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Abstract.—Because mechanistic models of interspecific interactions are often complex, one
should deliberately seek simple unifying principles that transcend system-specific details. Earlier
work on resource competition has led to the *“R* rule,”” which states that a dominant competitor
suppresses resources to a-lower level than any other competing species. This rule describes the
outcome of even ornate models of competition. Here we show that analogous simple rules can
characterize systems with predation, We first demonstrate, for a simple two-prey, one-predator
model without resource competition but with a predator numerical response leading to apparent
competition, that the winning prey supports (and withstands) the higher predator density; that
is, the outcome is described by a *“P* rule.” We then develop a general model in which predation
is inflicted evenhandedly on two prey species competing for a single resource and show that-
the R* and P* rules hold: the winning prey both depresses resources to the lowest level and
sustains the higher predator density. We next examine a more complex modél with differential
predation. Assuming a closed system (i.e., a fixed nutrient pool), we portray the four-
dimensional system dynamics in a two-dimensional graphical model, and we assess the domain
of applicability of simple dominance rules in more complex systems. We address the generality
of our conclusions and end by examining the implications of different, reasonable biological
constraints for community structure. . :

In ecology, the search for simple, unifying principles often clashes with the
observed idiosyncracies of ecological systems. This problem has led to the real-
ization that each simple theory has limited bounds within which it applies. MacAr-
thur (1972; see Schoener 1986a) may have been the first to articulate this insight
when he called for the development of contingent ecological theory.

The study of interspecific interactions is particularly illustrative of the intellec-
tual currents leading toward contingent theory. During the 1960s and early 1970s,
a large, general body of Lotka-Volterra competition theory and related niche
overlap theory developed, followed by a period of sharp criticism, introspection,
and the inclusion of numerous modifications tailored to the specific attributes of
particular systems. The search for a general theory of competition seemed, at
times, to be lost in a sea of special cases. ' . -
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A. Exploitative Competition B. Apparent Competition C. Mixed Interaction
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Fi6. 1.—~Community modules. A, Exploitative competition between a pair of consumer
species for a shared resource (Tilman 1982); B, a mirror image of exploitative competition—

apparent competition between a pair of prey species via a shared predator (Holt 1977); C,
mixed exploitative and apparent competition.

In recent years, researchers have recognized the need to develop explicit mod-
els of the mechanisms of competition rather than phenomenological models,
whose parameters must be fit afresh in each novel environment (Tilman 1977,
-1987; Armstrong and McGehee 1980; Schoener 1986b). Mechanistic models for
interspecific exploitative competition (see, e.g., Tilman 1982) incorporate three
separate submodels, one for each of the components shown in the simple food
web module of figure 14. For each consumer species, an equation describes its
population growth rate as a function of the abundance of the limiting resource.
Another equation portrays the dynamics of the resource as a joint function of
resource renewal (e.g., soil nutrient mineralization rates) and consumption.
Mechanistic models of exploitative competition have several advantages over
more traditional phenomenological models (Tilman 1977, 1982): they highlight
the need to monitor resources as well as consumers in studies of interspecific
competition; they permit direct links to ecosystem-level processes that influence
resource levels (DeAngelis 1992); they make explicit the role of various biological
factors (e.g., resource conservation and uptake, resistance to agents of mortality)
in determining competitive ability; and they allow a priori predictions about the
dynamics and eventual outcome of interspecific competition, based on single-
species studies. None of these are possible in more traditional competition theory.

However, mechanistic models can become quite complex as additional mecha-
nistic details are added, which raises the specter that the study of resource compe-
tition may once again become a compilation of special cases. Some have argued
(Tilman 1990) that this is not the case, because the outcome of resource competi-
tion can often be predicted by a simple rule of thumb: the winner in exploitative
competition (fig. 1A4) is the species that depresses equilibrial resource abundance
(denoted R*) to the lowest level consistent with its own maintenance, relative to
the levels required by competing species. The R* for a given consumer is defined
as the resource level at which that consumer’s birth rate just matches its death
rate. Even quite complex models of interspecific competition for a single limiting
resource, with numerous parameters, can be characterized by the R* rule (Tilman
1990). The details of the models cannot, of course, be entirely ignored, for they
govern the nonequilibrial behavior of a system (see, e.g., Grover 1990, 1991) and
moreover provide the mechanistic basis for predicting the value of a given spe-
cies’ R*. Nonetheless, the R* rule clearly highlights an abstract conceptual unity
among potentially disparate competitive systems.
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This rule for competitive dominance raises the question of whether other inter-
specific interactions can be similarly characterized by simple rules of thumb.
The interaction that, after competition, has received the most attention from
community ecologists is predation. It has been shown both theoretically (Holt
1977, 1984; Holt and Lawton 1993) and empirically (Schmitt 1987; Reader 1992)
that shared predation (i.e., a generalist predator that attacks two or more prey
species, as in fig. 1B) can readily mimic the effects of exploitative competition,
such as the indirect exclusion of one prey species by another, reciprocal reduc-
tions in abundance in sympatry compared to allopatry, and habitat shifts.This
effect, called apparent competition, rests on a particular mechanism, namely a
numerical response by a predator to its prey. The predator’s numerical response
can either be a behavioral response over short timescales (e.g., predator aggrega-
tion to a particular patch in a heterogeneous environment; see Holt and Kotler
1987; Schmitt 1987) or a demographic response that leads to an increased predator
population over longer timescales (due to predator birth rates increasing, and/or
death rates decreasing, in response to increased prey availability).

At a broad level, there is a symmetry between exploitative competition—which
depends on the ability of a consumer population to decrease resource levels—and
apparent competition—which depends on the capacity of a prey population to
increase predator levels (Holt 1984). Given this symmetry, can one characterize
the action of apparent competition with a simple rule of thumb, analogous to the
R* rule (Tilman 1982, 1990)? In this article, we first show that in some simple
models one can indeed define a P* rule to characterize the outcome of apparent
competition (see also Holt and Lawton 1993). We then examine the consequences
of mixing exploitative and apparent competition (as in fig. 1C) to determine
whether either or both of these rules remain useful as guides to the net outcome of
the interspecific interactions in this more complex community module. Previous
workers who have examined mixed competition-predation systems have largely
emphasized how predation can permit the coexistence of otherwise competitively
incompatible species (see, e.g., Roughgarden and Feldman 1975; Abrams 1977;
Armstrong 1979; Comins and Hassell 1987; Leibold 1989; Yodzis 1989; Oksanen
1992). Our concern is not mainly with this issue (though our results help clarify
the requirements for coexistence) but rather with the domains of applicability of
simple rules for dominance in circumstances with potentially complex interac-
tions between species.

We will approach this goal by considering two models with both exploitative
and apparent competition whose assumptions bracket a wide range of systems.
The first model incorporates rather general resource dynamics and nonlinear func-
tional responses but makes the simplifying assumption that the predator feeds on
the two prey types in an evenhanded manner. In our second model, we relax the
latter assumption, but at the cost of assuming for simplicity linear functional
responses at all trophic levels and a simple form of resource renewal, pertinent
to a closed system. ’ -

In Appendixes A and C, we show that the conclusions drawn from these two
simple but biologically transparent models characterize more general families of
multispecies models. A follow-up manuscript (J. Grover, D. Tilman, and R. D.
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Holt, unpublished manuscript) explores the utility of simple rules of thumb for
dominance in a model, appropriate for zooplankton feeding on competing phyto-
plankton, that incorporates nonlinear functional responses, asymmetrical preda-
tion, and a variety of resource renewal dynamics. It is our experience that the
conceptual insights gleaned from the simple models analyzed below help sharpen
one’s intuition about phenomena in such more complex food web models, suggest
general features of interspecific interactions, and illuminate the limits of applica-
bility of conclusions drawn from simple models of interspecific interactions.

AN EXAMPLE OF THE P* RULE .

We start with a simple model showing that the dominant species in apparent
~ competition is the prey species that maintains the highest density of the shared
predator, relative to other prey species.

Food web models (e.g., for the community modules in fig. 1) require a source
of stabilizing, density-dependent feedback that prevents either extinction or un-
bounded, exponential growth. Three basic mechanisms allow stability in a one-
predator, two-prey food web: direct density dependence in the prey or predator
populations, a stabilizing functional response by the predator to these prey (e.g.,
switching; Murdoch and Qaten 1975), and spatial coupling between a local ensem-
ble and other communities (Holt 1984, 1993; Nisbet et al. 1993).

Direct density dependence most often arises from the limited availability of
resources (e.g., nest sites for predators, food for prey). Because we wish first to
focus on shared predation, not resource competition, we assume that there is no
resource limitation, either explicit or implicit, in the prey population. Though
stabilizing functional responses do occur, they do not seem to be the norm in
strong predator-prey interactions (Murdoch and Bence 1987). Our initial model
assumes a type 1 functional response, which is neither directly stabilizing nor
destabilizing. .

We instead use a simple kind of spatial dynamic to- stabilize the predator-prey
interaction. Imagine that a mobile predator consumes relatively immobile prey.
The system as a whole can be stabilized because of the spatial coupling of the
local predator population to a much larger “‘bath’’ of propagules (sensu Levin
1976) whose dynamics are ignored. The equations for the predator and the two
prey species are as follows:

2
dP _ _ _
and
%’-" =N(i-aP), i=1,2. @

The local dynamics fit the same assumptions as in the classical Lotka-Volterra
predator-prey model. We assume that the predator has a linear functional re-
sponse to each prey, scaled by an attack rate a; (per predator, per prey rate of
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attack). Each captured prey leads on the average to b, predator births. Predators
experience a density-independent death rate of c. The intrinsic rate of growth for
prey i is r;. : -

The model differs from the usual predator-prey model because the predator
population is open, coupled by dispersal to a larger ensemble of local predator
populations whose dynamics are not being explicitly modeled. There is a constant
rate of immigration (/) of predators from that ensemble, and predators emigrate
at per capita rate e. The immigration term is strongly stabilizing, for it provides
a kind of induced density dependence (the contribution of constant immigration
on a per capita basis to local population growth is I/P, which is strongly density-
dependent at low P; Holt 1993). This model structurally parallels a model for
resource competition in which resource renewal is described by a constant input
of resources, a model that has been thoroughly explored elsewhere (Tilman 1980,
1982).

Consider the community comprised of just the predator and prey species 1.
There are two possible equilibria. If ‘

n 1

< s
a, c+e

Q)

then N¥ = 0, and P* = I/(c + e) (the asterisks denote equilibrium). The number
of predators maintained by the balance of immigration with local predator deaths
and emigration suffices to exclude prey 1. »

If inequality (3) is reversed, prey 1 can increase when rare, given that the
predator is at its immigration-maintained equilibrium. In this case, the equilibrial
abundances of both species are as follows:

ete-——
P¥=rla,, N}=—-—1-1 4
s =nia; 1 a,b, @)
The index on P¥ indicates the equilibrial abundance of the predator when just
- prey i is present. It is easy to show that the Jacobian matrix defining the local
stability properties of this equilibrium has the sign structure

2 2]

+ - 1]

which is qualitatively stable (Jeffries 1976).

Can prey species 2 invade? When species 2 is rare and prey species 1 and the

predator are at their respective equilibria, the growth rate of the invading prey is
dN )
T’ = N,(r, — a,P}). )

t

The growth rate is positive if r,/a, > P}. Now note that ry/a, = P}, where P}

is the equilibrial density of predators, were the predator interacting with just prey

2. Thus, one can compactly write the condition for invasion by prey 2 as P} <
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P}. In like manner, if P} > P¥, prey 2 is excluded. If prey 2 can invade, it
reaches equilibrium when the predator density has increased to P¥. But this
density of predators exceeds the level that prey 1 can withstand. Hence, if P}
> P{, prey 2 displaces prey 1 via indirect competition mediated through the
predator’s numerical response—apparent competition (sensu Holt 1984). Re-
versing the inequality switches the outcome. The prey species with the higher
P} sustains so many predators that consumption by these predators overwhelms
the intrinsic growth rate of the alternative prey. ~

This suggests a simple rule of thumb for the outcome of apparent competition:
the prey species that dominates is the one that withstands (and indeed maintains)
the highest density of the shared predator. Using shorthand to describe this situa-
tion, one may refer to a “P* rule.” It has been shown (Holt and Lawton 1993)
that a similar rule characterizes indirect host dominance in multiple host species—
parasitoid systems. In Appendix A, we show that a P* rule applies in a wider
range of predator-prey systems than just equations (1) and Q).

A GRAPHICAL MODEL OF MIXED EXPLOITATIVE AND APPARENT COMPETITION

Two limiting features of the above model are that the prey species do not
experience resource limitation and that the predator has a simple, linear func-
tional response. We now consider a more general model for the diamond-shaped
food web module- of figure 1C that to a degree relaxes both these assumptions.
The model is as follows:

dP

T = PFN,, Ny

dN
—r = NilaiR) = Phy(Ny, N1,

dN ‘ ©
_dTl = NZ[gZ(R) ot th(N],Nz)] L

and dR
J T = f(R) — ®;(R)N, — ®,(R)N,.

The function F(N;, N,) is the per capita growth rate of the predator. By ex-
pressing predator growth as solely a function of prey densities, we are assuming
that the predator is strictly food limited. We further assume that F increases with
both N, and N, (for conditions in which this might not hold, see Holt 1983) and
- that there is a connected set of low prey densities for which F < 0. This implies
that in a phase space with prey densities as axes, a zero-growth isocline of nega-
tive slope describes those combinations of prey densities for which the predator
has a zero growth rate; for prey densities between this isocline and the origin,
the predator population declines, whereas outside the isocline, predator density
increases (fig. 2A). ,

The A, functions describe the rate of prey capture per predator for each prey
species; in general, these attack rates are density-dependent. The quantities ®,(R)
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Fic. 2.—Components of graphical model. A, Predator zero-growth isoclines—combina-
tions of prey densities for which the predator has a zero growth rate. In general, predator
isoclines are curvilinear with negative slope (Tilman 1982; Holt 1983), but with equivalent
prey the predator isocline is a straight line of slope = —1. B, Resource recruitment (f(R))
as a function of R, resource abundance. Nonliving resources may recruit maximally at low

- R; living resources usually have humped recruitment curves. C and D, Total resource uptake
rates by two consumer species, each respectively fixed at density ¢; ®/(R) is per capita
resource uptake for consumer i. In C, species 1 is always superior. in D, the rank order of
uptake rates varies with R.

describe the rate at which individual prey of species i consume the resource, and
the functions g, indicate the growth rate of consumer i on this resource (implicitly
accounting for any mortality in the system other than that imposed by the top
predator). And, finally, the function f(R) portrays resource dynamics, except for
depletion due to consumption by the intermediate consumers.

We now introduce some simplifications. First, we assume that the underlying
resource is abiotic with dynamics such that f(0) > 0 (i.e., there is always some
resource renewal even at very low resource levels), that df/dR < 0 (i.e., resource
renewal is self-damped), and that for some R = R", f(R") = 0 (i.e., there exists
an equilibrial abundance of the resource in the absence of consumption (fig. 2B).

Second, we assume that the prey populations’ per capita resource uptake rates
and per capita growth rates are related simply by g/(R) = b'®(R) ~ c". Here,
b' is a constant converting resources consumed into prey births, and ¢’ measures
density-independent mortality. As written, this equation assumes that with re-
spect to resource consumption, the two prey species may differ in their ability

.
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Fic. 3.—Consumer demographic components. Birth rates increase with R, whereas death
rates are constant, Consumer species i equilibrates when resources are at R{).

to capture the resource but not in their postcapture efficiency in use or capacity
to withstand ambient sources of mortality in the environment. For simplicity, we
consider in detail the case in which the relative rates of resource capture differ -
with resource availability, but with only a single switch point, as in figure 2D;
other cases, such as that in which one prey is unilaterally superior at capturing
the resource (fig. 2C), lead to similar conclusions about dominance rules.

Finally, and importantly, we assume that the prey are identical from the preda-
tor’s point of view. Hence, h,(N,, N,) = hy(N;, N;) = h(N, + N,), and F(N,,
N,) = F(N, + N,). The predator may have a nonlinear functional response (due
to handling times, learning, etc.), but this response is to the summed availability
of the two prey species rather than to each one separately. Moreover, the prey
are captured at equal per capita rates, and when captured they make equal contri-
butions to the predator’s population growth. Below we will examine in some
detail the consequences of relaxing these symmetry assumptions. Analyzing this
simple model proves useful in interpreting more complex, nonsymmetrical situa-
tions. In what follows, we concentrate on systems that allow stable point equilib-
ria and ignore limit cycles or more complex dynamics. Our general approach is
to examine equilibria in which one prey species is present and determine whether
the other prey species can invade. '

Consider first the interaction between the two prey species in the absence of
the top predator. Following a procedure described elsewhere (Tilman 1982), in
figure 3 we simultaneously plot the per capita birth and death rates of the two
prey species as a function of resource availability. The birth rates depicted are
simply multiples of the resource uptake functions shown in figure 2D, and the
death rate is a constant for both species at all resource levels. As drawn, we see
that when species 1 is in demographic equilibrium, sufficient resource is present
for species 2 to invade; conversely, when species 2 is present and in demographic .
* equilibrium, species 1 necessarily declines toward extinction. This graphical model
portrays the R* rule: the species depressing resources to the lower level wins.

Now assume that the top predator is present. The predator population is at
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equilibrium when F(N}* + N3*) = 0. (We use double asterisks to indicate
equilibrial population abundances in systems experiencing limitation by both pre-
dation and resource exploitation.) Let ¢ = N, + N, denote the total prey abun-
dances at which the predator has a zero growth rate. We now examine equilibria
for the other three components of the system, given that the predator population
has depressed total prey abundance to g, so that the predator itself is in equilib-
rium. Prey i is in equilibrium when
l—%-bcpm) Ph(N, + Np) = ¢’ = 0. )
Assume that prey i alone is present and at equilibrium with both the resource
and the top predator. Let R{,)* and P{* denote the equilibrial densities of the
bottom resource and top predator, evaluated when prey species i is the only prey
species present. (The double asterisks indicate that both resource and predator
limitation are present. Parentheses around the subscript i denote that the quanti-
ties R and P are being evaluated when prey species i is present ) Equation (7)
implies that
b' ) <
h( )(I) (R(l) P(:) h(q) :

Recall that g is the density of prey fixed by the predator (i.e., the prey density
at which the predator itself is in equilibrium). Because this is a constant, so is
h(q) The above expression shows that the number of predators, at equilibrium,
increases linearly with the per capita rate of resource uptake by prey i.

To complete the analysis, we must characterize the conditions for equilibrium
in the resource base. The resource is in equilibrium with prey i, given that the
predator is in equilibrium, when

®

=fR) — ®{R)N; = f(R) - ®(R)q = 0. ®

The equilibrial supply of the resource when prey i and the predator are both at
equilibrium is set by equating the resource supply rate to the total rate of resource
uptake, or f1 (R(,) ®,(R¢") q. The quantity ®(R)q is simply an uptake function
for prey species i, multiplied by a constant equal to the total prey abundance .
observed when the predator’s dynamics are in equilibrium. The two components
of resource dynamics (renewal and consumption; see fig. 2) can now be plotted
simultaneously against resource availability for each prey species, when that prey
is alone at the prey density maintained by the top predator (fig. 4). The equilibrial
resource level is the intersection of these two component curves. The equilibrial
prey level is g, and the equilibrial predator level can, finally, be found from
equation (8). -
The example illustrated in figure 4 can be read as follows. At the density g of
prey determined by the predator (for which F(g) = 0), in the example depicted
Ry < R{y, which is to say that prey 1 (when alone with the predator) is better
able to suppress the limiting resource than is prey 2 (when it in turn is alone with
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FiG. 4.—Determining equilibrial resource levels as a balance between resource recruitment
and consumption. The predator fixes abundance for prey i (= 1, 2) at q. These prey consume
resources at total rate ®,(R)q. The resource is in balance (at R{*) when consumption equals
recruitment, f(R). Prey 1 excludes prey 2.

the predator). Because the curves shown are simply the uptake rates times q,
this implies that ®(R{}) > ®,(R{}), so prey 1 also has the higher uptake rate
on the resource at this resource level. This in turn implies (from eq. [8]) that the
predator density (supported ultimately by this prey uptake) is also higher.

Consider an attempt at invasion by prey 2 when prey 1, the predator, and the
resource are all in equilibrium. The invading propagule of prey 2 experiences the
same rate of mortality as the resident prey but has a lower birth rate (because of
its lower resource uptake rate). Because the resident prey’s birth rate just
matches its death rate, the invading prey clearly has a negative growth rate and
will be excluded. Conversely, if prey 2 is present and at equilibrium with the
other system components and prey 1 invades, its-invasion will succeed—the
invader experiences mortality equal to the resident but enjoys a higher birth rate.

To summarize: with symmetrical predation on two prey species that exploit a
single limiting resource, the winning prey species is the one that maintains the
lower resource density, and it is also the one that sustains the higher predator
density. Our rules of thumb, here expanded to cases in which several species
interact to determine R** and P**, give isomorphic predictions.

The underlying reason for this symmetry is that equilibrial resource and preda-
tor levels are both dependent variables that respond in opposite directions to the
same attribute, namely prey resource uptake. A prey population with a rapid
resource uptake tends to depress resource levels. Productive prey populations
(i.e., ones with efficient resource capture) also tend to support large predator
populations. All else being equal, resource suppression and predator enhance-

" ment go hand in hand. .

An intriguing prediction of this model is that the outcome of competition under -
shared predation may depend on resource productivity (see also Armstrong 1979).
Figure 5 shows two ends of a gradient in resource renewal rates (reflected in the
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FiG. 5.—A, Effect of resource productivity on competitive dominance, given a predator
fixing prey abundance at ¢. An increase in productivity shifts f(R) away from the origin. If
the ®(R) curves cross at a single point (as depicted), dominance varies with R. B, Patterns
in resource, prey, and predator densities along a productivity gradient.

position of f(R)). The species that is dominant shifts as one moves from low to
high resource productivity. Along a gradient in resource renewal rates, one might
observe a sharp transition from one prey species to another. In contrast, without
predation the same species should dominate all along the gradient, regardless of
resource renewal rates (as long as a single resource provides the sole limiting
factor, and the rate of density-independent mortality is constant along the gradi-
ent; see Tilman 1982). '

A SIMPLE MODEL WITH ASYMMETRICAL PREDATION

To further explore the possible applicability of simple R* and P* rules to more
complex interactions, we now relax the assumption of symmetrical predation. To
keep matters tractable, we assume that the system is completely closed and that R
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is an abiotic resource such as an inorganic nutrient. The total amount of nutrient,
summed over available (e.g., dissolved) forms and nutrient bound in organisms,
is fixed at S. We also assume that the predator’s functional response and the
prey’s nutrient uptake rates are linear. The system dynamics are given by

Z_f = P(alblN, + azszz - C),
N
an, Ny(ajbiR - ¢} — a,P),
dt
an, _ Ny(a}bjR — ¢ - a,P),
dt E
and (10
dR _¢iN; N, cp (1 b,)
ar = b o +bp +a,N,P B,
1 bz ’ [
+(12N2P — -a]RN| "azRNz.
b; b,

The predator’s net per capita rate of increase is determined by a linear functional
response (with attack rate a; and birth efficiency b,), minus density-independent
losses at a rate c. The prey’s net per capita rate of increase is determined by a
linear uptake of nutrient (with affinities a; and yield coefficients b;), minus den-
sity-independent losses at rates ¢/ and losses to predation. (Primed parameters
denote prey dynamics, and unprimed parameters, the predator.)

The above equation for resource dynamics implicitly assumes that consumer
death immediately frees nutrients bound in consumer bodies, so there is instanta-
neous recycling into the nutrient pool. We make this assumption to make the
model mathematically tractable, but we note that it should be a reasonable ap-
proximation whenever the rate of decomposition is faster than the demographic
processes in the system. :

The b; parameters gauge the number of prey produced per unit of resource
consumed by prey i; the inverse of this quantity is the amount of resource pro-
duced per dead prey. In like manner, for predators the parameter b, describes
how many predators are produced per unit basal resource, and 1/b,, the amount
of resource released per dead predator. Additional nutrient recycling may result
from incomplete assimilation (see App. B). The equation for resource dynamics
is not strictly necessary, because in this closed system a simple algebraic mass
balance expression holds:

N, N, p
R=§5-—_2_ =
bi by b,

The above set of equations can be solved to ascertain the effects of the model
parameters on equilibrial abundances and thus the abilities of simple rules (such



THE DOMAIN OF SIMPLE RULES FOR DOMINANCE 753
N,=0

Py e e 2

D_(’)

l
: MBC,

W23

Ry Ry

R

Fi6. 6.—Prey isoclines and mass-balance constraints (MBCs) in the resource-predator
(RP) phase plane. Without predation, prey i equilibrates at R = RY. Increasing P increases
the level of resource needed to sustain prey i. With the model assumptions in the text, the
prey isocline is a straight line. With a fixed resource pool, and assuming the predator to be
at equilibrium, all resources not in prey are either free or in predators, so the system is
constrained to a line of negative slope—the MBC line.

as the R* rule) to predict the outcome of interspecific interactions. This and other
tedious but essential mathematical details (e.g., stability analyses) are banished
to Appendix B.

Although the phase space of the full system is four-dimensional, the argument
presented in Appendix B justifies an approach that permits our results to be
portrayed in a graphical model in a two-dimensional plane defined by axes of
resource and predator densities. Here we concentrate on this graphical model,
because our interest is in sharpening our biological understanding of the factors
determining dominance rather than in the mathematical details of the models per
se. In Appendix C we briefly discuss how this approach generalizes to a broader
family of models, and we sketch some general limitations in our approach.

Essentially, the method relies on using a mass-balance constraint (MBC) that
is conditional on the predator’s being at equilibrium. The key insight is that the
predator is at equilibrium when it has reduced its prey to a given density, which
in effect fixes the amount of nutrient locked in prey. Because the total nutrient
pool is assumed to be constant, predator density and the amount of resource
available for prey consumption are constrained to a particular set of the resource-
predator (RP) plane whenever the predator is in dynamic equilibrium. For the
subsystem of prey i and the predator, this set is a line (fig. 6; see also App. B),
which we refer to as the “MBC line’* for prey i (though it implicitly involves the
dynamic constraint of predator equilibrium, as well as the MBC). Biologically,
this line describes the possible partitioning of mass in the system between the
predator and the resource, given that the predator constrains prey i, when alone,
to a density of Ni**. Differences among prey (e.g., in a;) lead to a family of
parallel MBC lines differing in their intercepts; differences in total nutrient supply
(8) shift the intercept of the MBC lines for a given prey species (eq. [B4]).
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When growing alone with the predator, the isocline for prey i in the RP plane
is a line intersecting the R-axis at R, the amount of resource required for this
prey to be in equilibrium in the absence of predation (fig. 6; eq [B5]). To the left
(above) the isocline of prey i, its net growth rate is negative; to the right (below)
it is positive. The positive slope of the prey isocline expresses the increase in
available resource prey i required to balance a given increase in predator density.
The intersection of the MBC line for prey i with its isocline sets the equilibrium
values of R()* and P} (fig. 6; eq. [B6]).

When both prey species are present with the predator, equilibrium of the latter
fixes a weighted sum of the two prey densities (eq. [B9]) but otherwise leaves
them free to vary in relative abundance within these bounds. For the full system,
the region of the RP plane consistent with both mass balance and predator equilib-
rium lies between the two MBC lines for each prey when growing alone with the
predator. The assumption of linear functional responses implies that the prey
have the same isoclines when together as when alone (eq. [BS]). Thus, we can
superimpose these isoclines on the RP plane to study competitive dynamics and
use invasibility analyses to determine the possible outcomes of the interaction.

Graphically, prey 1 increases when rare if its isocline lies above that of prey
2, given that R is fixed (at R(5) at the equilibrium of prey 2 (eq. [B11]). Similarly,
prey 2 increases when rare if its isocline lies above that of prey 1, when R is
fixed (at R{}}) by the equilibrium of prey 1 (eq. [B11]). We first work through the
formal possibilities of the model and evaluate the utility of various rules for
diagnosing the outcomes. In the Discussion, we outline how the incorporation of
reasonable biological constraints may make some outcomes more plausible than
others.

Coincident MBCs

Consider first the special case when the two MBC lines are coincident (which
requires a,b,b; = a,b,b}). The two prey may nevertheless differ in a; and ¢/,
and so their isoclines may differ. If a; > a3 and ¢ < ¢, the isocline for prey 1
is to the left of the isocline for prey 2 (fig. 7A). Recall that a given prey species
has a positive growth rate to the right of its isocline and a negative growth rate
to the left. By inspecting the figure, one can readily see that prey 1 increases
when rare, if prey 2 is present and at equilibrium with the resource and predator;
conversely, prey 2 is excluded when prey 1 is resident and at equilibrium. In this
case, the species that wins under shared predation is the same species that wins
given purely exploitative competition (i.e., it has the lower R*). »

At first glance, this situation seems to suggest that predation is unimportant in
the exclusion of species 2. But by inspecting the figure one can see that were
predation discounted at equilibrium, the growth rate of prey 2 on the ambient
resource level would in fact be positive! Invasion is precluded because the resi-
dent prey supports sufficient predators that predation on the invader overwhelms
its inherently positive growth rate on the resource level at this equilibrium. If the
predator were selective just on species 1, species 2 could invade. Thus, any
short-term, mechanistic explanation for the exclusion of species 2 must invoke
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Fic. 7.—Species dominance with coincident MBCs. A, Nonintersecting prey isoclines.
The same species (here prey 1) resists density-independent mortality factors more effectively
(lower ¢’) and better exploits the resource (higher a'). B, Intersecting prey isoclines. Prey 2
has lower ¢’, prey 1 the higher a’. The outcome depends on the position of the MBC line.
At low resource pool sizes, prey 2 wins; at high pool sizes, prey 1 wins. In all cases the
winner supports a higher predator density, on a lower ambient resource level, than does the
loser. The filled circles denote noninvasible equilibria.

both enhanced predation and reduced resources caused by the presence of prey
species 1. ’

It is immediately apparent from the figure that with nonintersecting isoclines
and coincident MBCs, the winning prey is the one that, on its own, sustains the
higher predator and lower resource levels, so both the P** and R** rules hold.
This is also the case if the prey isoclines cross (fig. 7B), which can occur if the
prey better able to acquire the resource is more sensitive to density-independent
mortality factors (i.e., if a; > a3 and ¢; > c;). As drawn, without the predator
prey 2 would competitively exclude prey 1. At low total resource supply (MBC
near the origin) this is still true, but with sufficiently high resource supply compet-
itive dominance switches to prey 1. Yet the R** and P** rules unvaryingly hold.

The reason for the switch in dominance is that with increasing resource levels,
the predator becomes increasingly abundant; this diminishes the importance of
other, density-independent mortality agents (measured by c;) and sharpens the
importance of resource accrual (governed by a;) to replace losses to predation.
. An increase in a/ steepens the prey isocline and pushes it toward the origin (fig.
7A), without changing the MBC. This condition reduces the supply of free re-
source and enhances predator density, This is a particular realization of the influ-
ence of prey resource accrual rates on predator density noted earlier. Coincident
MBCs are most likely if predation is symmetrical (i.e., a; = a,, etc.), and indeed
the above results match the conclusions from the earlier graphical model (eqq.
6; fig. 4).

Unilateral Dominance

If the prey isoclines do not cross, coexistence is impossible. The prey whose
isocline is closer to the origin dominates unilaterally, regardless of its MBC (and
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Fic. 8.—Species dominance with noncoincident MBC lines. A, The winning species has
an MBC line farther from the origin; the dominant species sustains a higher P, but not a
lower R than the loser. B, The winning species’ MBC line is closer to the origin. As drawn,
the winning species depresses resources to a Jower level than the loser but does not sustain
more predators. ’

hence of resource supply, nutritional value of prey to the predator, etc.). The
conditions for this (assuming prey 1 dominates) are
albl albl' albl a'b!
1¥1 > 2Y2 171 > 292 .

I

C]' Cé a; a,

These inequalities basically state that the species superior at resource exploitation
is also superior at withstanding predation. The terms in the second inequality are
the prey isocline slopes. A steeper isocline implies that fewer resources are re-
quired to offset a given increase in predator density. So the species with lower
R* (inequality [B7}) also wins under shared predation. Thus, the original R* rule
(Tilman 1982, 1990) holds, regardless of predation.

What happens to the R** and P** rules? This is determined by the positions
of the MBC lines. The outermost MBC is for that prey species with a greater
value of a;b,b;, a measure of the rate at which free resources are converted into
predator biomass, via prey i. If the MBC line of prey 1 is farther from the origin
than the line for prey 2 (fig. 84), the winning prey sustains the higher predator
density; it may, but need not, also depress resources to the lower level when
experiencing this level of predation. One plausible scenario leading to the relative
positions of the prey isoclines and MBC lines shown in figure 8A4 is for prey 1 to
be more efficient than prey 2 at converting resource capture into new prey (higher
b;) but for the two prey to be similar in other respects.

If the relative positions of the MBCs are reversed (fig. 8B; differential predator
attack on the inferior exploitative competitor can lead to this), the winning prey
may, in some cases, actually support fewer predators than would the losing prey.
However, in this case the winning species always depresses the resource to a
lower level than the other species. '

Thus, either the R** or the P** rule applies, but not both at once; which works
depends on species traits as reflected in the positions of the MBC lines.
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Fic. 9.—Crossing prey isoclines (trade-off between exploitative competition and escape
from predation). A, Prey 1, superior at resource competition, has an MBC farther from the

origin. Prey coexistence is feasible. B, Prey 1 has an MBC closer to the origin. The prey
exhibit priority effects. (See text.) ’

Predator Density (P)

Potential Coexistence and Priority Effects

The greatest range of possible outcomes is observed if the prey isoclines cross.
The outcomes observed—which range from dominance, to coexistence, to prior-
ity effects (when either prey can exclude the other, contingent upon initial condi-
tions)—vary with the absolute and relative positions of the MBCs (and hence on
overall resource supply).

Consider first coexistence, which requires that each species be able to increase
when rare. For mutual invasibility the invasion conditions for both prey species
must be met (inequalities [B11] and [B12]); graphically, the prey isoclines must
intersect for some R lying between R%} and Ry} (e.g., fig. 9A). Crossing of the
prey isoclines is necessary for coexistence, but it is not sufficient, for we must
assure that predator equilibrium and overall mass-balance requirements are also
met at the intersection. Suppose that prey 1 has the lower R*. To satisfy the
invasion conditions, the MBC line for prey 1’s subsystem must then lie above that
for prey 2's subsystem (see App. B). This also guarantees that the intersection of
the isocline occurs in the feasible space between the MBC lines for the single-prey
subsystems (as shown in fig. 94). Coexistence thus requires that the prey superior
at resource exploitation (lower R*) has (1) a shallower isocline and also (2) a
constraint line lying farther from the origin. One prey has a higher P&, while the
other has the lower R(*. Thus there is a trade-off, in some sense, between abilities
to dominate in exploitative and apparent competition.

Requirement 1 for coexistence states that the prey that is superior at resource
exploitation is also more vulnerable to predation. Requirement 2 states that the -
predator must equilibrate with less of the fixed nutrient pool locked up in this
competitively dominant prey (which thereby permits an exploitatively inferior
prey to enjoy a richer resource environment). Both must hold for coexistence to
be feasible.

Competitive exclusion can occur in three ways, even though the isoclines cross
somewhere in phase space. If the isocline intersection is not contained within the
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two MBCs, the species with the isocline nearer the P-axis wins. If this is species
1, and this species also has its MBC farther from the origin (analogous to fig.
84), the P** rule always holds, but not necessarily the R** rule. Conversely, if
the winner has its MBC line closer to the origin, the R** rule always works, but
not necessarily the P** rule (analogous to fig. 8B).

The final possibility is for the isoclines to cross within the MBC lines, but in
such a way that either prey can potentially exclude the alternative prey (fig. 9B),
with the identity of the winner determined by initial conditions. For this to occur,
the superior resource competitor must (1) have a shallower isocline (i.e., be more
sensitive to predation), and (2) its MBC line must lie closer to the origin. The
two potential alternative stable states correspond to either the R** rule (e.g.,
point a in fig. 9B) or the P** rule (point b in fig. 9B), but both rules do not hold
simultaneously.

In all cases, the closer the two MBC lines are, the more congruent the R**
~and P** rules are as predictors of dominance. The more effective the predator is
at limiting all its prey (i.e., larger values for a;b;), the closer the two MBC lines
are. Thus, the simple rules for dominance work best when predation strongly
suppresses both prey populations, well below the levels set by the resource sup-
ply. Such strong suppression usually implies exclusion of one prey via apparent
competition (Holt 1984).

DISCUSSION

We have shown that there is a simple rule—which we call the P* rule, similar
to the R* rule (Tilman 1990)—that can predict the outcome of apparent competi-
~ tion among two prey species that do not interact via resource competition but that
do share a predator (see also Holt and Lawton 1993). When there is evenhanded
predation in a simple food web that includes two consumer species competing
for a single limiting resource and a single predator that feeds on these two species,
analogous rules, which we call the R** and P** rules, work simultaneously. Both
correctly predict the outcome of interspecific competition, in that the dominant
prey species simultaneously depresses resources to the lowest level and enhances
predator density to the highest level, relative to alternative prey. The models
(Tilman 1977, 1982, 1990) that led to the R* rule included density-independent
mortality (which might include some predation) but not predators with a numeri-
cal response to their prey (which corresponds to delayed density dependence in
the prey population). Incorporating a predator with a numerical response, as in
equation (6), in effect makes the level of mortality a dependent variable of the
system, dependent in particular on the prey’s ability to exploit the limiting re-
source. In the case of symmetrical predation on multiple prey species, the winning
prey is the one depressing resources to the lowest level, given that the predator
is present (which may or may not correspond to the prey depressing resources
to the lowest level in the absence of the predator). This same prey species also
maintains the highest density of predators. \

Our most complex food web model, which does not assume evenhanded preda-
tion, illustrates that no simple rule.need apply universally. The patterns predicted



THE DOMAIN OF SIMPLE RULES FOR DOMINANCE 759

by the theoretical results are, in principle, testable: the necessary experiments
consist of each prey species grown alone, both prey species grown together, and
both prey together with the predator, all the while monitoring R, N, and P. Aside
from the obvious technical challenge of such a protocol, based on our above
theoretical results, researchers contemplating such a project might seem to face
a bewildering array of possible outcomes. This difficulty may be more apparent
‘than real, because the universe of possibilities may be circumscribed by con-
straints that govern the ability of organisms to acquire and use resources and to
resist natural enemies. The cases presented in figures 7-9 represent all possible
combinations in model (10) of parameters for consumers and predators. Some of
these parameter combinations may be evolutionarily improbable or impossible -
because of unavoidable, allocation-based trade-offs that organisms face. Incorpo-
+ rating such trade-offs should provide deeper insights into the likely generality
and limitations of each rule.

To sharpen our understanding of the implications of such constraints, it is
useful to consider the outcome of competitive interactions among plants along a
productivity gradient—that is, a gradient from habitats with low total resource
(low §) to habitats with high total resource (fig. 10). Let us first assume that the
species that is the best competitor in the absence of the predator (in this case,
the herbivore) is also the most susceptible to predation (i.e., that the prey iso-
clines cross). The trade-off between prey competitive ability and susceptibility
to predation could be caused by interspecific differentiation in the proportion of
plant biomass allocated to competitive structures such as roots, stems, or leaves,
versus structures or secondary compounds involved in herbivore defense. There
are two possible cases.

Consider, first, the case in which the prey that is the superior resource competi-
tor (lower R*; species 1 in fig. 10) also has the MBC farther from the origin.
Habitat productivity increases with increasing S. There is a region (region a in
fig. 10B) in which there is insufficient resource for the survival of either prey (and
hence the predator too). At higher resource supply rates, region b, prey 1 is
present but the predator is unable to survive. This is followed by region c in
which prey 1 and the predator are present. At yet higher S, region d, both prey
species and the predator are present. In region e, prey 2 alone persists with the
predator. The densities of these species as the resource changes along the gradient
are shown in figure 10B.

The original R* rule (Tilman 1990) correctly predicts the dominance of prey 1
and the exclusion of prey 2 from regions b and c. However, the simple R* rule
(which ignores mortality caused by the predator) fails in regions d and e. Thus,
the simple R* rule of competition for a single limiting resource applies, even in
the presence of predators, but only in less productive habitats. It fails once a
habitat is sufficiently productive to support enough predators to allow predation-
mediated coexistence. -

The R** and P** rules also have limited domains. Neither rule applies in
regions a and b because there is insufficient resource to sustain the predator. In
region c, the prey that supports the higher predator density displaces the species
that drives the resource to the lower level when alone with the predator. Thus,

[}
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Fi6. 10.—Species interactions along a gradient in resource supply, S. Increasing S shifts
the MBC lines away from the origin without changing the difference between a given pair
of species’ MBC lines. A, The shaded areas indicate MBC lines for three points along a
resource gradient. The text considers two alternative cases: (1) species 1 has the outer MBC;
(2) species 2 has the outer MBC. B, Species densities along the gradient for case 1. :

the P** rule predicts the outcome in region c, but the R** rule does not. Coexis-
tence occurs in the region in which one species is superior at apparent competition
and the other at resource competition. The R** but not the P** rule predicts the
outcome in region e. It is surprising to us that when the system parameters are
such that predator-mediated coexistence is possible, the P** rule works in less
productive habitats, and the R** rule works in more productive habitats.

For the second case, the species that is the poorer resource competitor, in the
absence of predation, has its MBC line farther from the origin. In this case (fig.
10A; note that fig. 10B does not apply), the species replacement pattern along a.
gradient of increasing total resource supply is as follows: region a, neither prey
present; region b, prey 1 alone; region c, prey 1 present with the predator; region
d, a zone in which the outcome depends on initial conditions; region e, prey 2
alone with the predator. The R* rule correctly predicts the outcome in regions
a, b, and c but not in regions d and e. The R** and P** rules do not apply until
region c. The R** rule correctly predicts the outcome in region ¢ but not in any



THE DOMAIN OF SIMPLE RULES FOR DOMINANCE 761

other regions. The P** rule works in region e. In region d, there are priority
effects, and no rule ignoring initial conditions is reliable.

Thus, if consumer species have an interspecific trade-off in their competitive
abilities versus their susceptibility to predation, none of the simple rules univer-
sally applies at all points along a resource gradient. The R* rule only applies in
less productive habitats in which predation on the consumer species is of rela-
tively low intensity. The R** and P** rules apply at different productivity levels
along the gradient, : ’

It is possible, but seems less likely, for there to be no interspecific trade-off
between competitive ability and susceptibility to predation—that is, for the iso-
clines of the consumer species not to cross (fig. 84, B). For instance, a given
prey species might be near the edge of its thermal tolerance limits (e.g., near a
distributional limit along a climatic gradient). This could lead it to be less efficient
at both resource acquisition and predator escape. In both the above cases, once
the habitat is sufficiently productive for the species with the lower R* to survive,
this species displaces the other species at all higher regions on the productivity
gradient. Thus, the R* rule holds universally if there is no competition-predation
trade-off. The R** but not the P** rule holds in some cases (fig. 8B), and the
P** but not the R** rule holds in the other (fig. 84). ‘

There are also likely to be constraints on the predator. In particular, predator
traits should tend to be those that lead to higher predator fitness. Consider for
example a system in which prey are nitrogen-limited plants and the predator is a
protein-limited herbivore. The herbivore should feed preferentially on plants with
higher protein content. As a simple expression for such biased preference, let the
attack rate of the herbivore on plant species i, a;, be inversely related to the b;
of the plant (i.e., a; = k/b;, where k is a constant). If the herbivore is protein
limited, its birth efficiency, b;, should depend on the efficiency, e, with which it
extracts protein from a plant. This would give b, = eb,/b], which represents a
simple conversion of plant protein into herbivore biomass. If these two relations
(a; = k/b; and b; = eb,/b|) are substituted into the equations for the MBC, the
MBC equation becomes R = b,(S — R — cbj/keb,).

The MBCs of the two plant species differ only in b;. The species with the
lower b; will have its MBC closer to the origin. Substitution of a; = k/b; into
the equation for the plant isocline leads to the slope of the isocline being propor-
tional to b;? and to R* being proportional to 1/b;. Thus, if all else were equal, a
plant with lower protein content would be a superior competitor (lower R*, pro-
portional to 1/b;), would have the more steeply sloped isocline (slope propor- -
tional to b;%), and would have its MBC farther from the origin. This is the case
illustrated in figure 8A. In this case the R* rule always holds, as does the P**
rule. The R** rule never holds.

These particular constraints also preclude the possibility of predator-mediated
coexistence. Intuitively, this occurs because the same trait that permits a plant
species to be superior in resource competition—its ability to grow with lower
protein content—also makes it less desirable as a foodstuff for a herbivore. Preda-
tor-mediated coexistence is likely to be observed only when the traits that pro-
mote competitive superiority also enhance risk of predation. For instance, if prey
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\
are mobile, higher mobility might permit both a higher rate of resource intake at
low resource levels and greater exposure to predation.

CONCLUSIONS

We have shown that some simple rules of thumb can provide useful summaries
of relatively complex interactions. However, these simple rules are not univer-
sally applicable. The R* rule only universally applies in less productive habitats
in which predator densities are low. The P* rule works best when predation acts
evenhandedly on both species or reduces both their densities well below their
respective carrying capacities. The applicability of all the rules depends on the
trade-offs exhibited by the consumer species and on the factors constraining
predator foraging and predator numerical responses. All organisms face costs
that constrain their traits to a subset of those traits that might be possible in the
absence of constraints. Recognizing the specific character of these constraints
and trade-offs can simplify theory and allow the development of more realistic
theory—contingent theory that has a well-defined domain of applicability. Our
purpose in developing the specific models used here was to illustrate this qualita-
tive process, to demonstrate that rules that do not universally apply to all habitats
and situations may still provide useful, unifying rules of thumb for ecological
interactions, and to indicate how ascertaining the limits of such rules can point
the way to a deeper understanding of multi-trophic-level interactions.
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APPENDIX A
A GENERALIZED P* RULE
The specific model described in equations (1) and (2) can be generalized to a broader
array of models, as follows: ,
dd—l:li = r(P)N;
and

dP
'E'= g(Nth,- . -)P’
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fori = 1, ..., n prey species. An alternatlve formulation for P is P = = G(Ny, ..., Np).
The latter may describe systems in which one is monitoring rapid aggregation of moblle
predators to and departures from a particular habitat patch. The predator density P is an
example of a collective variable (B. Ebenh6h, personal communication), because it de-
pends (either directly, expressed as an algebraic expression, or with a time lag, as in the
above differential equation) on all the prey, whereas the per capita growth rate of each
prey depends only on the same P (albeit in different ways).

Because we are considering predator-prey systems, it is reasonable to assume that r,(P)
is monotonically decreasing in P. Now assume that the system has an equilibrium and
that this equilibrium is locally stable. For each i, at equilibrium either N; = 0, or r{(P*)
= 0. In general, this is unlikely to be true simultaneously for two or more prey species.
Let species 1 be the species that equilibrates at the highest value for P*. Given that species
1 is at equilibrium, all other species experience a higher predator density than is consistent
with their persistence. A comparable general result for multiple species host-parasitoid
systems is discussed elsewhere (Holt and Lawton 1993).

The core of this result rests on the assumption that the expression for prey growth for
species i cleaves into two factors, one containing a collective variable (here, the predator)
and the other being the density of species i. This channeling of indirect interactions through
a single intermediary variable in general constrains the opportunity for coexistence. In
fact, it can be viewed as a special case of Levin's (1970) classic result that in equilibrial
communities, coexistence among n species requires the number of independent limiting
factors to equal or exceed n. See Appendix C for further discussion.

APPENDIX B
PROPERTIES OF MODEL 10

The formal properties of the asymmemcal three-species, predator-prey model are best
seen as we Compose it from its pieces. Suppose that only prey i is present. The system
dynamics are given by

dN’ ! ’ 1
E"-N,-(a,'b“R C,')
and
dR _¢iN,
dr b' aiRN;.
The prey populauon is at equxllbrlum when the resource availability is R}, = ¢//a}b]

(Tilman 1982); the total resource in the habitat, S, must exceed this equilibrium require-
ment for prey i to persist. Given that this condition is met, at equilibrium any nutrient in
excess of R is contained in prey at density b;(S ~ R{)).

If the density of prey i is large enough, a predator population can be supported by it.
The predator dynamics are

E—P(abN 0,

and the predator populauon is in equilibrium when the densnty of prey i is N(,, =
c/a;b;. Hence, the predator can invade the system with prey i at equilibrium if b/(S —
R(,,) exceeds N{ Rearranging, the required total nutrient supply for predator persistence
is ,

"ok
N(l)

S>RE + —.

(B1)
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Assuming the predator can invade, the dynamics of the system are governed by

dpP
E = P(aib,-Ni _ C),

-‘id}l’]-i = N{a/b/R - ¢{ - a,P),
(B2)
and

dR _C¢iN; cp 1 b,.) :

' d[ = b” + bp + a,N,P(b: bp a,-RN,-.

The parameter b, (the yield coefficient for the predator) budgets the amount of nutrient
recycled from dead predators. Incomplete assimilation during predator feeding may give
additional nutrient recycling. The flux of nutrient associated with the consumption of prey
iis a;N;P/b], and the assimilated flux is a;b;N;P/b,; the flux of nutrient recycled is thus

1_b
a,-N,P(E - -b—p) .

Because only a nonnegative recycling flux is meaningful, we require that b,/b; > b;; that
is, the ratio of the nutrient contents of prey to predator must exceed the predator's birth
efficiency. Since these efficiencies are typically less than one for predators, this is not a
stringent restriction.

By graphically analyzing this single-prey system with prey i, we determine the equilib-
rium values R{* and P. Though the phase space of equation (B2) is three-dimensional
(fig. B14), we use a trick to represent the system in the two-dimensional phase plane with
axes R and P. The conservation of total resource mass implies a mass-balance constraint

N, P
= —_— -
S=R+ YRS (B3)

This constraint confines the feasible phase space to a simplex, the triangle indicated in
figure B1A. (The system is constrained to move along this plane.) The predator isocline
is a plane, parallel to the RP plane, intersecting the N:axis at the value N, = N (fig.
B1A). The intersection of the predator’s isocline with the MBC simplex defines a line
giving the set of all values of R and P consistent with both mass balance and the predator
equilibrium. In figure B14, we show this line projected onto the RP piane. In the main
text, we refer to this projection as the ““MBC line for prey i."” Its equation is

la;b,
P=b,,(s—R—c—‘fF), (B4)
bi _
which has a slope of - b,.
The isocline for prey iis
p=lilip ¢ BS
"o R @

In the RNP phase space, this defines a plane parallel to the N-axis, so we can represent
the isocline in the RP plane by the line defined by equation (B5). The isocline’s intersection
with the R-axis is at RY) = c;/a/ b/, which is the amount of resource required for this prey
to be in equilibrium in the absence of predation. The isocline has a positive slope of
a;jb/la;.

The intersection of equations (B2) and (B3) (see fig. 6) determines the equilibrium values
of Ry and Pl¥:
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!

!

Fic. Bl.—A,; Resource-prey-predator (RNP) phase space. A mass-balance constraint can
be represented by a triangular plane, intersecting each axis. The system dynamics is con-
strained to this plane. The predator has zero growth along a vertical plane intersecting the
prey axis. The heavy line isthe intersection of the predator’s isoplane with the MBC plane.
This intersection can be projected onto the RP plane; this is the MBC line described in the
main text; it can be interpreted as the possible states of the system, given that the predator
is in equilibrium and so has restricted prey to a given density. B, Abundances along a gradient
in resource supply. :

ajbib, i byci
Py =t (50} 2

ajb; + a;b, b; ajb; +ab,
and : (B6)
N** P#* )
Rit=§ =L 0 .
@) ) b; bp ;

The predator cannot persist if the MBC line cuts the R-axis below the R intercept of the
prey isocline. The existence of an intersection between the MBC line and the prey isocline
corresponds to condition (B1) for predator invasibility. Both RY* and P{* increase linearly

.
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with §, though with P{* increasing more rapidly, and the ratio R{IP%" approaches asymp-
totically a;/a; b|.

For this model, as total nutrient supply increases from zero, prey i can persist once its
requirement R{, is met (i.e., § > R%, as in figure B1B). As § continues to increase, R
becomes fixed at R}, by the prey; additional nutrient is all channeled into prey. Once prey
density reaches the predator’s minimal requirement, N, the predator can persist; at this
point, prey density no longer increases with S. Additional nutrient is partitioned into
increases in available nutrient and predator density (fig. B1B).

Allowing two prey species to exploit the resource together with the predator, we arrive
at the full system (eq. [10]). The prey isoclines in this system have the same equations
(B5) as in the single-prey subsystems. and so are hyperplanes orthogonal to the RP coordi-
nate plane, parallel to the N-axes. The projections of these isoclines onto the RP plane
are the same for the single-prey subsystems and the full system, so we can superimpose
them for the purpose of the graphical analysis used in the main text. Since the prey
isoclines are linear, an intersection corresponds to a unique equilibrium. The relative
positions of the superimposed prey isoclines are controlled by two inequalities. The R
intercept of prey 1's isocline is nearer to the origin then prey 2's if R, < Rp,, or

—_— — (B7)

Prey I's isocline has a shallower slope than prey 2’s if

Ib' I !
h<ﬂ3. (BS)
a, a,

‘The MBC for the full system defines a three-dimensional simplex in the four-dimensional
phase space, analogous to that pictured in figure B1A. As before, we assume that the
values of N, and N, are constrained by requiring that the predator be at equilibrium,
defined by the predator’s isocline; .

b
f-lcﬁzv,+ﬂc—21vz=1. (B9)

This is an isocline for a pair of linearly substitutable resources (Tilman 1982), and it states
that the predator fixes a weighted sum of prey densities: The intercepts on the N-axes
are simply the predator’s requirements for each prey at equilibrium in the single-prey
subsystems (i.e., the quantities N7*). The set of values of the N; consistent with the
predator’s isocline can be intersected with the MBC simplex and then projected onto the
RP plane, in a procedure analogous to that used to get a single prey’s MBC line in figure
BiA. .

Doing so, we get a connected set in the RP plane consistent with both predator equilib-
rium and mass balance. This is exactly the set of points lying between the two (projected)
MBC lines for the single-prey subsystems (which are parallel). A three-species equilibrium
only occurs if the prey isoclines intersect in the region bounded by the MBC lines. The
MBC line for prey 1 lies above that of prey 2 when.

a]blb;>a2b2bé. (BlO)

Consider invasion by prey 1 when prey 2 is at equilibrium with the predator. Prey. 1
increases when rare if

ajbi €1 _azb; 4
——R("z‘,“-—>——-R("5;"——. (B11
a, a a a

Thus at R = R}, prey 1's isocline must lie above prey 2’s isocline. A similar condition
for invasion of prey 2 when prey 1 is at equilibrium with the predator is
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’ 1 13 ’
aby .. ¢ _aib;
(1)

R - —; (B12)

a, a, aq

that is, when R = R}, prey 2’s isocline must lie above prey 1’s.

We now consider briefly the stability of the mode! equilibria. When prey i is alone with
the predator, the three-dimensional system of equation (B2) can be reduced by one dimen-
sion if R is substituted in the prey equation, using the mass balance relation (eq. [A3]).
We then eliminate the equation for resource dynamics and calculate the partial derivatives
composing the Jacobian matrix in the usual way. The result is

J = ¢ (a,-'b,f + a,-bp) ajc
b,\ apb, “ab;

There are two Routh-Hurwitz stabllxty conditions (lebet and Gurney 1982) The ﬁrst is
det[J] > 0; after rearrangement, this is equivalent to

Ny (:)

>0,

This is simply the invasion condition for the predator (inequality [B1]), which is always
satisfied when the equilibrium of prey. i and the predator is feasible. The second stability
condition, tr[J] < 0, is unconditionally satisfied. This two-dimensional system satisfies the
conditions of the Kolmogorov-Brauer theorem (Nisbet and Gurney 1982), so that local
stability implies global stability.

For the three- spec1es system with both prey and the predator, the four-dimensional
system of equation (9) can be reduced one dimension, by substituting for R from the
mass-balance relation (eq. [10]) and eliminating the equation for resource dynamics. Pro-
ceeding in the usual manner, the resulting Jacobian matrix is

0 a,b,P**  a,b,P**
_a 11 ab;
) N** a, N} —a|N¥* N**
J = bp : bz
ayb; ayb;
202 202 — NP

---5;-— N* — azN2
(The absence of parentheses in the subscripts for the prey indicates that these are equilibria
with all species present.) This is stable if three Routh-Hurwitz conditions (see, ¢.g., Nisbet
and Gurney 1982) hold. Two of these are always satisfied: tr[J] is always negative, and a
second condition is equivalent to

Ni* raib N3* fayb;
(2 a) o (B a) >0,

by \ b, b; \ b,
which holds. The third stability criterion is equivalent to
(aja3by — azaiby)(a,byby — azb,yb3) >0, (B13)

The first factor in this expression controls whether the prey isoclines cross. If we labe}
prey 1 as the one with lowest R*, then the prey isoclines cross if the first factor is positive,
which_ensures that prey 1's isocline has a shallower siope than prey 2's (see inequality
(B8]). Unless the first factor is positive, there can be no equilibrium at all. If there is an
equilibrium, then stability requires that the second factor of inequality (B13) also be posi-
tive. When it is, the MBC line for prey 1 lies above that for prey 2. Given crossing isoclines,

]
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a necessary and sufficient condition for local stability of a three-species equilibrium is
thus that the prey with lowest R* have the highest MBC line, exactly as shown in figure
9A. A mutually invasible system has a locally stable three-species equilibrium, whereas a
mutually noninvasible system has an unstable three-species equilibrium.

Our three-species system satisfies the conditions of Hutson and Law’s (1985) perma-
nence theorem. This theorem makes invasibility of equilibria an especially robust indicator
of coexistence, because the global repelling or attracting nature of the boundary is indi-
cated by whether the boundary equilibria are repellents or attractors. Thus, no trajectory
of the three-species system with coexistence asymptotically approaches any boundary.
Together with the above invasibility and local stability analyses, this suggests that the
graphic approach used in the main text suffices for us to understand all the potential
outcomes of the system.

It is well known that adding a predator with linear functional responses to each of two
prey, competing among themselves according to the Lotka-Volterra competition model,
can lead to systems with stable limit cycles or chaotic dynamics (Vance 1978). Such
complex dynamics are precluded in our mechanistic model of predation on two species
experiencing exploitative competition for a limiting resource, given the reasonable con-
straint that the total nutrient base is a conserved quantity. This is an intriguing example
of how ecosystem-level constraints can simplify the dynamics of interacting species.

APPENDIX C
GENERALIZED PREY ISOCLINES

A more general formulation of the model described by equation (10) is as follows:

dN;

RPN, i=1,...,n,

R

%;=GR(N1,..-,N,,,R1P)y
and

dP

7,‘=GI’(N1""’N"'R’P).

This formulation assumes that one can cleanly separate the two collective variables, R
and P, from the prey densities in determining prey growth rates. If prey growth declines
monotonically with increasing predator density and increases monotonically with increas-
ing resource density, one can define prey zero-growth isoclines as curves in the RP phase
plane,-as shown for a four-prey system in figure C1 (a more general rendition of figs. 7-9).
A given prey species increases in abundance for values of R and P to the right of its
isocline and decreases for values to the left of its isocline. These zero-growth isoclines have
positive slopes, because with increasing predation a given prey requires more resource to
remain in demographic equilibrium. If prey growth rates saturate with increasing resource
level, the isoclines should be concave downward, as shown.

The system equilibrates only if the magnitudes of P and R are such that no prey is
increasing in abundance. This occurs only along the left boundary of the collective isoclines
indicated in the figure. Because there are just two limiting factors (one predator and one
resource population), in general at most two prey species can coexist, and when they do
the equilibrial values for R and P are at the intersections of their respective isoclines.

However, coexistence is not guaranteed; a single prey species may dominate the system.
To ascertain the actual outcome requires a portrayal of resource and predator dynamics.
Following the procedure given in Appendix B, assume there is a mass-balance constraint
because of nutrient conservation in a closed system, conditional on the predator being at
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P

Fi6. Cl1.—Prey isoclines in the resource-prey (RP) phase plane for general, separable
models. The isoclines of four prey species are shown. (See text and fig. 6 for more detail.)

equilibrium with prey i alone at a particular value for R;. One can in this case express the
constraint for each prey species as a straight line of negatlve slope, analogous to equation
(B4) in Appendix B. Given that there are a number of prey species present, the potential
equilibria of the system are confined within a band between paraliel lines, comparable to
those portrayed in figures 7-10 (e.g., the gray zones in fig. 10A). If these constraints are
nearly coincident, then in general one prey species will dominate the system. By placing
trace lines on the figure, one can be easily convinced that this dominant prey is the one
that simultaneously matches the R* and P* rules. If the constraints are not coincident,
coexistence or priority effects become possible. The line of argument presented in the
main text can be modified to ascertain which of these outcomes will obtain.

This approach does not require one to assume a closed conservative system. B. Ebenh6h
(personal communication) points out that setting the predator and resource equations equal
to zero, given that only prey species i is present, defines a curve in the RP plane; with n
prey species, there are n such curves, which collectively circumscribe a band within which
the equilibrial states of the system must be contained. By overlaying this band on the
array of prey isoclines, one can determine whether unilateral dominance, coexnstence, or
priority effects are likely outcomes.

The main body of the text is concerned with ascertaining the limits of rules of dominance
for systems that are in a sense radically simple (i.e., linear functional responses, no spatial
or temporal heterogeneity, no intraspecific dominance, etc.). It is well known that incorpo-
rating nonlinear functional responses, environmental heterogeneity, and strong direct den-
sity dependence greatly increases the scope for species coexistence and makes analyses
of dynamics more difficult. For instance, if the equilibrium is unstable, limit cycles or
chaotic dynamics may permit competing speciés to coexist (Armstrong and McGehee
1980). The existence of temporal and spatial heterogeneity in effect opens up other niche
dimensions, which can facilitate coexistence (though not always; see Holt 1993). Other
compllcatlons may arise because one cannot cleanly separate the growth equations, for
example, owing to strongly nonlinear functional responses or adaptive behaviors (Abrams
1987). In addition to increasing the scope of possibilities for coexistence, these factors
doubtless change the rules that characterize species dominance relations when there is
competitive exclusion and in particular make it unlikely that a given simple rule will apply
widely across numerous scenarios.

Recognizing this range of possibilities seems at first glance to lead in the direction of
nihilism, a turbulent conceptual sea in which all things are possibie. But we have a cheerier
disposition. To us, the simple, biologically transparent models we have examined provide
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a conceptual anchor in this sea, starting points that, if clearly understood, help one ascer-
tain the magnitude of any effects arising from more complex biological assumptions.
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