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Summary

1. Populations of hosts and parasitoids with discrete generations frequently show
imperfect phenological synchronization resulting in some hosts experiencing re-
duced or even no risk of parasitism.

2. The population dynamic consequences of phenological asynchrony are explored
by modelling within-generation dynamics by a set of delay-differential equations.
3. Phenological asynchrony can stabilize an otherwise unstable interaction. The
influence of the interaction between phenological asynchrony and other stabilizing
forces on the stability and equilibrium population densities of hosts and parasitoids
is studied.

3. Preliminary results indicate that annual fluctuations in the synchrony between
host and parasitoid populations can have a major effect on the persistence of the

interaction.
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Introduction

The population dynamics of insect host—parasitoid
interactions with discrete generations have received
considerable attention (Hassell 1978). In recent
years, a particular focus on study has been the
potential for various forms of heterogeneity to pro-
mote the persistence of the interacting populations.
This stabilizing heterogeneity can be conveniently
expressed in terms of the degree of variation in the
risk of parasitism between individual hosts within
the population, and it can arise in many ways; for
instance, by spatial variation in levels of parasitism
(e.g. Chesson & Murdoch 1986; Hassell et al. 1991;

‘Pacala & Hassell 1991) or by differences in the

ability of hosts to resist parasitoid attack (Hassell
& Anderson 1984; Godfray & Hassell 1990). In
particular, most interest has focused on hetero-
geneity arising from the distribution of hosts and
parasitoids in patchy environments, and there are
now many examples where percentage parasitism
has been recorded in relation to host density per
patch (see Lessells 1985; Stiling 1987; Walde &
Murdoch 1988 for recent reviews). These patterns
have been classified as either density dependent,
inversely density dependent or density independent,
any of which can promote population persistence
if they result in sufficient variation in the risk of
parasitism between host individuals (Hassell 1984;

Chesson & Murdoch 1986; Pacala, Hassell & May
1990; Hassell et al. 1991).

Considering the enormous interest in spatial het-
erogeneity, it is surprising that little attention has
been paid to heterogeneity arising from temporal
asynchronies between the timing of the susceptible
stage(s) of the host on the one hand and the foraging
adult parasitoids on the other. The first suggestion
that phenological mismatches may stabilize host-
parasitoid interactions appears to have been made by
Varley & Gradwell (1958). A decade later, Hassell
(1969), working on the interaction between the win-
ter moth (Operophtera brumata) and the tachinid fly
parasitoid, Cyzenis albicans, and Griffiths (1969)
who studied the parasitoids of European pine sawfly
(Neodiprion sertifer), both noted temporal asyn-
chrony in the field and suggested modifications of
simple host—parasitoid models that might describe
this phenomenon (see Appendix). In an important
study, prompted by the observation of asynchrony
between the spruce tortricid Epinotia tedella and its
parasitoid Pimplopterus dubuis, Miinster-Swendsen
& Nachman (1978) constructed a simulation model
of a host—parasitoid interaction and demonstrated
that a realistic form of temporal asynchrony alone
could stabilize an otherwise unstable interaction.

Our goal here is to extend this work by develop-
ing a relatively simple model of a seasonal host—
parasitoid interaction. We construct our model as
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a system of difference and differential equations,
rather than use a simulation framework, in order to
use a minimum number of parameters, and so that
we can obtain some of the best understood models
of host—parasitoid interactions as limiting case. The
ability to obtain limiting cases markedly simplifies
the interpretation of more complicated models which
have to be solved by numerical techniques. We
study the interaction of temporal asynchrony with
other stabilizing features of host—parasitoid interac-
tions that result in a reduction of parasitoid efficiency
with increasing parasitoid density. We also begin to
study the influence of temporal asynchrony that
fluctuates from year to year.

Phenological asynchrony is likely to be a frequent
feature of natural host-parasitoid interactions. Some
species of parasitoids may not be able to search for
hosts at times of the year when hosts are present,
perhaps because the climate is too wet, too dry,
too hot or too cold. Asynchrony may also occur if
parasitoids introduced into new areas for biological
gontrol are imperfectly adapted to their new environ-
ment. The Argentine stem weevil (Listronotus
bonariensis), for example, appears to have been
introduced into New Zealand from a single site in
South America. Populations of weevils throughout
the latitudinal range of New Zealand have the same
diapause strategies, which results in needlessly early
diapause in the North Island (Goldson & Emberson
1980). A parasitoid of the weevil, the partheno-
genetic braconid Microctonus hyperodae, has been
collected from a number of sites in South America
and different strains show different diapause strat-
egies (Goldson & McNeil 1992). Questions of phe-
nological matching are important in predicting which
strain will most effectively control the pest. More
speculatively, global climate change may disrupt
the temporal match of hosts and parasitoids if tem-
perature change differentially affects the develop-
ment of hosts and parasitoids (Hassell, Godfray
& Comins 1992).

Methods

Let us imagine a host that is attacked by a specific
parasitoid species. At the beginning of the season,
all hosts are in a non-susceptible stage and all para-
sitoids are in a non-searching stage. For narrative
simplicity we shall assume that at this time hosts are
eggs and only become susceptible to parasitism when
they hatch, and parasitoids are pupae and begin to
search for hosts as soon as they emerge. Hosts are
susceptible to attack until they pupate and para-
sitoids search until they die. The model, however, is
fully general, and the susceptible host stage and the
parasitoid searching stage may occupy any portion
of the respective life cycles of the two species.
~Our modelling strategy is to produce the simplest
possible description of the host—parasitoid system

that includes the key features to be investigated.
Thus, we deliberately leave out much important
biology to get as clear as possible a picture of the
effects of phenology. We now describe the model and
present a ‘canonical parameter set’: a set of biologi-
cally defensible parameter values that provide the
starting point for the analysis. Time is measured in
days and we arbitrarily define day 0 as the beginning
of the season.

The model consists of two parts: a within-
generation component that describes the dynamics
of emergence, maturation and parasitism, and a
between-generation component that relates the
numbers of surviving and parasitized hosts at the

.end of one season to the numbers at the beginning of

the next. The between-generation component is par-
ticularly simple. Each parasitized host is assumed to
give rise to one parasitoid in the following season,
and it is assumed that each surviving host reproduces
to give rise to two hosts in the following generation.
Thus, the net host rate of increase (A) is two so that,
at an equilibrium, and in the absence of any other
mortality factors, parasitoids must destroy 50% of
all hosts.

The within-generation component is more com-
plex. A verbal description is given in this section
while the formal equations are relegated to the
appendix. Hosts begin to hatch and parasitoids to
emerge at times 1 and T, respectively; the rate of
entry into the next stages is at first slow, but then
accelerates (Fig. la). Two parameters, &y and 0,
describe the temporal distribution of host and para-
sitoid life cycles, respectively: high values signify
that most hosts hatch together or that most para-
sitoids emerge together. Hosts are susceptible to
parasitism for a period W, after which they pupate
and can no longer be attacked. Parasitoids may die
at a rate u(¢), although here we assume for the most
part complete survival during the season, p(t)=0.
For the canonical parameter set we assume that
parasitoids begin to emerge on day 5, but that hosts
do not begin to hatch until day 25. Hatching and
emergence is completed in about 20 days (as in
Fig. 2a where &y = 6, = 0-001). The window of host
susceptibility (W) is 10 days.

In order to describe parasitism we first define H(¢,
1) and P(¢, t) as the numbers of susceptible hosts
and searching parasitoids alive at time ¢ in generation
1 (for simplicity, we henceforth shall drop the second
parameter, t). The rate of loss of hosts due to
parasitism is H(¢)f[P(¢),H(t)} where f{P(¢),H(1)],
describes the instantaneous risk of parasitism. The
simplest form of f[P(¢),H(¢)] assumes a linear func-
tion of the number of. parasitoids [f[®]=aP(¢)]
where g is a constant normally called the attack
rate (Fig. 1b; line a), as in the neutrally stable
Lotka-Volterra model or the oscillatorily unstable
Nicholson-Bailey model (Lotka 1925; Volterra 1926;
Nicholson & Bailey 1935). The local instability in
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Fig. 1. (a) The shape of the host hatching and parasitoid emergence distributions. The curve shows the change in density of
either host eggs or parasitoid pupae when 8, = 8;; = 5 x 10~*, (b) The effect of parasitoid density on the parasitism function
fIP(t),H(t)]. As described in the text, the extent of density dependence is inversely proportional to the parameter k:
(a) k=2; (b) k=1; (c) k=0-5; (d) k=0-1; (e) k = 0-05; (f) k =0-01. The attack parameter a = 0-00139.
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Fig. 2. An example of the changes in host and parasitoid life-history stages within one generation. The curves were drawn
using the canonical parameter set in Table 1 and with Tp =5 and k = 0-05. The initial densities of hosts and parasitoids were

set at 100 and 50, respectively.

these models is due to the lack of any density
dependence in the risk function f[P(£),H(¢)]. In this
study, we assume that the risk of parasitism rises
with the number of searching parasitoids, but at a
decelerating rate (Fig. 1b), which thus introduces
density dependence into the parasitism function.
Such density dependence might arise in'a number of
ways: some hosts may be in a physical or probabilistic
refuge, a fraction of hosts may be able to defend
themselves physiologically from parasitism or there
may be interference among parasitoids at high den-
sity. We do not specify the cause of the parasitoid
density dependence, but assume it is of the form
shown in Fig. 1b. The amount of density dependence
is'indexed by a parameter k (with dimension 1/time)
and the model converges to f[®] = aP(¢) (no density

dependence) as, k— . This particular function has
been chosen because it allows the model to converge
under certain conditions to a discrete generation
model whose dynamics are very well understood
(see Appendix). In the canonical parameter set we
assume k=0-05, and that a single parasitoid can
search -about 171000 of one unit of the environment
in a day a =0-00139 (the exact figure was chosen to
give convenient equilibrium densities in the limit
k— ). Finally, we assume that an individual para-
sitoid has a maximum attack rate, perhaps set by a
maximum rate of egg maturation or by the time
needed to attack and parasitize a host. The recipro-
cal of the maximum number of hosts that can be
- attacked in a day is the parameter 8 which, for
_ simplicity, we shall' refer to as the handling time



4

Asynchrony in
host—parasitoid
interactions

(Holling 1959). For the canonical parameter set, we

also. -assume that- parasitoids can attack up to 30

hosts per day.

An example of the within-generation dynamics
using the canonical parameter set is shown in Fig. 2.
To explore the dynamic consequences of changes in
phenology, we now assume that parasitoids begin to
emerge at different times relative to the host, as
shown in- Fig. 3, at the same time varying the
amounts of density dependence in the parasitism
function. The following situations were explored in
two series of simulations.

Series 1. Using the canonical parameter set, with the
time of first parasitoid emergence (t,) and density
dependence k allowed to vary. :

Series 2. As Series 1, except the hosts are now
susceptible for a longer period of time (W = 25), and
host and parasitoid emergence is more synchronous
(8,=0p=5X 107%) (Fig. 4). The two parameters, a
and k, are also adjusted so that aW and kW are kept
constant.

Details of the stimulation methods and stability
criteria are given in the appendix.
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‘Fig. 3.- The top panel shows the numbers of the three host stages over the season in the absence of parasitism (100 hosts at
‘the beginning of the season) and using the canonical parameter set (with 1, = 5.and k = 0-05). The bottom panel shows the
temporal distribution of searching parasitoids when emergence starts on days 5, 15, 25, 35 and 45.
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Fig. 4. An example of the within generation dynamics with the parameter values used in the second series of simulations
(see text; T, =5, k= 0-02). Host hatching and parasitoid emergence are now more concerted, and the window of host

susceptibility is wider.
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Results and discussion

The results of the Series 1 simulations are shown in
Fig. 5. We consider first the stability properties of
the system when parasitoids begin to emerge at day
5. As parasitoid density dependence increases (i.e. k
gets smaller), the system is stable above a critical
threshold (k<1/W), but then becomes unstable
again when density dependence gets very strong.
The stability in this example is not due to any
asynchronies in phenology since parasitoid emerg-
ence starting on day 5 is completed before the
appearance of any individuals of the host stage
(there is assumed to be no parasitoid mortality during
the season). The stability boundaries are thus simply
a result of the intrinsic density dependence in the
parasitoid attack rates and the handling time. This
can be confirmed from certain limiting cases of the
model (see Appendix). Thus, when the number
of searching parasitoids is constant throughout the
period that susceptible hosts are present and when

" handling time is zero, the model reduces to a discrete

generation model due to May (1978) which is stable
whenever k<1/W. As density dependence in the
parasitism term (kW) increases in this model, the
equilibrium population of hosts and parasitoids also
increases. When host population are very large, they
can only be regulated if individual parasitoids are
able to attack many hosts. Under these circum-
stances, handling time is destabilizing and accounts
for the loss of stability for small values of kW
(Hassell & May 1973; Hassell 1978).

The stability boundaries at the far left of Fig. 5
thus represent the behaviour of the model in the
absence of any temporal asynchrony. As parasitoid

Level of density dependence (In A/)

5 7 91 131517 (19
Day of first parasitoid emergence

emergence is delayed, the stability properties of the
system change in a number of ways. Thus, when
parasitoids begin to emerge between days 26 and
34, the system requires less density dependence in
the parasitism term in order to be stable. Indeed,
when the first emergence occurs between days 35 and
40, the system is stable without any density depen-
dence in the parasitism term (Miinster-Swendsen &
Nachman 1978). When the first emergence is even
later — between days 41 and 45 — the system once
again can only be stable if the parasitism term con-
tains enough density dependence. Finally, if para-
sitoids do not begin to emerge until day 46, the
interaction can never be stable, irrespective of the
level of the density dependence. In addition, the
maximum density dependence that the system can
tolerate and still be stable decreases as parasitoid
emergence is delayed. Finally, apparently persistent
population cycles are observed in a narrow region of
parameter space (Fig. 5).

Delays in parasitoid emergence are another means
by which heterogeneity in the risk of parasitism can
be generated; those hosts that emerge early in the
season experience a reduction in or even the com-
plete absence of parasitoid attack. Early season
hosts are in an absolute or partial temporal refuge,
which is responsible for the increase in stability. As
with spatial refuges, an increase in the size of a
temporal refuge results in larger population densities
(Fig. 6), a pattern also noted by Miinster-Swendsen
& Nachman (1978). When handling time is non-
zero, very high host population densities cannot be
regulated by parasitoids and this accounts for (i) the
reduction in the maximum amount of density depen-
dence that the system can tolerate, and (ii) the

Fig. 5. Stability analysis from the first set of simulations (Series 1). Stability boundaries are displayed in a space with axes
representing the data of parasitoid emergence (t,) and the logarithm of the product of the severity of density dependence
and the parasitism window (k). White areas represent regions of parameter space where the system is asymptotically local
stable and light grey areas regions of instability. The small dark grey regions represent model runs where the system showed

cycling behaviour after 1000 generations.
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Fig. 6. Equilibrium host densities (before reproduction) in stable regions of the parameter space of Fig. 5. Host density
increases as the density dependence grows stronger (smaller k), the parasitism window shorter (smaller W), or the
temporal refuges grow larger (later parasitoid emergence). The stars indicate points where the equilibria become unstable.

instability of systems with little or no density depen-
dence when parasitoid emergence begins between
41 and 45 days. Finally, when parasitoid emergence
does not begin until day 46, so many hosts are in a
refuge that no matter how effective the parasitoid
is, it can never reduce the hosts sufficiently for
regulation to occur.

Host—parasitoid models have been analysed in

which a fixed proportion of hosts.each year are pro-

tected from parasitism (proportional refuge models).
As described in the appendix, the proportional ref-
uge model can be derived as a limiting case of the
present model if parasitoid emergence is synchron-

ous and host hatching occurs over a long period of

time relative to the length of the susceptible window.
When only a small fraction of the population is in a

Level of density dependence (In 4i#/)
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refuge, this model predicts limit cycles in host and
parasitoid populations (Hassell & May 1988). Limit
cycles are also found in the present model, but only
for very narrow regions of parameter space (Fig. 5).

The results of the second set of simulations are
shown in Fig. 7. Although the details vary, the over-
all picture is broadly similar. The only significant
qualitative difference is that the region in which the
system is stable as k— is much reduced. The
reason for this is that the parasitoid population is
more synchronized and, in consequence, the tem-
poral refuge more clearly defined: hosts tend to be
subjected either to no parasitism or parasitism by
the whole parasitoid population. This increases the
area of parameter space in which the host can escape
regulation by the parasitoid.

5 47 -

Day of first parasitoid emergence

Fig. 7. Stability analysis from the second set of simulations (Series 2). As in Fig. 5, the white areas denote the stable
regions, the light grey areas the unstable regions, and the dark grey areas regions of stable limit cycles.
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The emergence patterns of hosts and parasitoids
are likely to vary from year to year. As a first
attempt to study the dynamic consequences of vari-
able emergence times, a series of simulations have
been run in which years of late parasitoid emergence
alternate with years in which parasitoids emerged
early. The system would be stable were the para-
sitoids always to emerge late, and unstable if they
always emerge early. The same parameter combi-
nations have been used as in the first set of simu-
lations and k =5-5 [In(kW) =4] also assumed. In
years when parasitoids emerged early, the date of
first emergence was day 25, while in ‘late years’,
the date of first emergence was day 37 (these par-
ameter combinations can be located in Fig. 5). A
simulation was adjudged persistent if the densities
of the component populations remained within the
bounds 10~3—10° for 500 generations.

Occasional early years had a marked destabilizing
influence. No simulations persisted if early years
occurred at a frequency greater than 1 in 20. If early

» years occurred exactly every 20 years, the system did

persist, but persistence was generally not found if
early years occurred randomly with an average fre-
quency of 1in 20. Only when early years occurred at
a frequency of 1 in 25 or less was persistence the
most frequent outcome.

Why are years in which parasitoids emerge early
so destabilizing? Were emergence always late, para-
sitoids would be relatively common at equilibrium
(with a temporal refuge, only part of the host popu-
lation is susceptible to attack, and parasitoids have
to be common in order to locate and parasitise
sufficient hosts to balance host reproduction). If all
parasitoids then emerge early, the complete host
population is exposed to a relatively large number
of searching insects and is considerably reduced.
The few hosts that survive to reproduce produce
only a small generation the next year, some of which
are in temporal refuges. Consequently, the para-
sitoid population crashes to very low levels and
would in nature probably become extinct. The host
population then increases rapidly in the absence of
regulation. o ‘

Conclusions

In this study, we have analysed a host—parasitoid
model incorporating variable degrees of synchrony
between hosts and searching parasitoids. Such asyn-
chrony introduces a partial refuge effect in which
some hosts, by virtue of their timing, are relatively
less:at risk from parasitism than others. Indeed, the
familiar proportionai refuge model (Hassell 1969,
1978) can be derived as a limiting case of the present
model if parasitoid emergence is fully synchronous,
but host hatching occurs over a long period of time
relative to the length of the window of susceptibility
to parasitism. When only a small fraction of the
host population is protected, the proportional ref-
uge model predicts limit cycles in the populations
(Hassell & May 1988). Such limit cycles are also
found in the present model, but only for very narrow
regions of parameter space. A further limiting case
occurs when there are constant numbers of searching
parasitoids during the susceptible host stage and
when handling time is zero; the model now corre-
sponds exactly to the discrete-generation model of
May (1978).

Our studies have confirmed Miinster-Swendsen &
Nachman’s (1978) finding that temporal asynchrony
alone can stabilise an otherwise unstable Nicholson-
Bailey host—parasitoid model. Moreover, we have
shown how temporal asynchrony, density-dependence
in the efficiency of parasitism, and the host func-
tional reSponse interact together to influence the
stability and characteristic abundance of a host—
parasitoid system. On a more general note, we
have developed a flexible, age-structured model of a
host—parasitoid interaction that should also be use-
ful in studying other problems in host—parasitoid
dynamics; for example, the question of the stabilizing
influence of density dependent aggregation when
parasitoids travel between patches within a gener-
ation (Murdoch & Stewert-Oaten 1989; Godfray
& Pacala 1992). Finally, our initial studies suggest
that annual variation in the degree of phenological

~ asynchrony may be an important destabilizing factor,

although we stress that further work, ideally tied to

Table 1. The parameters of the model and the ‘canonical values’ assumed in the first series of simulations

Parameter Description Canonical value
A Fecundity 2

a Attack rate 0-00139

k Severity of parasitoid density dependence Allowed to vary
0 Reciprocal of maximum number of attacks per day 1/30

w Length of susceptible host stage 10

uw(®) Mortality rate of adult parasitoids at time ¢ 0

T, Time first parasitoid emerges Allowed to vary
Ty Time first host hatches 25

o, Variance in parasitoid emergence 5% 1074

dn Variance in host hatching 5%107*
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specific host—parasitoid systems, is required to sub-
stantiate this conclusion. This finding i$ potentially
concerning if, as widely believed (see Schneider
1993), the main consequence of global climate change
is increased environmental variability.
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and the rate of hatching (Ag) accelerates over time
(equation A8). The numbers of susceptible larvae
increase as eggs hatch, but decrease as hosts are
parasitized or pupate (equation A2). The accumu-
lation of parasitized host is described by equation
A6 and of those hosts that escape parasitism by
equation A3. To calculate the numbers of hosts
that pupate, it is necessary to know the probability
that a host survives through the susceptible period
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Table Al. Details of the within-generation model described in the text

Variable Model

Host eggs [H.(1)]

Host larvae [H(¢)]
Host pupae (H,(t)]
Parasitoid pupae [P,(1)]
Parasitoid adults [P(z)]
Parasitized hosts [ Px(#)]
Host survival (S(#)]
Host emergence [Ay)

Hpy(1) = M(2)
Py(0) =

Ap(t) =0

Au(t) = du(t = )’

Parasitoid emergence (A,) Ap(t) =0

Ap(t) = 8t = 7))

where

H(t) = —An(D)HA1)
H'(t) = A(t)H,(t) = HOf[P(),H(D)]-M(1)

_Ap(t)Pp(t)

P'(1) = Ap(6)Py(8) — WAP(1)

Pi(t) = H(0)f[P(1),H(1)]

§'(t) = M(t){f[P(t = W),H(t = W)]-f[P(8),H()]}

- eqn Al

eqn A2

eqn A3

eqn A4

eqn A5

eqn A6

eqn A7
t=1yeqn A8
t>1ty

t=1, eqn A9
t>1,

M(t) = Ap(t — WYH(t — W)S(t)

Initial values: at the beginning of the season (¢=0), the number of host eggs and parasitoid pupae are
specified by the between-generation model. All other variables are set at zero except S(£)}=o= 1.

(W). This probability, S(¢), itself changes with time
equation A7, Parasitoids begin to emerge from the

_pupal stage at time T, equation A4 and the rate of

emergence (A,) also accelerates over time equation
A9. The numbers of searching parasitoids increase
as adults emerge from pupae and decrease as para-
sitoids die equation A5. Finally, the instantaneous
risk of parasitism is

P(t
aP(1) >,ean10

fIP(t),H(1)] = kln (1 Tkl + a0H(D)]

where a is the attack constant, 6 is handling time,
and k is a measure of the strength of density depen-
dence (see Fig. 2b). This expression for parasitism
has been used by Godfray & Hassell (1989) and
Gordon et al. (1991).

The use of delay-differential models to study age-
structured insect populations has been pioneered by
Gurney, Nisbet and colleagues (e.g. Gurney, Nisbet
& Lawton 1983; Nisbet & Gurney 1983; Blythe,
Nisbet & Gurney 1984; Gurney & Nisbet 1985), and
has been used to study host—parasitoid dynamics in
continuous time by Murdoch et al. (1987), Godfray &
Hassell (1989), Godfray & Chan (1990) and Gordon
et al. (1991), The numbers of parasitized hosts and
host pupae at the end of the season are obtained by
numerically solving equations Al-AlQ with the
initial values given in Table Al. Our results were
obtained using a numerical integration program de-
rived from the soLvER program (Bence et al. 1986).
We terminated a run if overwintering host or para-
sitoid densities fell below 107 or exceeded 10°.

LIMITING CASES

Some of the classic discrete-generation models of
host—parasitoid dynamics can be obtained as limit-
ing cases of equations A1—A10. Suppose that all
parasitoids emerge before any hosts enter the suscep-
tible stage (t, < t) and that no parasitoids die over
the period hosts are susceptible to attack [(wW(1) = 0)].

Furthermore, assume that individual parasitoids are
capable of attacking enough hosts per day that
6— 0. Finally, denote Hy and P, as the total number
of hosts and parasitoids at the beginning of the
season.

Under these assumptions, the risk of parasitism
experienced by all hosts is constant, f[®] = kIn(1 +
aPy/k). The probability of an individual surviving
parasitism is

! aP() aP() —kw,
exp ~kln{1 +—Jdt=1|1+— .
k k
=W

eqn All

The number of hosts surviving parasitism can be
written

L AP\ T*
Hosts surviving = Ho| {1 + -—E— eqn Al2

where @ =aW and k = kW-(and is, thus, dimension-
less). The expression in square brackets, the prob-
ability of escaping parasitism, is the zero term of the
negative binomial distribution. May (1978) used the
negative binomial distribution to-describe parasitoid
aggregation in a discrete generation model that has
been widely discussed and analysed (e.g. May &
Hassell 1981; Hassell, Waage & May 1983; Chesson
& Murdoch 1986). The model is stable for all k <1
and unstable otherwise. Equilibrium population den-
sities increase as k decreases. As k— o, May’s model
reduces to the Nicholson Bailey model (f[®] = dPo).
May’s model is most often used to describe parasitoid
aggregation in certain host patches, independent of
host density (Chesson & Murdoch 1986; Hassell e al.
1991). We stress that our biological justification for
equation A10 is that it provides a good description
of parasitoid density-dependence; it is not intended
as a specific model of aggregation, though aggre-
gation may be one mechanism contributing to the
density-dependence.

In understanding the model analysed here, it is
useful to derive a second limiting case. Assume no
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density dependence (k— ) and that while hosts
hatch from their eggs over a very long period (8
small), most parasitoids emerge simultaneously (6,
large). If parasitoid emergence begins after hosts
have started to hatch, the host population can be
divided into those that experience parasitism and
those that escape: if host hatching is sufficiently
protracted the small number of individuals whose
susceptible period spans parasitoid emergence can
be ignored. Let « be the fraction of hosts that
hatch, grow and pupate before parasitoid emerg-
ence. The number of hosts escaping parasitism is
aHy+ (1 — «)Hye™ and the number of parasitised
hosts (1 — a)Hy(1 — e~4™,

We have now derived the proportional refuge
model (Bailey, Nicholson & Williams 1962, Maynard
Smith 1974; Hassell 1978) which Varley & Gradwell
(1958) and Hassell (1969) suggested might describe
some aspects of phenological asynchrony. The stab-
ility properties of this model are well known. If a
small proportion of the population is in a refuge, the
system shows stable limit cycles; as the proportion in
the refuge increases, the system first becomes stable
and then unstable. Instability occurs because the
parasitoid-does not have access to enough of the host
population to prevent exponential growth. When
net fecundity equals two, the stable region of par-
ameter space occurs when between one-third and
one-half of the population is in a refuge. As fec-
undity increases, the band of stability narrows, and
the onset of instability occurs with smaller refuges.

One of the first attempts to study quantitatively
the effects of host and parasitoid phenology was by
Griffith (1969). He suggested that the following
formula (based on Griffith & Holling, 1969) might
be used in a discrete-time model for the number of
hosts attacked

. T.aPy > A]
k(1 + abH,) ’
' eqn Al3

Hosts surviving = HO[<1

We have rearranged the equation given by Griffith;
and also substituted the symbols used in' this paper,
to emphasize the similarities in our approaches.
The only new parameter is T, which represents the
time the host and parasitoid populations are in con-
tact; an increase in host—parasitoid asynchrony acts
to reduce .T.. We have not been able to derive
this equation from a mechanistic within-generation
model. The chief problem is that all hosts are ex-
posed to parasitism, however, great the discrepancy
in host and parasitoid phenologies; the only effect of
the discrepancy is to reduce the searching efficiency
of the parasitoids. -Griffiths does not perform a
formal stability analysis, but simulates the model
over 30 generations and calculates equilibrium popu-
lation densities. The main effects he observes can be
understood chiefly as a consequence of changing the
attack constant (a).
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