perching sites as trees and fencerows, as well as to
the occurrence of isolated individuals far from the
original source. Among plants, it seems to be a gen-
eral principle that aggregation is inversely related to
the capacity of the species for seed dispersal.

Physical features of the habitat. Responses of the in-
dividuals of the population to variations in the habitat
also tend to give rise to local concentrations. Environ-
ments are rarely uniform throughout, some portions
generally being more suitable for life than others,
with the result that population density tends to be cor-
related directly with the favorability of the habitat.
Oriented reactions, either positive or negative, to light
intensities, moisture gradients, or to sources of food
or shelter, often bring numbers of individuals into a
restricted area. In these cases, aggregation results
from a species-characteristic response to the environ-
ment and need not involve any social reactions to
other members of the population. See ENVIRONMENT.

Influence of temporal changes. In most species of an-
imal, daily and seasonal changes in weather evoke
movements which modify existing patterns of disper-
sion. Many of these are associated with the disband-
ing of groups as well as with their formation. Certain
birds, bats, and even butterflies, for example, form
roosting assemblages at one time of day and disperse
at another. Some species tend to be uniformly dis-
persed during the summer, but flock together in win-
ter. Hence temporal variation in the habitat may often
be as effective in determining distribution patterns as
spatial variation.

Behavior patterns in reproduction. Factors related to
reproductive habits likewise influence the dispersion
patterns of both plant and animal populations. Many
plants reproduce vegetatively, new individuals arising
from parent rootstocks and producing distinct clusters;
others spread by means of rhizomes and runners and
may thereby achieve a somewhat more random distri-
bution. Among animals, congregations for mating
purposes are common. as in frogs and toads and the
breeding swarms of many insects. In contrast, the
breeding territories of various fishes and birds exhibit
a comparatively regular dispersion. See Repronuctive
BEFIAVIOR .

Intensity of competition. Competition for light, wa-
ter, food, and other resources of the environment
tends to produce uniform patterns of distribution. The
rather regular spacing of trees in many forests is com-
monly attributed largely to competition for sunlight,
and that of desert plants for soil moisture. Thus a uni-
form dispersion helps to reduce the intensity of com-
petition, while aggregation increases it. Stz Poruia-
TION ECOLOGY .

Sacial factors. Among many animals the most pow-
erful forces determining the dispersion pattern are so-
cial ones. The social habit leads to the formation of
groups or societies. Plant ecologists use the term so-
ciety for various types of minor communities com-
posed of several to many species, but when the word
is applied to animals it is best confined to aggrega-
tions of individuals of the same species which coop-
erate in their life activitics. Animal societies or social
groups range in size {rom a pair to large bands, herds,
or colonies. They can be classified functionally as
mating societies (which in turn are monogamous or
polygamous, depending on the habits of the species),
family societies (one or both parents with their
young), feeding societies (such as various flocks of
birds or schools of fishes), and as migratory societies,
defense societies, and other types. Sociality confers
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many advantages, including greater efficiency in se-
curing food, conservation of body heat during cold
weather, more thorough conditioning of the environ-
ment to increase its habitability, increased facilitation
of mating, improved detection of, and defense against
predators, decreased mortality of the young and a
greater life expectancy, and the possibility of division
of labor and specialization of activities. Disadvan-
tages include increased competition, more rapid de-
pletion of resources, greater attraction of enemies,
and more rapid spread of parasites and disease. De-
spite these disadvantages, the development and per-
sistence of social groups in a wide variety of animal
species is ample evidence of its overall survival
value. Some of the advantages of the society are also
shared by aggregations that have no social basis. See
EcoLoGICAL COMMUNITIES; SOCIAL MAMMALS..

Optimal population density. The degree of aggre-
gation which promotes optimum population growth
and survival, however, varies according to the species
and the circumstances. Groups or organisms often
flourish best if neither too few nor too many individ-
uals are present; they have an optimal population den-
sity at some intermediate level. The condition of too
few individuals, known as undercrowding, may pre-
vent sufficient breeding contacts for a normal rate of
reproduction. On the other hand, overcrowding, or
too high a density, may result in severe competition
and excessive interaction that will reduce fecundity
and lower the growth rate of individuals. The concept
of an intermediate optimal population density is
sometimes known as Allee’s principle. See Porura-
TION ECOLOGY,; POPULATION GENETICS.

Francis C. Evans
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Population ecology

The study of spatial and temporal patterns in the
abundance and distribution of organisms and of the
mechanisms that produce those patterns. Species dif-
fer dramatically in their average abundance and geo-
graphical distributions, and they display a remarkable
range of dynamical patterns of abundance over time,
including relative constancy, cycles, irregular fluctua-
tions, violent outbreaks, and extinctions. The aims of
population ecology are threefold: (1) to elucidate gen-
eral principles explaining these dynamic patterns; (2)
to integrate these principles with mechanistic models
and evolutionary interpretations of individual life-his-
tory tactics, physiology, and behavior as well as with
theories of community and ecosystem dynamics; and
(3) to apply these principles to the management and
conservation of natural populations.

Definition of a population. A population is the total
number of individuals of a given biological species
found in one place at one time. In practice, ecologists
often deal with density—numbers per unit area for
land organisms and numbers per unit volume in
aquatic systems—rather than raw numbers, or even
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weight. What may be described as an individual de-
pends on the kind of organism and the aim of the
scientific enquiry. In most animals, the life cycle
starts with a fertilized egg, passes through a largely
irreversible process of coupled growth and differenti-
ation, and ends in a tightly integrated, unitary, adult
organism. Population size can be measured by merely
counting adult units and their juvenile prologues. But
in most plants and some colonial animals, growth and
differentiation proceed in a modular fashion; growth
involves the replication of a basic body unit, so that
a fertilized egg generates a spatially distributed *‘pop-
ulation”’ of connected modules. Modular organisms
show tremendous plasticity in size and form, but the
connections between modules sometimes break, lead-
ing to a dispersed clone of physiologically indepen-
dent units. For example, one clone of quaking aspen
(which spreads by root buds) occupies 200 acres (80
hectares) and is more than 10,000 years old. To a
geneticist, this clone constitutes a single huge individ-
ual; to an ecologist, each aspen trunk may be consid-
ered to be an individual. Modular organisms have an
additional dimension of complexity that must be
quantified to understand their dynamics. In this arti-
cle, the population concepts presented apply broadly
to both unitary and modular organisms.

There are only four ways a population can change
in size: birth, death, immigration, and emigration. If
immigration and emigration are negligible, the popu-
lation is closed, and the difference between birth and
death rates drives its dynamics. Terrestrial animals on
islands often have closed populations. If immigration
and emigration are important, however, the popula-
tion is open, and its abundance may be substantially
influenced by spatially distant events. For example,
the number of barnacles that are found on a rocky
coastline often reflects the density of setting larvae,
which in turn is governed by events in offshore wa-
ters. If a population that is under study is found to be
highly open, the spatial scale of the study may be too
narrowly circumscribed to capture the important
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mechanisms of population dynamics.

Basic population models. Populations exhibit a
great variety of dynamical patterns, ranging from ex-
plosive outbreaks, to local extinctions, to regular cy-
cles or relatively constant abundances (see Fig. 1). To
help describe and explain these patterns, ecologists
rely on population models. Simple life cycles and
closed populations provide a useful starting point in
developing population models. Many temperate-zone
insects have one annual generation, and so at any
given time all individuals are at the same stage of life.
For a population with discrete, nonoverlappiing gen-
erations, if N(r) is the number of adults censused in
generation #, and R(r) is the number of adult offspring
in generation ¢t + 1 produced per adult in generation
t, the number of individuals in the next generation is
given by Eq. (1). The quantity R(z) is the growth rate

N(t + d) = N(nR(7) (D

of the population for generation 7. Iterating this dis-
crete time growth model for subsequent generations
allows one to project population numbers through
time. When 4 is very small, a limiting form for Eq.
(1) is the differential equation (2), where r(z), the in-
dN
— = NG @)
stantaneous per-capita growth rate, is the difference
between per-capita birth and death rates. Equation (2)
is literally true only if populations grow continuously
with overlapping generations (as is approximately true
for some microbes). Constant values for R or r imply
exponential growth. If R > 1 (+ > 0). a population
grows without bounds; if R << 1 (r < 0), it declines
to extinction. The theoretical framework of popula-
tion ecology largely consists of elaborations of these
basic growth models, including extensions to more
complicated life cycles and multiple species.
Exponential growth has a snowballing effect: if the
growth rate is constant, then the more individuals
there are, the faster the population grows. Even low
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Fig. 1. Graphs of dynamical behaviors showing the diversity of population dynamics. (a) Collared dove; a phase of
exponential growth. (b) Yellow-eyed penguin; steady state. (c) Budmoth; regular cycles. (d) Songbird; irregular

fluctuations. (e) Dendrolimus moth; outbreaks. (f) Blue whale;

decline toward extinction.



growth rates eventually lead to populations of enor-
mous sizes. Some natural populations show transient
phases of exponential growth, particularly in coloniz-
ing episodes: for instance, the collared turtledove in-
vaded Great Britain in 1955 and increased exponen-
tially for nearly a decade. The per-capita rate of
growth during exponential growth is called the intrin-
sic rate of increase, ry. The value of r, quantitatively
expresses the interplay of individual traits, such as
life history strategies, with the environment.

Exponential growth during colonization often in-
volves expansion across space as well as an increase
through time. Equation (2) can be expanded to in-
clude immigration and emigration, as given in Eg.
(3). When individuals move down spatial density gra-

dN )

T = rN + (net change due to dispersal) (3)
dients, which is analogous to chemical diffusion
along concentration gradients, their rate of movement
is characterized by a diffusion coefficient, D. In a ho-
mogeneous environment, this model predicts that the
expanding population wave advances at a velocity
2(rD)"?, implying a linear expansion in range area
with time. Data from a number of colonizing popu-
lations show exactly this relationship.

Population heterogeneity. Models such as those
given in Egs. (1) and (2), when interpreted literally,
assume that all members of a population are identical.
This is rarely true. Birth and death rates typically vary
as a function of age, body weight, and genotype. A
great deal of work in population ecology is devoted
to elucidating age-specific schedules of mortality and
fecundity, using these patterns to predict population
growth, and interpreting these patterns in the light of
evolutionary theory. To study age-structured popula-
tion dynamics, the number of individuals in each age
class must be monitored. The two ingredients needed
to project changes in population size and age structure
are the mortality schedule or survivorship curve,
which describes the fraction of newborns surviving to
each age, and the fecundity schedule, which describes
the rate of female births per female at each age. It is
a formidable task to measure complete fecundity and
mortality schedules in natural populations, but if these
schedules are given, the geometric growth model of
Eq. (1) can be generalized to a matrix model, as in
Eq. (4), where N(1) is a vector in which each element

N + 1) = A(ON(@) (4)

is the number of individuals in an age class, and A(7)
is a matrix incorporating the fecundity and mortality
schedules. When individuals can be categorized into
discrete stages such as body size (for example, num-
ber of connected modules in a clonal organism) in
addition to age, more general matrices can describe
population growth; the matrix elements are rates of
transition between each pair of stages. [The continu-
ous time model of Eq. (2) can be similarly general-
ized by using partial differential equations.] A fun-
damental principle of demographic theory is that if
these schedules are constant, a population will (with
rare exceptions) eventually settle into a stable age dis-
tribution in which each age class comprises a constant
fraction of the total population. A population in its
stable age distribution grows geometrically, as in Eq.
(1), at a rate of increase uniquely determined from the
mortality and fecundity schedules. A population dis-
placed from its stable age distribution may exhibit
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transient phases of growth or decline, divergent from
its long-term growth pattern.

All populations are genetically variable. If different
genotypes have different fecundity or mortality sched-
ules, genetic variation can influence population dy-
namics. Models that simultaneously incorporate
changes in genetic composition and population
growth can be quite complex; however, they may be
important in describing some populations and are nec-
essary for linking population ecology with evolution-
ary theory.

Population limitation and regulation. Populations
cannot expand exponentially forever. For instance,
the growth rate of the collared dove substantially de-
clined in the second decade of its invasion, probably
because mortality rates rose or birth rates declined as
a result of competition for limited resources such as
food or nest sites. Such mechanisms are called nega-
tively density-dependent factors. The notion of den-
sity dependence is a specific example of the more
general concept of feedback. An alternative hypothe-
sis is that the environment worsened for reasons un-
related to dove density, such as a shift in the weather.
Such causes for variation in birth or death rates are
called density-independent factors. Ecologists have
long disputed the relative importance of density-de-
pendent and density-independent factors in determin-
ing population size. The current consensus is that
both are important but to differing degrees in different
species and environments. For a population to be reg-
ulated, it must tend to increase when below a certain
size and decrease when above that size. If growth
rates vary with time but in a fashion unrelated to den-
sity, closed populations will eventually fluctuate to
extinction or expand without limit. If a closed popu-
lation persists over long periods of time, it must be
regulated to some degree.

As illustrated below, population regulation by no
means implies population stability. In general, a pop-
ulation is stable if it returns to equilibrium following
a perturbation. Moreover, many local populations
may not be persistent over long periods of time and
so may not be regulated in the usual sense. Open pop-
ulations, by definition coupled by dispersal with other
populations, can become reestablished by immigra-
tion following a local extinction. The total population
of a species may persist, even though no single local
population survives, because there is a spreading of
risk among an ensemble of local populations (which
experience somewhat different environmental condi-
tions) that are loosely coupled by dispersal. See Pop-
ULATION DISPERSAL .

A useful method for considering the interplay of
density-dependent and density-independent factors in
determining population size is to plot birth and death
rates as functions of density (see Fig. 2). The carry-
ing capacity K of a population in a given environment
is defined to be the largest number of individuals for
which the birth rate just matches the death rate. The
population decreases above K and increases below K.
A given change in density-independent death rates
can produce very different changes in population size,
depending on the form of the underlying density de-
pendence. If density dependence is weak (Fig. 2b),
fluctuations in mortality generate large oscillations in
population size; if’ density dependence is strong (Fig.
2¢), the population readily buffers such fluctuations.
Density-dependent factors arc necessary to regulate
populations, but density-independent factors must
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also be considered to understand fully what limits
populations to a given value of K.

Evidence for density dependence. Statistical
analyses of time series of population data can suggest
density dependence, but it is difficult to demonstrate
density dependence conclusively by using such data.
Sometimes density dependence can be shown for par-
ticular stages in the life cycle, and in general, density
dependence may be observed in births, deaths, or dis-
persal. However, without examining density depen-
dence at each stage in the life cycle, it is difficult to
infer the regulatory importance of any single stage.

rates ——>

K K
(c) population size (N) ——>

Fig. 2. Carrying capacity as a reflection of both density
dependence and the intensity of density-independent
mortality. Births are considered to be purely density-
dependent, deaths purely density-independent. The three
curves show the effects of (a) an increase in density-
independent mortality (a high death rate), (b) weak density
dependence, and (c) strong density dependence.

Stronger evidence comes from manipulative experi-
ments in which control populations are compared with
artificially enhanced or depressed populations.
Density-dependent population models. The expo-
nential growth model [Eq. (2)] can be modified to
include density dependence by expressing r as a func-
tion of N. The simplest model that generalizes Eq. (2)
is the logistic equation (5), in which per-capita

dN N
o rgN(l = E) (5)

growth rate declines linearly with increasing density.
Populations displaced from K converge smoothly
back to it, without overshoots. Population growth is
maximal when N = K/2. This model provides a good
fit to some laboratory colonies and captures much of
the qualitative behavior of more complex models; it
is, however, a somewhat crude first approximation to
accurate models of population growth.

The logistics can be improved upon in numerous
ways. The simplest method is to use a nonlinear func-
tion for the per-capita growth rate. Further refine-
ments in the model can be achieved by incorporating
threshold effects and explicitly incorporating submo-
dels that encapsulate the mechanisms of density de-
pendence. At densities far below carrying capacity,
there may be an Allee effect—a positive relationship
between density and per-capita growth rates. One in-
triguing possibility that arises in more complex mod-
els is that the population may exhibit alternative sta-
ble states; the one it actually occupies will depend
upon accidents of history. For instance, insects may
be regulated at low densities by bird predation, but at
a higher threshold density the birds may be satiated
and thus no longer regulate insect density; the insect
population will then grow until checked by some
other factor.

The discrete-time model [Eq. (1)] can be similarly
modified to incorporate density dependence by ex-
pressing R as a function of N. Analysis of such mod-
els has led ecologists to reevaluate their traditional
assumptions about the causes of population fluctua-
tions in nature and about the relationship between
regulation and stability. For instance, an analog of
Eq. (5) is Eq. (6), which, along with similar equa-

Nt + 1) = N(n) exp[r(l - ];):| (6)

tions, reveals a rich array of dynamical patterns. If r
<< 2, the population equilibrates stably at K; if 2 <T r
< 2.7, the population fluctuates cyclically; if r > 2.7,
the population exhibits chaotic behavior, with cycles
of arbifrary periodicity or even aperiodic fluctuations.
Such fluctuations intriguingly similar to the fluctua-
tions in real-world data, which in the past were as-
sumed to be produced by random environmental
noise. The qualitative properties of the model that
trigger pronounced population fluctuations are the
time lag implicit in the discrete-time formulation,
high growth rates at low densities, and strong density
dependence at high densities. This suggests that a po-
tential for complex dynamical behavior exists when-
ever there are time lags in the feedback between pop-
ulation size and population growth rates. Age
structure is a ubiquitous source of time lags in popu-
lations, simply because time is required to reach re-
productive maturity. Similarly, interactions between



two, three, or more species can introduce long time
lags, together with strong density dependence. It is an
open question whether observed variability in natural
populations reflects to any significant extent the com-
plex dynamics latent in deterministic growth models
instead of the force of fluctuations in the physical en-
vironment.

Mechanisms of density dependence. Given that
density dependence exists, the mechanisms generating
it can be used both to predict the consequences of
environmental change for population dynamics and to
provide insight into systems where experimental ma-
nipulations are difficult. Density dependence often
arises from competition, which is said to exist when
organisms utilize common limiting resources and
thereby negatively affect each other. (A resource is
limiting if an increase in its supply increases per-
capita growth rates.)

There are two principal sorts of competition, inter-
ference and exploitative. Interference competition oc-
curs when one individual directly harms another. In-
terference may be dramatic, as in lethal aggression,
or subtle, as when social interactions reduce the time
available for gathering resources or increase the risk
of predation. A surprising number of animal species
are cannibalistic. Large scorpions, for instance, eat
with relish their smaller-bodied conspecifics. Because
encounter rate increases with increasing population
size, cannibalism is likely to be a potent density-
dependent factor in scorpion populations. Exploitative
competition occurs when one individual consumes a
resource such as food that otherwise would have been
consumed by another individual. Because exploitative
competition is mediated indirectly through a shared
resource base, it can be more difficult to demonstrate
than interference. In territorial animals, such as many
songbirds, less space is available for additional terri-
tory holders as population size increases. As a result,
competition for space can sharply cap population
numbers.

Population regulation and interspecific interac-
tions. Negative density dependence may arise from
interspecific interactions. A schematic classification
of interactions between two species comes from con-
sidering the positive (+) or negative (—) effect that
individuals of one species have on the growth rate of
the other. In interspecific competition the interaction
is (—,—); in mutualism it is (+,+). Natural ene-
mics, defined broadly to include predators, herbi-
vores, and parasites, are often engaged in (+,—) re-
lations with their prey or hosts. Most species are
potential prey to one or more natural enemies: even
top-level carnivores may be beset by parasites.

Obviously, competitors and mutualists can dramat-
ically affect the size of a given population and so
must be considered when studying population limita-
tion. However, natural enemies are far more likely to
be regulatory agents than are either competitors or
mutualists. If two species are competing and one in-
creases in density, the other will decrease. This will
relax the interspecific competition on the first, which
can then increase even more. Hence, compeltitive
loops (and for similar reasons, mutualist loops) tend
to produce positive feedback and so will not regulate
population growth. By contrast, predator—prey inter-
actions may produce negative density dependence act-
ing across several time scales on both the predator
and prey. As prey in one habitat patch become more
numerous, predators almost immediately become
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more active or switch over from other prey types or
patches. Predators may also show an intergenerational
numerical response to increased prey availability. Be-
cause an increase in predator numbers usually de-
creases prey numbers, this induces delayed density
dependence on both the predator and its prey. In
host—pathogen systems, these numerical responses
may be pronounced, even within a host generation.
For example, in tropical trees, seedling mortality
from fungal pathogens increases with increasing seed-
ling density, because the rate of spore dispersal in-
creases as the distance between hosts declines. There
is mounting evidence that parasites are significant
regulatory factors in a wide range of natural popula-
tions, including economically important forest insects
and game animals.

Several cautionary remarks about natural enemies
and density dependence are in order. Predation and
intraspecific competition can interact in complex
ways. Compensatory responses by prey populations
sometimes diminish the impact of enemies. For in-
stance, plants typically produce many more seeds
than can possibly become reproductive adults. Preda-
tion on some seeds may simply enhance the survivor-
ship of the nonconsumed seeds, leading to no net ef-
fect on adult numbers. Conversely, predation can
intensify intraspecific competition in mobile animals
by restricting them to limited refuges. Generalist nat-
ural enemies can greatly depress prey numbers with-
out being important regulatory agents, because by de-
pending on many prey types they are less likely to
show a strong numerical response to any one. Indeed,
generalist predators may often be destabilizing, driv-
ing local prey populations to extinction. Finally, den-
sity-dependent responses by natural enemies often
involve time lags, setting up the possibility of oscil-
latory behavior. Host—pathogen systems seem partic-
ularly likely candidates for generating strongly cyclic
or chaotic dynamics.

Population growth models can incorporate interspe-
cific interactions by taking models such as those in
Eqgs. (5) and (6) and adding expressions that describe
how competitors. mutualists, or natural enemies af-
fect the growth rate of a given species. The dynamics
of two or more coupled species is studied in theoret-
ical community ecology, which among other things
seeks to understand how the species richness and sta-
bility of communities is related to the pattern and
strength of interspecific interactions. Analyses of
models of interacting species suggest that strong in-
traspecific density dependence is required for com-
munity stability. For two competing species to persist
at a stable equilibrium, the negative effect that each
species exerts on its own growth must on average ex-
ceed the cross-species negative elfects. In like man-
ner, predator—prey interactions are most stable when
one or both populations experience intraspecific den-
sity dependence.

Applied population ecology. In addition to its in-
trinsic conceptual appeal. population ecology has
great practical utility. Control programs for agricul-
tural pests or human diseases ideally attempt to re-
duce the intrinsic rate of increase of those organisms
to very low values. Analyses of the population dy-
namics of infectious diseases have successfully
guided the development of vaccination programs. In
the exploitation of renewable resources, such as in
forestry or fisheries biology, population models are
required in order to devise sensible harvesting strate-
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gies that maximize the sustainable yield extracted
from exploited populations. Conservation biology is
increasingly concerned with the consequences of hab-
itat fragmentation for species preservation. Population
models can help characterize minimum viable popu-
lation sizes below which a species is vulnerable to
rapid extinction, and can help guide the development
of interventionist policies to save endangered species.
Finally, population ecology must be an integral part
of any attempt to bring the world’s burgeoning human
population into harmonious balance with the environ-
ment. SEe Ecorocy; MATHEMATICAL ECOLOGY, THEORET-
ICAL ECOLOGY.
Robert Holt
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Population genetics

The study of both experimental and theoretical con-
sequences of mendelian heredity on the population
level, in contradistinction to classical genetics which
deals with the offspring of specified parents on the
familial level. The genetics of populations studies the
frequencies of genes, genotypes, and phenotypes, and
the mating systems. It also studies the forces that may
alter the genetic composition of a population in time,
such as recurrent mutation, migration, and intermix-
ture between groups, selection resulting from geno-
typic differential fertility, and the random changes in-
curred by the sampling process in reproduction from
generation to generation. This type of study contrib-
utes to an understanding of the elementary step in bi-
ological evolution. The principles of population ge-
netics may be applied to plants and to other animals
as well as humans. See MENDELISM.

Mendelian populations. A mendelian population is
a group of individuals who interbreed among them-
selves according to a certain system of mating and
form more or less a breeding community. These in-
dividuals share a common gene pool which is the total
genic content of the group. A mendelian population
is the unit of study in population genetics. The pop-
ulation may be very large or very small, and is to be
distinguished from species or varieties, which may
consist of numerous isolated or partially isolated men-
delian populations. Mendelian population is a genetic
rather than a taxonomic term. Mendelian populations
differ from each other in their genic content or chro-
mosomal organization, not necessarily in their taxon-
omic features. The term deme, originally defined as
an assemblage of taxonomically closely related indi-
viduals, has been used as a synonym for mendelian
population. Gamodeme, a deme forming a more or
less isolated local intrabreeding community, would be
a better substitute.

Mutation pressure. Gene mutation arises from
time to time in nature. The causes for mutation are
not fully known, and thus it can be said that muta-
tions arise “‘spontanecously.”” The effect of a new mu-

tant gene is unpredictable and the gene is therefore
said to mutate “*at random.”” One property of muta-
tion has been established: It is recurrent. Each type of
gene mutates at a certain rate per generation. The rate
is usually low—about 1 mutant in 10°-10° genes of a
given sort, varying from locus to locus on the chro-
mosomes, even under uniform conditions. Ionizing
radiation, certain chemicals, heat, and some other
agents increase the rate of mutation. See Murarion.

Let p be the rate of mutation from an allele A to
another form a per generation. If a fraction p of the
genes of a population is A in one generation, then in
the next generation the frequency of A will be dimin-
ished by the amount pp., so that the new frequency of
A will be p(1 — ). The amount of change, pu, is
said to be due to the mutation pressure. If this pres-
sure is unopposed generation after generation, the
gene A will gradually disappear from the population,
asp, = po(l — p)" = pge ™, where p, is the initial
gene frequency and p, is the frequency after n gener-
ations. Therefore, for all existing genes there must be
some kind of compensating mechanism which sup-
ports its continuing presence in nature. One important
problem in population genetics is the mechanism of
maintenance of a gene in a population or its change
in frequency from generation to generation.

If, in addition to the mutation from A to a, there is
reverse mutation from a to A at the rate v per gener-
ation, then the net amount of change in the frequency
of ais Ag = pp — gv. At the time when these op-
posing changes cancel each other, there will be no
change in gene frequency despite the recurrent muta-
tions. This state of affairs is said to be in equilib-
rium and is obtained when Ag = 0; that is, p =
vi(pw + v)and § = w/(n + v), where g is a fre-
quency of a, § is the equilibrium point for @, and p
is the equilibrium point for A. The equilibrium gene
frequencies are determined by the opposing rates of
mutation only and are independent of the initial fre-
quencies of the genes in the population. The amount
of change in gene frequency per generation is larger
when the current ¢ is far away from the equilibrium
§ than when g is close to §. Substitution gives Ag =
—(p + (g — §), indicating that the amount of
change per generation is proportional to the deviation
(g — ¢). It also shows that if ¢ > 4. g decreases, and
if g < §, g increases, or that ¢ will approach ¢ from
either side. Such an equilibrium is said to be stable.
The changes in ¢ described above are independent of
the mating system practiced in the population.

In nature, and under artificial conditions, the mu-
tation rates may not remain constant in all generations
but may fluctuate within a certain range from time to
time. In such cases, instead of a single fixed equilib-
rium point §, there will be an equilibrium distribution
of g within a certain range, and the apparent change
in gene frequency from one generation to the next
may be purely a stochastic phenomenon without nec-
essarily having long-term significance. The same re-
mark applies to all equilibria to be established in sub-
sequent paragraphs. Sze SToCHASTIC PROCESS.

Migration and intermixture. If a fraction m of a
population with a gene frequency g consists of im-
migrants from outside and the immigrant group has
a gene frequency g, then the new gene frequency of
the population will be ¢, = (1 — m)g + mg =
g — m(g — §). The amount of change in gene fre-
quency in one generation is thus Ag = ¢, — ¢ =
—m(g — §), showing that the change is proportional



