom distributions of parasites among hosts (Dobson 1985),
or complex structures of the parasite population (Hochberg 1989; Hochberg et al.
1989), could permit competitive coexistence in cases in which one parasite species
is both the better intrahost and extrahost competitor. Therefore, we would expect
that a simple trade-off between intrahost and extrahost competitive abilities is
unlikely to be a strict requirement for coexistence in natural parasite com-
munities.

The interference interaction considered here is an interesting example of facul-
tative hyperparasitism, analogous in some ways to intraguild predation (Polis
et al. 1989). Such an interaction could manifest itself in a number of ways. For
instance, immunosuppression by one parasite may permit the establishment
within the host of a second opportunistic parasite (Roitt 1976; Jenkins and Behnke
1977; Cox 1978). The outcome of competition may depend on which parasite was
present first (Kennedy 1980) and/or which one completes its development first (D.
Levin et al. 1981). In addition, there is a plethora of examples of invertebrate host-
microparasite-parasitoid interactions in which the presence of one of the competi-
tors within the host can influence the ability of the second competitor to infect the
host (Weseloh et al. 1983) and survive within and successfully exit from the host
(W. Brooks 1973; Irabagon and Brooks 1974; Beegle and Oatman 1975; Powell
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et al. 1986; Cossentine and Lewis 1988). For instance, Beegle and Oatman (1975)
found that the competitive outcome between the ichneumonid endoparasitoid
Hyposoter exiguae and a nuclear polyhedrosis virus (NPV) within larvae of the
lepidopteran host Trichoplusia ni depended on the relative timing of attacks. If the
NPV infected the lepidopteran host before parasitization, then the parasitoid
larvae always succumbed to infection along with the host. (In these cases, the
virus directly affected parasitoid development.) But if the virus entered the host
after the parasitoid, then some or all of the parasitoids could survive. As revealed
by our analysis, even if the direct interaction between the parasites appears to be
predatory, the total population interaction becomes truly competitive through
indirect interactions with healthy hosts.

Another interesting result of our analysis is that priority effects may dominate
some of the invasion parameter space (fig. 4, region C). Such effects may be
crucial in determining system structure. Recently, several studies have shown
that in the early stages of habitat colonization, the particular set of random events
that occurs (i.€., invasions of particular species) may determine the successional
progression and climax structure of that community (Robinson and Dickerson
1987). The models considered here can give rise to this same effect, suggesting
that the order of parasitic invasions may be crucial in determining the final
community. For such a priority effect to be feasible, the better-transmitting
parasite also has to be more pathogenic than the better interferer. It is also
possible that the invasion of an additional host species into the simple system
considered here could change a mutually invadable interaction between the para-
sites into the exclusion of one of the parasites, either unilaterally or contingent on
the population densities at the time of invasion. This basic idea has recently been
explored for systems in which two competing or noncompeting hosts share an
infectious disease (Holt and Pickering 1985; Anderson and May 1986).

In studying these models of a simple two-parasite system, analytical tractability
was maintained through the omission of a wide array of other potentially impor-
tant factors, such as nonrandom transmission, long-lived parasitic stages, host
immunity, and vector dynamics. Several of these have already been considered in
detail for one-host, one-parasite interactions (Anderson and May 1981) but have
not as yet been applied to multispecies systems. For instance, preliminary analy-
sis of a model in which the inferior transmitter produces long-lived external stages
suggests that cross-transmission is still necessary for both of the parasites to
coexist. In other cases, when one of the parasites is an obligate hyperparasite, the
introduction of the hyperparasite into a primary parasite-host system may result in
the damping of intrinsic oscillations or in the destabilizing of an otherwise stable
system (R. D. Holt and M. E. Hochberg, unpublished manuscript). We believe
that these and other extensions would yield a wealth of insight into the roles that
parasites may play in population and community dynamics.

SUMMARY

Both theoretical and empirical evidence suggest that infectious disease can be a
major determinant of the dynamics of host populations and, more broadly, of the
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species composition of plant and animal communities. Previous studies of host-
parasite systems have, for the most part, laid emphasis on epidemiological inter-
pretations of the host-parasite interactions. In this article, we extend previous
models of multiparasite systems and relate these models to general concepts of
predator-prey and competitive interactions. In particular, we explore in some
detail three different roles that parasites may play: (1) a predator or true parasite
of healthy hosts, (2) an intraguild predator of a competing parasite, and (3) a
competitor with a second parasite species or strain. Our analyses uncover a varied
and diverse array of outcomes, in terms of both species composition and ensuing
population dynamics. It is found that the two parasites are most likely to persist
when there are trade-offs in exploitative (e.g., transmission) and interference
(e.g., cross-transmission) competition. Regulation of the host population occurs
when both parasites act as true parasites (i.e., infected hosts may recover and/or
give birth to healthy hosts), whereas when one parasite acts as a predator (or
pathogen) persistent oscillations may ensue. Additional realistic modifications of
the models considered should greatly increase our knowledge about host-parasite
systems.
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APPENDIX
LocAaL STABILITY ANALYSIS

Here we present a partial local-stability analysis for the general one-host, two parasite
system. The Jacobian matrix at the three-species equilibrium is

r—Budf — By e — BiS* e — BoS*
J = BuIf 0 dY . (A1)
Bol3 -3 0

If inequalities (9) hold, then J has one of two different sign structures:

+ 0 + (A2a)
+ - 0
or
-+ -
+ 0 + (A2b)



538 THE AMERICAN NATURALIST

In community matrix (A2a), the susceptible host and both parasites can have negative
effects on susceptible-host growth at equilibrium, whereas the presence of the susceptible
host always has a positive effect on the parasites. The parasites have no net effect on their
own growth rates. One parasite must always benefit from the presence of its competitor at
the expense of that competitor.

Matrix (A2b) demonstrates that the presence of infected hosts can have a positive impact
on the population growth rate of the susceptible host population at equilibrium. The
parasite that causes this positive effect on the susceptible host population must also have
the upper hand at cross-infection. Otherwise, coexistence is not possible.

For local stability, all three eigenvalues of the system must have negative real parts. The
Routh-Hurwitz conditions of stability are

o >0, (A3a)
az >0, (A3b)
ajon > a3, (A3¢c)
with
o = =@ = Bdf — BA3), (Ada)
o = —(e2 — BaSM)(BAY) + (er — B1SH)(BuIY) — ¥TL, (A4b)

~(e1 = BiSM)BRATIZ) — (e — B2S*)(BBTI3)
= (r = BT — BaA¥) BITI3)

(May 1974, p. 196). If any one of these is violated, then the system is unstable. Condi-
tion (A3a) must hold, since at equilibrium the right-hand side of equation (A4a) equals
—(elf + e-I3)/S*; hence, equation (A4a) is positive and condition (A3a) is true. Condition
(A3b) is violated in cases of contingent competition (i.e., both inequalities [9] are reversed).
Limit cycles are possible only through the violation of inequality (A3c). In these cases, the
sign structure of the Jacobian matrix (A1) always conforms to case (A2a). However, when
the equilibrium is stable, the sign structure (A1) may conform to either one of the two cases
(A2a) or (A2b).

Inequality (A3c) can be restated in terms of the population effects of parasite 1 on itself
and parasite 2 on itself (at the three-species equilibrium), via the possible path loops
through the three-species system. Violation of condition (A3c) and the ensuing limit cycles
can occur only if the strengths of the links involving all three species are smaller than those
involving just the host and one parasite. This can be stated symbolically as

hLh—->S—>L-oI)+ L>S>[>L)<Lh—>8S>S—>L)+U;>5S—>85—>1),
(AS)

a3

(A4c)

where i — j represents the effects of species i on species j at equilibrium.

We have not been able to simplify the Routh-Hurwitz conditions into compact, easily
interpretable inequalities. Instead, we have conducted extensive numerical studies of the
parameter space, examining the conditions for local stability. For example, take the case
illustrated in figures 5d and 8 of sustained population cycles. Solving for the equilibrium-
point densities gives

S* = 147, (A6a)
I¥ = 139, (A6b)
I =19.1; (A6¢)

and the Jacobian matrix (Al) is
-0.08 -0.73 -2.34
Jex = 0.67 0 1.94]. (A7)
0.38 —-0.27 0
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Finally, Routh-Hurwitz condition (A3c¢) is violated since

oy = 0.07, (A8a)
o = 1.89, (A8b)
o3 = 0.14. (A8c)

In the special case of hyperparasitic systems (8; = 0), from (A3a)-(A3c) we have oy > 0
(because r — BoI5 <0), and a3 = JITIF(Bols — dr — e1By) > 0if and only if Bo(d; — e;) > dr.
The condition oo, > a3 reduces to Bola(r — BoI3)(—BaS* + e5) > —e,3B.IT 1[5 ; because
r — Bols < 0and —B,S* + e, < 0, this is always true. Hence, given that a point equilib-
rium exists, the sole criterion that must be met for local stability is B>(d; — ;) > dr. A nec-
essary condition for local stability is that d; > e; (more details in R. D. Holt and M. E.
Hochberg, unpublished manuscript).
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