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Summary

1. Spatial heterogeneity has long been recognized as a potentially powerful stabilizing
force in host—parasitoid interactions. Most previous work has emphasized hetero-
geneity in the rate of attacks experienced by individual hosts. In contrast, we
highlight the potential importance of spatial heterogeneity in demographic par-
ameters other than the rate of parasitism.

2. Following the model structure explored by Hassell & May (1973) in which hosts
and parasitoids are distributed across patches according to fixed distribution rules,
we show that, in the absence of heterogeneity in the rate of parasitism, spatial
variability in other demographic parameters has no effect on population stability.
3. Spatial heterogeneity in demographic parameters may, however, interact with
heterogeneous attack rates to augment or, conversely, destroy stability. This is
illustrated from a generalized proportional refuge model in which a fixed fraction of
hosts escape parasitism each generation, and refuge hosts have a different growth
rate from exposed hosts. We show that the system may be stable even if hosts have
high average rates of increase, provided that those hosts with the higher rates of
increase are differentially afflicted by parasitism.

4. The generality of this conclusion is assessed by numerical studies of a two~patch
model in which the host and/or parasitoid show partial rather than complete mixing
between patches in each generation. We show that such partially coupled refuges
are most likely to be stabilizing if they are ‘sinks’, with relatively low host growth
rates. Moreover, and a unique feature emerging from these partially coupled
models, heterogeneity in the number of adult female parasitoids produced per
parasitized host can be sufficient by itself to stabilize the system.

5. These theoretical results suggest that a fruitful direction for empirical work is to
document the patterns of covariance among attack rates, host rates of i increase and
parasxtmd emergence rates.
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Introduction

The world is heterogeneous in many dimensions,
and at many spatial and temporal scales. In recent
years, considerable work has sought to elucidate the
contribution heterogeneity makes to the persistence
of host—parasitoid interactions. Much of this work
has concentrated on one particular kind of spatial
heterogeneity; namely, heterogeneity in the rate of
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attacks experienced by individual hosts (e.g. Hassell
1978; Chesson & Murdoch 1986; Murdoch &
Stewart-Oaten 1989). Recently, Pacala, Hassell &
May (1990), Hassell et al. (1991) and Pacala &
Hassell (1991) have shown how the dynamical effects
of such spatial patterns in coupled, discrete-generation
host—parasitoid interactions can be assessed by a
common criterion, the ‘CV2>1 rule’. Specifically,
this states that the overall population densities will
be locally stable if the coefficient of variation squared
(CV?) of the density of searching parasitoids in the
vicinity of each host exceeds approximately unity.
This criterion synthesizes a large body of previous
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work on the dynamical consequences of predator
aggregation, prey refuges, and heterogeneous attack
rates in general, into a common framework.

An important aspect of heterogeneity that has
been neglected in these host—parasitoid studies has
been any variability in demographic parameters
other than the rate of parasitism. In this paper we
will explore the influence on the persistence of
host—parasitoid systems of environmental hetero-
geneity affecting such parameters as the patch-specific
host reproductive rate. Consider for instance a scen-
ario in which the host population is divided into
discrete patches in which adult hosts distribute their
eggs. A specialist parasitoid searches within these
patches, and is effective enough that the host popu-
lation is limited to levels well below that set by
available resources. One dimension of heterogeneity
in such a system certainly arises from variance in the
abundance of parasitoids per patch, or in the rate of
attack per parasitoid within patches. But there may
also be variation among patches reflected in the
other demographic parameters affecting the contri-
bution of an individual host or parasitoid to its
population, that overlays and interacts with any
spatial heterogeneity in attacks. For instance, spatial
variation in resource quality or microclimate might
be reflected in spatially variable intrinsic growth
rates for the host (e.g. Prestidge & McNeill 1983;
Kidd et al. 1990). There are many different biological
mechanisms that could generate such heterogeneity.
For example, fecundity is often correlated with-adult
body size (e.g. Hanski 1987), so that any patch-
specific environmental factors that influence body
size could in turn generate patch-to-patch variance
in host reproductive rates. Similarly, the fraction of
parasitized hosts that on average produce viable
parasitoid offspring could also vary among patches;
for example, due to patch-specific bird predation on
parasitized hosts (Hubbard 1972).

A BRIEF HISTORY

In principle, many different kinds of factors other
than spatial heterogeneity can contribute to the per-
sistence of a host—parasitoid interaction. These
include competition for resources among hosts
(Roughgarden & Feldman 1975; Hassell & Comins
1975), interference among parasitoids (Hassell 1978)
and shifting parasitoid sex ratios (Hassell, Waage &
May 1983; Comins & Wellings 1985). Interest in the
dynamical role of spatial factors was sharpened by
the recognition that many of these stabilizing mech-

anisms are unlikely to limit population sizes to the -

very low levels often seen in the field (Beddington
et al. 1978). In contrast, refuges. parasitoid aggre-
gation and any other causes of spatial heterogeneity
can be effective even at very low host population
sizes.. ;
Theoretical studies of spatial heterogeneity in

host—parasitoid systems can be réughly divided into
three stages. First, the effect of within-population
spatial heterogeneity was explored (e.g. Bailey,
Nicholson & Williams 1962; Hassell & May 1973,
1974). In each generation the populations of both
the host and parasitoid were partitioned into patches
where they would interact; the output of each patch
would then mix in a single panmictic population
before the start of the follov?/ing generation. Except
in special limiting cases, these models quickly become
parameter-rich and difficult to treat analytically.
The second stage was to seek useful approximations
which would summarize this complexity in simple,
phenomenological models (May 1978; Perry 1988).
For example, May’s model assumed a negative
binomial distribution of attacks amongst hosts,
the detailed interpretation of which has been well
reviewed by Chesson & Murdoch (1986). The search
for simple ways of describing the net affect of hetero-
geneity on host—parasitoid dynamics has led to the
so-called ‘CV?>1 rule’ (Pacala, Hassell & May
1990; Hassell et al. 1991; Pacala & Hassell 1991) as a
convenient guide to the magnitude of heterogeneity
in parasitism between individual hosts that is required
for stability. The third stage has been to imagine
that the host and parasitoid are distributed in a
metapopulation of local populations only partially
coupled by dispersal (Reeve 1988, 1990; Hassell &
May 1988). When such dispersal is by diffusion
rather than global mixing, the interaction can persist,
even in a spatially homogeneous environment
(Hassell et al. 1991; Comins, Hassell & May 1992).

In this paper, we will retrace part of this route
already taken in the literature on spatial hetero-
geneity, but now incorporating spatial variability in
demographic parameters as well as in the rates
of parasitism. We will first examine systems in which
the spatial heterogeneity is manifested among
patches within single panmictic populations. We will
then consider systems in which patches are partially
coupled by dispersal.

By itself, demographic heterogeneity is not
stabilizing

Previous work on the stabilizing effect of spatial
heterogeneity has, for simplicity, quite sensibly
ignored the influence of components of spatial
heterogeneity other than in the rate of attack.
Indeed, in simple cases one can demonstrate that
spatial variance in demographic rates is irrelevant to
the stability of the system if parasitism is spatially
homogeneous. Consider, for instance, the model
explored by Hassell & May (1973), generalized to
incorporate spatial heterogeneity among patches in
host and parasitoid demographic rates, together with
variation in attack rates and in the distribution of
both the host and parasitoid. In each generation, a
fraction «; of the hosts and B; of the parasitoids are
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found in patch i (out of n patches). The hosts in
patch i have a finite rate of increase, A;, and the
number of adult female parasitoids produced per
parasitized host in that patch is ¢;. The fraction of
hosts in patch i that escape parasitism is described by
the usual Nicholson & Bailey (1935) form:

n
Nipy =N, 21 Aioyexp(—aBiPy) eqn la
=
P1=N, 21 cioo[1 — exp(—af:P)]. eqn 1b

Here q; is the attack rate in patch i. Now assume
that the parasitoid has a uniform distribution among
patches, so that ;= 1/n, and that the attack rates
are spatially homogeneous, a; = a. The above model
simplifies to

) 0
Nipy = Nt[ 2 }"io‘i] exp(—a'P;) = Nexp(—af;P,)
i=1 eqn 2a

n
Pyy= Nr[lzl Ciai:l [1-exp(-a'P)]

= N,c[1 - exp(—a’'P,)] eqn 2b

in which a' = a/n, Ais the average host growth rate,
and ¢ is the average parasitoid emergence para-
meter. But this model is none other than the unstable
Nicholson-Bailey model. In other words, spatial
variance in host or parasitoid demographic par-
ameters has no effect on the stability of the system if
parasitism is spatially uniform. Although this result
needs to be checked in a broader array of models, it
does suggest that if environmental heterogeneity
affecting demographic rates in host—parasitoid
systems is to have any important effect it is likely to
be in augmenting or diminishing the stabilizing effect
of heterogeneous attack rates, rather than in pro-
viding of itself a mechanism for stabilizing the
interaction.

A generalized proportional refuge model

To this end, we will first examine a limiting case of
the above model that has come to be known.as the
‘proportional refuge model’ (Hassell 1978). Assume
that for each generation, a fraction of hosts are
exposed to parasitism, and that the remaining frac-
tion 1—e reside in refuges, free of parasitism. Bio-
logically, the factors that permit some hosts to escape
parasitism may also influence their intrinsic rate
of natural increase, for instance by affecting their
developmental rate, or body size (and hence fec-
undity) as adults. If the refuge consists of a micro-
habitat that is not accessible to the parasitoid, it may
contain a suite of mortality factors (e.g. generalist
predators) different from those found in exposed
microhabitats.

The proportional -refuge model, generalized to
allow a different host growth rate in the refuge from

that outside, is as follows (the indices 1 and 2 denote
hosts outside and within the refuge, respectively):

Nep1 =N f(P) + (1= e)haN,
Py = cNeg[1 = f(P,)].

eqn 3a
eqn 3b

Here f(P,)=exp(—aP,) describes the fraction
of hosts escaping attack outside the refuge; this
expression assumes that parasitoid attacks on this

~ component of the host population are distributed at

random.

Hassell & May (1973) assumed that the host
intrinsic growth rates inside and outside the refuge
were equal. They found that a proportional refuge
could indeed stabilize an otherwise unstable host—
parasitoid interaction, but only for a rather limited
range of parameters. For instance, if hosts are equally
divided each generation between the refuge and
non-refuge classes (e = 0-5), the equilibrium is stable
only if the host intrinsic growth rate is bounded
between 1 and 2. By generalizing this model to
incorporate spatial variance in host intrinsic growth
rates, we show that proportional refuges are poten-
tially stabilizing over a much wider range of average
host intrinsic growth rates.

At equilibrium, the densities of the parasitoid and
host are, respectively,

Pt=]n [«—-—-—82‘-1————] eqn 4a
1-(1- ey
1 8)\.1 ]()\.1) .
N¥==p | = | | eqn 4b
S "[1«(1«e)k2 -1 d

where A= e\, + (1—¢€)}; is the average host rate of
increase. There are two conditions that must be
satisfied for this equilibrium to exist. First, A>1;
otherwise, both the host and parasitoid populations
go extinct. Second, (1-€)\; <1; otherwise, the sub-
population of hosts in the refuge will increase geo-
metrically, regardless of the abundance of parasitoids
outside. (Note that adding the refuge increases
parasitoid density if A, > 1, and decreases parasitoid
density if A, <1.)

Proceeding with the usual linearized stability
analysis, let N;=N*(1+x,), and P,=P*(1+y,).
Near the equilibrium, the dynamics of the system
are described by
()-( ) G)

Yr1 1 ceN*af(P*)/ \y:
Applying the Schur-Cohn criterion to the character-
istic equation leads to the following stability condition

af(P*)[ceN* + A eP*] <1,

or

(__’:._), (..__.‘i’;‘..,__><1
(1~ (1=l A1 n 1—(1-¢h, “eqn 5

In the limit (1—g)A;— 0, this reduces to e\ In(eh,;)
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< g\, —1. Letx = €\, —1; the condition then becomes
In(1 + x) <x/(1 +x). But a fundamental fact about
logarithms is that x/(1+x) < In(1 +x). Hence, the
above stability condition is violated if the realized
growth rate in the refuge is too low; if the system
persists at all, it will show limit cycles or chaotic
dynamics. :

Let R; = g and Ry = (1—€)Az, so that A= Ry + R,.
The quantities R; and R; can be interpreted as the
portions of the net intrinsic growth rate that can be
ascribed to hosts outside and inside refuges, respect-
ively. Figure 1 depicts the slice of parameter space
permitting stability. A family of straight lines with
slope = —1 describes hosts with given net finite rates
of increase, A= k. If A< 1, the system goes to extinc-
tion. If A> 1, the proportional refuge may stabilize
the interaction even if the host has a high intrinsic
rate of increase, as long as the contribution of ‘refuge
hosts’ to the average host rate of increase (i.e. their
actual growth rate weighted by the fraction of the
population found in the refuge) is less than unity.

If the contribution of refuge hosts to total popu-
lation growth is too low, the system does not reach a
stable point equilibrium, but instead fluctuates with
limit cycles or chaotic dynamics. These oscillations
increase in amplitude as R, decreases and, in the
limit Rz~ 0, approach the expanding oscillations of
the classical Nicholson-Bailey model. Figure 2 shows
this pattern of increasing oscillations as the contri-
bution by the refuge toward the net growth of the
host population declines. When exposed hosts have
A =3-8 and refuge hosts have A=0-2, the system
displays sustained, large-amplitude oscillations that
appear to be chaotic. In the absence of the parasitoid,
the refuge hosts account for just over 5% of the net
growth rate of the host population and thus might
seem to be unimportant for its dynamics. Yet it ig
the presence of these hosts that are responsible for
the persistence of the host~parasitoid interaction.

Contribution of refuge hosts fo A

Extinction

Unstable
(host unrequiated by parasitoid)

Figure 3 shows another numerical example that
displays this effect in an even more dramatic fashion.
In Fig. 3a, the hosts divide equitably into exposed
and refuge classes each generation, but because of
the high growth rate of the exposed hosts the refuge
hosts contribute less than 2% to the net growth rate
of the host. These hosts nonetheless suffice to stabilize
the host~parasitoid intéraction. Increasing the
contribution of refuge hosts to the growth of the
host population weakens the stabilizing influence of
the refuge (see Fig. 3b).

The important conceptual message of the general-
ized proportional refuge model is that hosts which
provide a negligible contribution to the average
intrinsic growth rate of the host population can
nonetheless be critical in determining the stability of
the host—parasitoid interaction. Moreover, this effect
may be observed even in host populations with high
intrinsic growth rates. Heterogeneity in host growth
rates can thus augment the stabilizing influence of
heterogeneity in parasitism, provided hosts with
relatively high growth rates are those attacked.

This result stills holds, albeit with less force, if
hosts in the refuge are not completely protected
from parasitism. In the original treatment of model
1 by Hassell & May (1973), a parameter was used to
describe the degree of aggregation by parasitoids in
patches each generation. Figure 4 shows a numerical
example for a moderately high (but not unrealistic)
value of this aggregation parameter. In Fig. 4a, the
host has a growth rate (=2) that is the same in the
two patches (A=2), and the parasitoid aggregates
sufficiently to keep the interaction persistent, but
with sustained cycles. In Fig. 4b, we assume that the
host in the refuge has a low growth rate relative to
the host outside but the same net growth rate; in this
case, the system is strongly stable. This example
illustrates that the stabilizing effect of lowered host
growth rates in the refuge is not highly sensitive to

Cyctes/chaos

2

3 2 80

Contribution of exposed hosts to *

Fig. 1. The effect of spatial variance in host rate of increase on stability in the proportional refuge model. The abscissa and
ordinate are, respectively, Ry =¢k;. the contribution of hosts outside the refuge lo the net intrinsic growth rate,
% and R;=(I-¢)ks. the contribution of hosts inside the refuge to A (where A=R;+Rj). The shaded region
demarcates parameter combinations that tead to local stability. For further details see text.
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Fig. 2. The effect of decreasing hosts in the refuge, relative to exposed hosts, on the stability of the proportional refuge
model. Host populations are dencted by solid lines and adult parasitoid populations by broken lines. For the examples
shown, the mean host growth rate A = 2, and there is an even division of hosts within and outside the refuge (i.e. e=0-5).
(a) Low spatial variance in host \ (where A; = 2-1and A, = 1.9, where 1 and 2 respectively denote exposed and refuge hosts)
leads to highly stable interactions. (b) Moderate spatial variance in host A (A; =3, Ay =1) leads to stable limit cycles.
(c) High spatial variance in host A (A, = 3-8, ) = 0-2) generates chaotic dynamics. The amplitnde of the oscillations tends to
increase with decreasing host refuge growth rates.
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Fig. 3. Refuges with low host growth rates can stabilize host—parasitoid systems with very high overall host growth rates.
(a) A = 982, Ay = 1-8, 8 = 0:5; (b) Ay = 98-2, by = 4-0, = 0:9. The low-quality refuge in (a) stabilizes an otherwise unstable
interaction, and an increase in the refuge growth rate can be destabilizing.

the assumption that hosts in the refuge completely
escape parasitism. It further reinforces our theme
that spatial heterogeneity in host growth rates can
augment the stabilizing influence of spatial hetero-
geneity in parasitism, as long as parasitism is differ-
entially inflicted on the hosts with relatively high
growth rates.

Patches partially coupled by dispersal

The structure of the model given by equation la,b
assumes that in each generation the population of
both the host and the parasitoid are distributed

among patches according to a deterministic rule.
Recently, there has been increasing interest in the
consequences of spatial heterogeneity in systems in
which a number of populations are coupled by dis-
persal, but not so thoroughly that they can be con-
sidered to be one panmictic population (Comins,
Hassell & May 1992; Hassell et al. 1991). In this
section, we demonstrate that effects similar to those
explored above for the proportional refuge model
also emerge from models with partially coupled
patches. :
Consider a habitat with two patches, denoted 1
and 2, between which either or both the hosts and
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Fig. 4. The effect of heterogeneous host growth rates with incomplete refuges. Using model (1) in the text, let n=2,
a; =0-6, and thus o, = 0-4. Following Hassell & May (1973), we assume that parasitoid aggregation in relation to host
density is described by §;= qaf; where ¢ is a normalization constant and  (=5-4) describes the strength of aggregation. (a)

A=2y=2, and g;=a;=0-1; the systems persists with large-amplitude oscillations. (b) Ay =35, Ay = 0-5; the system

rapidly moves to its stable equilibrium. Unlike the examples in previous figures, refuge hosts do not completely escape

parasitism.

parasitoids can move. Patch i at the beginning of
generation ¢ has N{t) hosts and P,(t) parasitoids.
After parasitism, the number of unparasitized hosts
remaining is S(¢) = N;(¢), and of these a fraction u,
disperse to the other patch. The number of parasitoids
that emerge from the parasitized hosts in patch i is
given by ¢;[N;(#) ~ Si()], and of these a fraction u,
disperse to the other patch and the remaining frac-
tion 1=y, stay in their natal patch. The parasitoid
recursion over a single generation (where we census
following dispersal) can thus be described by

Pyt + 1) =c1(1 = up)[N1(2) = S1(8)] + cam, [ Na(t) -

S2(0)] eqn 6a
Po(t+ 1) = cqu,[ N1 (t) = S1(8)] + c2(1 =, )[Na(2) ~
Sa(8)]. eqn 6b

A subtlety arises in developing the parallel recursion
for the host. Let us say that a host born in patch {
that escapes parasitism contributes A; to the next
generation. The number of hosts found in each
patch in generation ¢+ 1 is then given by

Nyt +1) = A8y (8)(1 = pp) + A2S2(ps
Na(t+ 1) = MS1()un + MaS2()(1 = ).

eqn 7a
eqn 7b

This model structure assumes that the fitness of a
host individual depends upon the patch it was born
in, rather than the patch to which it disperses. This is
a quite reasonable assumption in many circumstances;
for instance, if adult fecundity depends upon. the
quantity or quality of resources available for larval
growth.

An- alternative' model structure arises if one
assumes that the fitness of a host individual depends
upon the patch into which it disperses:

N(t+ 1) = M[S1 (L = pa) + Sa(t)us] eqn 8a

No(t+ 1) = Mg[S1(D)un + Sa(£)(1 = pp)].

This could occur if, for instance, habitats differ in
the availability of the plant species required for
larval growth, such that in a patch with low food-
plant availability, adult hosts tend to have a low
fecundity irrespective of whether that adult had
dispersed there or not.

For simplicity, in the remainder of this paper we
assume that the host population dynamics is described
by equation 7a,b rather than equation 8a,b. Within
each patch, we further assume that parasitism occurs
at random, so that the number of hosts in patch i
that escape parasitism is given by

Si(¢) = N()exp(~ a;P(1)).

eqn 8b

In general, it is impossible to find closed-form
expressions for the equilibrial densities of the host
and parasitoid in each patch, much less explicitly
analyse the local stability conditions. We will there-
fore not attempt a full exploration of the dynamics
of this model, but instead examine some special
limiting cases that illustrate our general theme.

A REFUGE MODEL

Let a;—>0 and p,—0. Hence, no parasitoids disperse,
and after a single generation no parasitoids remain
in patch 2, so that S(¢) = Ny(t) and P,(t) = 0. This
limiting case is in a sense a generalization of the
proportional  refuge model considered in detail
above, because the hosts in patch 2 are free from
parasitism each generation; indeed, when p, = 0-5,
this model is equivalent to a proportional refuge
with an equitable division of hosts between refuge
and exposed classes. Now let
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Mihaitg
1= (1=,
The equilibrial densities of the parasitoid in patch 1
and hosts in both patches are:

O=h(1—py)+ eqn 9

,_I0Q) . Qi)
Pl a aNl Q"‘l a
Npo Q)

a(@-1) 1= (1—pwhy
Two necessary and sufficient conditions for the
existence of this point equilibrium are (i) that
A2(1 = uy) <1, and (ii) that Q > 1. Condition 1 states
that the refuge population by itself is not growing
exponentially. Condition 2 is equivalent to stating
that the host population in the absence of the para-
sitoid has an asymptotic net rate of increase greater
than 1, and hence must hold for the host to persist
on its own (see Appendix for proof).

These two conditions correspond in their inter-
pretation to the necessary conditions for the existence

- of an equilibrium in the proportional refuge model

(viz., as represented by the horizontal line and the
line of stope ~1 in Fig. 1). With partially coupled
patches and with one patch a refuge from the para-
sitoid, it becomes more difficult for the parasitoid to
regulate the host as the degree of coupling (measured
by w,) becomes lower, and the host growth rate in
the refuge becomes higher. If the refuge is a sink
(i.e. Ay < 1), this necessary condition is always met;
for Q >1, this in turn requires that patch 2 be a
source, with A, sufficiently greater than 1.
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The local stability of the above equilibrium is
determined in the usual manner by evaluating the
eigenvalues of a 3 x 3 Jacobian matrix. This pro-
cedure does not in the present instance simplify in a
particularly useful manner. Numerical studies, how-
ever, show that refuges with low growth rates have a
generically stabilizing effect in this model. Figure 5
shows the population fluctuation resulting from
various levels of wy, the host dispersal rate. For the
values of host growth rate used in this illustration,
the system displays regular cycles for w,=0-5 (a
case of the proportional refuge model). Because the
refuge patch has a growth rate less than unity, it
represents a sink for the host population. A modest
decrease in the rate of host dispersal (from 0-5 to
0-2) if anything reduces the amplitudes of the popu-

Jation fluctuations. With further decreases in the

rate of host dispersal (to 0-05, and then to 0-005),
the system begins to show larger-amplitude oscil-
lations, which eventually become so severe that the
host-parasitoid interaction cannot persist. This
figure thus emphasizes that even quite weak coupling
between a low-quality sink population and source
population can nonetheless stabilize the latter,
provided that the sink population acts as a refuge
from parasitism.

A typical example of results of our numerical
studies of the effect of reduced host dispersal on
stability is shown in Fig. 6. Figure 6a shows the
range of host growth rates in the two patches con-
sistent with - stability for p,=0-5 (proportional
refuge), and Fig. 6b shows the same for w,=0-2

200p
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Fig. 5. Partially coupled patches. For each case shown, A, = 3 (patch 1 is a source), A, = 0-75 (patch 2 is a sink, and a) =
0-1, a, = 0. The parasitoids are thus restricted to patch 1, but the hosts can move between the two patches. (a) p, =0-5; a
special case of the proportional refuge model, and the system shows limit cycle behaviour. (b) ws =0.-2; the system still
displays limit cycles. (c) w, = 0-05 and (d) p, = 0-005; in these cases the population fluctuations become increasingly severe
with decreased coupling, but even weak coupling permits a sink refuge for the host, and thus allows the system to persist.
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(a)
Unstable
(host unregulated by parasitoid)

X {refuge hosts)

Extinction

0] 2 4 6
X (exposed hosts)
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Unstable
(host unregulated by parasitoid)

Fig. 6. The effect of spatial variance in host A on stability in the partially coupled patch model. One patch is-a refuge. The
abscissa and ordinate are the host intrinsic growth rates outside and within the refuge, respectively. (a) Host migration rate
of w, = 0-5; this isa special case of the proportional refuge model. (b) Host migration rate of , = 0-2. Hatched regions
denote local stability. The bowed line describes Q > 1. In the regions marked ‘e’, oscillations lead to extinction.

(partially coupled patches). The regions indicated
by ‘e’ are those parameter combinations leading to
extinction because of oscillatory instability. For both
cases, if host growth rates are too low, the system
crashes; if host growth rates are too high in the
refuge, the parasitoid cannot regulate the host popu-
lation. There is a range of moderate host growth
rates inside the refuge for which the system is stable,
more-or-less irrespective of the host growth rates
outside the refuge. And finally, the system may
persist (albeit with cycles or chaotic dynamics, as
shown in Fig. 4) even if refuge hosts have quite
low growth rates, and this effect becomes more
pronounced when non-refuge hosts have high growth
rates.

Our intuitive interpretation of the stabilizing effect
of a partially coupled host refuge — a patch that ‘in
isolation’ is a sink — runs along the following lines.
Consider a sequence of generations during which
host numbers are increasing because parasitism is
low. Because of dispersal, host numbers in the sink
increase together with those in the source. But
parasitoid numbers are also increasing, and eventually
the host population in the source will be depressed
to low densities by increased parasitism. Yet this
does not eliminate the host entirely, because of the
build-up of host numbers in a patch where they are
immune from parasitism. Even if every last host in
the source is parasitized, some hosts will disperse
from the sink; this supply of fresh hosts moderates
the rate of decline in the parasitoid population, and
does so for more generations if the decline of the
sink population is slow. In effect, good years of
recruitment in the host (i.e. when parasitoid numbers
are low) get stored in the sink, which then acts later
to buffer the rate of decline in both the host and
parasitoid populations in the source patch.

SPATIAL VARIATION IN THE PARASITOID
EMERGENCE PARAMETER, ¢;

Certain kinds of spatial variation in parasitoid attack

rates eliminate the possibility of variation in host
intrinsic growth rates influencing stability. If the
parasitoids are very effective in attacking hosts in
patch 1, so that to a reasonable approximation
a;— and hence S(¢)— 0, the model defined by
equation 6a,b and equation 7a,b reduces to

Nyt + 1) = houpSo(2) eqn 10a
No(t+ 1) = ho(1 = 1y, )S2(2) eqn 10b
Py(t+1) = c1(1 = w,)Ny(t) + cap(No(8) - Széa)g 10c

Pt + 1) = 11, Na(8) + c2(1 =, J(N(t) — szeg;l) 10d

where S3(¢) = No(e)exp[~axP2(1)].

The persistence of the parasitoid in patch 1 depends
on a continual flow of hosts from patch 2. When
u, =0, the parasitoid in patch 1 becomes extinct
after a single generation, and the host-parasitoid
interaction in patch 2 is simply the unstable Nicholson-
Bailey system. Patch 1 is manifestly a ‘sink’ for the
host, because any host dispersing there is guaranteed
to leave no descendants. Hence, spatial variation in
the host intrinsic growth rates is irrelevant to stab-
ility. However, spatial variation in parasitoid emerg-
ence rates (¢) may exist and this may influence the
stability of the interaction, comparable to the effects
explored in the refuge models.

Because the structure of the above limiting case
incorporates substantial spatial variance in parasitism
(with hosts in one patch experiencing much higher
attack rates than hosts in the other patch, though the
latter is not a refuge), it is not surprising that the
two-patch system can be stable when the parasitoid
emergence parameter is spatially invariant. More-
over, if both species disperse at slow rates, it is not
surprising that the system is unstable; in the limit
n—>0, p,— 0, the model reduces to two uncoupled
patches with unstable: dynamics. Variation in ¢ can
influence the point at which one observes a transition
from a stable to an unstable system. Figure 7 shows
a numerical example. When the two patches are
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Fig. 7. Partially coupled patches. The attack rate in patch 1 is very high, so that all hosts are in effect attacked each
generation, while a; = 0-1. The other demographic parameters are.spatially homogeneous: Ay =Ay =2, and ¢;=¢; = 1.
(a) Strongly coupled patches (s, = u, = 0-4). (b) Weakly coupled. patches (i, = u, =0-1).

strongly coupled by dispersal (Fig. 7a, u;, = u, = 0-4),
the interaction is indeed quite stable. Reducing the
rate of dispersal (Fig. 7b, w, =, =0-1) leads to a
persistent, but strongly cyclic system. Further re-
ductions in dispersal eventually preclude persistence
altogether.

What is the effect of spatial variation in c? In Fig.
8a, we show how the dynamics of Fig. 7b are modified
if we let ¢; =1, ¢;=0:5. This spatial variation in
parasitoid demographic rates has the effect of
enhancing the stabilizing influence of spatial vari-
ation in attack rates. In this example, variation in ¢;
is superimposed on variation in ;.. An interesting
feature of the partially coupled patch model'is that
variation in c, if large enough, is sufficient to stabilize
the host~parasitoid interaction. Figure 8b illustrates
the dynamics of two coupled patches with equal host
intrinsic growth rates (=2), equal attack rates
(=0-1), and equal, low dispersal rates (u, = w, = 0-1).
The only heterogeneity in the system is in parasitoid
emergence rates (¢; = 1, ¢; = 0-04), yet the system is
quite stable.
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We find this example to be particularly intriguing,
because it represents a novel phenomenon emerging
in the partially coupled patch model. When there is
complete mixing each generation (w,=u,=0-5),
the model reduces to the original form explored by
Hassell & May (1973), which is unstable with equal
parasitism in each patch. In like manner, at low
dispersal rates the system becomes unstable (two
uncoupled Nicholson-Bailey patches). Our tentative
interpretation of the stabilizing influence of variation
in ¢, is that it generates a ‘source~sink’ structure for
the host and parasitoid populations, and that this is
reflected in a kind of induced spatial variance in
parasitism. Our numerical explorations have not
uncovered a similar stabilizing influence of spatial
variation in A; alone.

An understanding of the reasons for this differ-
ence, and indeed of the general role of environmental
heterogeneity as a stabilizing factor in systems of
partially coupled patches, awaits a more detailed
treatment than we are attempting to provide here.
However, the numerical examples presented above
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Fig. 8. Spatial heterogeneity in parasitoid emergence rates. The host parameters and dispersal .rates. are as in Fig. 7.b'
(@) ¢, =1, c3=0-05; introducing spatial heterogeneity in ¢ dampens the oscillations shown in Fig. 7b. (b) Spatial
homogeneity in all parameters except parasitoid emergence rates (@ =az =0-1, Ay =hy =2, py =, = 01,¢=

Cp = 0'04).
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do suggest that the results of the proportional refuge
model (encapsulated in Fig. 1) are not peculiar to
the particular assumptions of that model, but may
apply broadly to host—parasitoid interactions in
patchy environments.

Discussion

COMPARISON WITH OVERLAPPING
GENERATION SYSTEMS

It is useful to compare our results with theor-
etical investigations of the stabilizing influence of
spatial heterogeneity in general predator—prey
models. The continuous-time equivalent of -the
Nicholson-Bailey model is, of course, the classical
Lotka-Volterra. predator—prey model, which
exhibits neutrally stable oscillations around its
equilibrium (May 1974). Incorporating a pro-
portional refuge into this model simply re-scales
equilibrial densities without influencing the neutral
stability of the system (Hassell 1978); the same is
true with simultaneous heterogeneity in attack rates
and prey intrinsic growth rates, Introducing spatial
heterogeneity into partially coupled patches in this
framework, however, does tend to stabilize the inter-
action. Holt (1984) explored a two-patch Lotka-
Volterra model in which the prey were sedentary
and predators moved between patches at constant,
density-independent rates. If the two patches were
homogeneous and dispersal rates uniform, the system

was once again neutrally stable: dispersal by itself

did not stabilize the system. However, introducing
essentially any kind of difference between the

patches — in prey intrinsic growth rates, predator .

mortality rates, attack rates, or asymmetries in
predator dispersal — produced a locally stable inter-
action. Reminiscent of the generalized proportional
refuge model discussed above, introducing partially
coupled refuges into the Lotka-Volterra model can
foster stability, and this effect is strongest when the
intrinsic rate of increase of the prey in the refuge is
low relative to that outside the refuge (Holt 1992).

One interpretation of the heterogemeous, two-
patch, Lotka-Volterra model is that random predator
dispersal in a spatially heterogeneous environment
sets up a system of sources and sinks in the predator
population; the time lag implicitly provided by dis-
persal in and out of sinks then tends to buffer
fluctuations in the source populations (Holt 1984,
Appendix II). McLaughlin & Roughgarden (1992)
have recently examined a spatially continuous Lotka-
Volterra model. They show that heterogeneity in
prey growth rates and differential species mobility
leads to stable population dynamics, and likewise
interpret their results in terms of source-sink
dynamics. The observation that spatial heterogeneity
in prey growth rates alone can lead to stability is one
intriguing difference between these continuous-time

systems and the partially coupled host—parasitoid
system, where it appears that spatial variation in the
host growth rate alone does not as a rule stabilize
the interaction.

IMPLICATIONS FOR EMPIRICAL STUDIES

Theoretical work on the effects of heterogeneity in
attack rates on host~ parasitoid dynamics has stimu-
lated considerable fieldwork on characterizing the
rate of parasitism as a function of host density (e.g.
Walde & Murdoch 1988), culminating recently in an
assessment for published field data of the relative
stabilizing potentials of density-dependent vs. density-
independent components of parasitism (Hassell
et al. 1991; Pacala & Hassell 1991). A qualitative,
intuitively sensible conclusion of the work reported
above is that the stabilizing potential of host refuges
is enhanced if protected hosts have relatively low
intrinsic growth rates compared to exposed hosts.
This suggests that a fruitful avenue for future
empirical investigation will be to document the
patterns of covariance between attack rates and host
intrinsic growth rates. The partially coupled patch
model points to a similar importance for hetero-
geneity in parasitoid demographic rates. A full
understanding of the role of heterogeneity in stabil-
izing host—parasitoid interactions will ultimately
require a more refined understanding of how spatial
patterns in attack rates and in basic demographic
parameters interrelate than is yet available for any
natural host—parasitoid system.
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Appendix

In the absence of the parasitoid, the dynamics of the
host population are described by a model of geo-
metric growth in two patches coupled by dispersal:

(N1<t+ 1)) - (xl(l “m) Doty )
Ny(t+1) My A1 =)
<N1(t)>
No(t)
Because the entries in the transition matrix are
constant, one knows, as with almost any transition
matrix model (Caswell 1989), (i) that the host popu-
lation eventually settles into a stable patch distri-
bution, with a fixed proportion of hosts found in

each patch, and (ii) that the population in this stable
distribution grows at a constant per capita rate A,

eqn Al

where X is the dominant eigenvalue of the above
matrix. This asymptotic net growth rate is

(M +A2) (1= py) + VM + Ag)2 = a0 Ay (1-2)
2

A=
eqn A2

For the host population to persist without parasitism
requires A> 1, Manipulating the above expression
shows that 4> 1 implies 'Q > 1 and, conversely, that
Q> 1 implies A> 1. Hence, Q> 1 in the text can be
interpreted as a statement of a necessary condition
for persistence of the host, and hence of the host~
parasitoid interaction.
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