Ecolagical Applications, 5(1). 1995, pp. 20-27
© 1995 by the Ecological Society of America

LINKING CONTEMPORARY VEGETATION MODELS WITH
SPATIALLY EXPLICIT ANIMAL POPULATION MODELS!

RoBEeRT D. HoLT
Museum of Natural History, Dept. of Systematics and Ecology. University of Kansas.
Lawrence, Kansas 66045 USA

STEPHEN W, PACALA
Dept. of Ecology and Evolutionary Biology, Princeion University,
Princeton, New Jersey 08544 USA -

THOMAS W. SMITH
Dept. of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22903 USA

. J:aNGUO L1u
Harvard Institute for International Development, Harvard University,
Cambridge, Massachusetts 02138 USA

Abstract.  Spatially explicit models for animal populations (SEPMs) necessarily em-
body assumptions about plant community structure and dynamics. This paper explores the
advantages and limitations of directly linking animal SEPMs with models for vegetation
dynamics. Such linkages may often be unnecessary. For instance, in research focussed on
questions with short time horizons, the spatial patterning of vegetation can be reasonably
approximated as a fixed landscape templet for animal population dynamics. But if one neéds
to consider longer time scales (e.g., decades to centuries), landscapes will be dynamic.
Models of vegetation dynamics provide useful tools for predicting landscape dynamics. We
outline the sorts of output from végetation models that might be useful in animal SEPMs.
We discuss as a concrete example recent forest simulators, which predict with reasonable
accuracy some variables (e.g., tree species composition), but which, to date, are quite poor
for others (e.g., seed production). Moreover, because vegetation models target a restricted
range of temporal and spatial scales, they may be more useful for certain consumer groups
than for others. Despite these cautionary observations, we believe that the time is ripe for

fruitful linkages between models of vegetation dynamics and animal SEPMs.
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INTRODUCTION

“Some of the most obvious patterns in {animal ecol-
ogy] are those relating species to habitats” (Wiens
1989). A spatially explicit population model (SEPM)
blends a specification of the location of organisms and
habitat patches in a heterogeneous landscape with in-
formation on habitat-specific demography and dispers-
al behavior (Dunning et al. 1994). SEPMs are becoming
increasingly useful in both basic and applied animal
ecology, for example as management tools for evalu-
ating the effects of altered land use patterns (Turner et
al. 1995). Because the physical structure, species com-
position, and resource production of plant communities
largely define what is meant by ‘“‘habitat,” character-
izing spatiotemporal variation in vegetation is central
to describing landscape-level processes in terrestrial
animal populations. : :

Thus, all animal SEPMs embody assumptions about
plant communities. A necessary step in developing a
SEPM is a descriptive, statistical submodel describing

" Manuscript received 11 June 1993; accepted 16 March
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animal-vegetation relationships in a landscape. For
some questions, a quite crude habitat model (e.g., di-
viding landscape units into ‘“suitable” vs. ‘“‘unsuit-
able” habitat) may suffice; for other questions, more
complex multivariate models describing demographic
responses to vegetational axes are needed (e.g., James
et al. 1984, Wiens 1989). Over the past several decades,
sophisticated models -have been developed aimed at
predicting successional trajectories and equilibria in
the physical structure and species composition of veg-
etation. The question we address is: When might a
spatially explicit animal model benefit fromn linkage
with dynamical vegetation models, complementing the
usual sort of descriptive, statistical habitat model?
Here, we do three things. First, we discuss at a gen-
eral level when linking animal and vegetation models
might be useful-—and when not. Then, we outline the
sort of output variables from vegetation models desir-
able as potential inputs for animal SEPMs. Finally, we
consider the most successful vegetation models to date,
namely forest simulators (Shugart and Prentice 1992),
and summarize their strengths and weaknesses as pre-
dictors of habitat variables needed in animal models.
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We ask whether one can take relatively complex plant
dynamics models and abstract from them simpler, ag-
gregated models potentially useful as drivers in animal
models. There have been few attempts to use vegetation
models in the way considered here; our remarks are
provisional suggestions about potentially profitable re-
search directions, rather than a definitive statement of
proven results.

Why bother linking animal SEPMs with
vegetation models?

The answer depends, among other things, on the time
scale mandated by one’s research agenda. It is useful
to distinguish time scales and systems for which veg-
etational attributes can be viewed as fixed parameters,
from those for which they must be considered to be
system variables.

The time step in a typical SEPM for an animal pop-
ulation is one generation (or a fraction thereof). In ter-
* restrial forest communities, the dominant plants defin-
ing the physical structure of the habitat usually have
generation times greatly exceeding that of animal co-
habitants. For short-term questions, one can sensibly
assume the landscape to be a fixed spatial templet,
against which animal populations wax and wane in
time, and ebb and flow 1in space. Year-to-year vari-
ability in animal numbers (Pimm 1991) may be enor-
mous compared to any signal of change in the plant
community. In such cases, explicitly linking a vege-
tation model to an animal SEPM would substantially
increase the overhead of model analysis and parameter
estimation (Conroy et al. 1995), without correspond-
ingly enhancing understanding. The ecological world
is complex and highly interconnected, but our goal as
scientists is to seek simplicity, using models with just
enough complexity and connections to answer the ques-
tion in hand, but no more. In many circumstances, then,
no linkage between SEPMs and vegetation models will
be necessary or useful (beyond the usual descriptive
habitat model already implicitly embedded in the
SEPM).

- However, many critically important ecologi®al ques-
tions involve longer term processes, acting at time
scales over which landscape structure itself can change.
If one is concerned with how global climate change or
habitat fragmentation influences animal species con-
servation over periods of several decades to centuries,
an accounting of landscape dynamics must be inte-
grated into the animal model. Vegetation dynamics are
an important driving force in landscape dynamics. Veg-
etation models can help delimit landscape changes that
are likely, out of the vastly greater number that are
possible.

Consider, as a hypothetical example, the- SEPM
“BACHMAP" developed for the threatened Bach-
man’s Sparrow (Aimophila aestivalis) in pinewoods of
the southeastern United States (Pulliam et al. 1992).
The spatial structure of the model is a landscape di-
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vided into 2.5-ha cells (sparrow territories). BACH-
MAP incorporates a descriptive habitat use model for
the sparrow. Each cell is classified into | of 22 vege-
tation classes: clearcuts, 20 1-yr age classes of-pine
plantations, and old growth (Pulliam et al. 1992). The
vegetation attributes defining optimal breeding habitat
include high light penetration, grassy ground cover, and
scattered understory woody plants (Dunning and Watts
1990) typifying both very young and mature pine
stands. Assessing birth, death, and movement rates as
functions of vegetation type completes the SEPM.

In an entirely managed landscape (i.c., no old
growth, and no disturbance other than clear-cutting),
if one were concerned with year-to-year variation in
sparrow numbers, adding a vegetation model to BACH-
MAP would surely be overkill. But imagine instead
that old-growth stands are critical for sparrow breeding.
Over time scales of a century or more, disturbances
(e.g., fire, hurricanes, tornadoes) will pockmark old-
growth stands with gaps of varying sizes and spatial
arrangement, which then undergo succession back to
mature pine. Golley et al. (1994) observe that succes-
sion toward mature pine woodland is rapid in small
fields, and slow in large fields, most likely because of
limited seed dispersal from the edges of large fields
toward their interior. Predicting how optimal breeding
habitat in a non-managed landscape shifts in areal ex-
tent and spatial arrangement over many generations
requires a spatially explicit model of disturbance and
plant dynamics, a model incorporating the spatial dy-
namics of seed dispersal for pine as well as local de-

‘terminants of pine growth and survivorship. An ade-

quate model of landscape dynamics will often (if not
always) incorporate a spatially explicit model of plant
dynamics, as a driver for transitions from one habitat
type to another. For long-term sparrow conservation,
one would want to predict changes in the landscape:
vegetation models, we believe, can be used judiciously
in refining such predictions.

An explicit consideration of vegetation dynamics
may be particularly important when dealing with her-
bivores at longer time scales. There are numerous direct
and indirect feedback loops through which herbivores

_ affect plant community composition and dynamics and

thereby (with a time lag) their own dynamics (Huntly
1991). Herbivores can limit the abundance of their food
plants (Caughley and Lawton 1981) or influence the
physical structure and compefitive relationships of
plants (e.g., Louda et al. 1990, Mopper et al. 1991).
Accounting for such effects is an important desidera-
tum in any mechanistic model of herbivore dynamics
in a landscape context.

What is needed in animal SEPMs?

It has long been a commonplace of animal ecology
that plant community structure influences species’ dis-
tribution and abundance, and more generally the spe-
cies composition of entire animal communities (e.g.,
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Grinnell 1917, MacArthur-and MacArthur 1961, James
1971, James and Wamer 1982, Rabenold and Bromer
1989, Wiens 1989, Brown 1991). One typical example
of community-level effects comes from long-term stud-
ies at Manu National Park in southeast Peru, where
along successional gradients from recently formed
sandbars into progressively older forest, species rich-
ness of avian insectivores increases monotonically
(Terborgh 1985). The literature of animal ecology is
replete with comparable examples.

The mechanistic underpinnings of such correlanons
are often obscure (e.g., Willson 1974, Terborgh 1977,
James and Wamer 1982, James et al. 1984, Wiens 1989:
317), but in some cases mechanisms have been deter-
mined; these are highly heterogeneous among species.
Direct effects of plant community composition and
physical structure on animal populations include: (1)
the influence of plant architecture on tactics of food
acquisition; (2) the provisioning of spatial resources,
. including nest sites and refuges from predation or in-
clement weather, and the determination of microcli-
mate; and (3) the direct supply of food for herbivores.

As an example of (1), many spiders build webs for
prey capture; specific architec firal features associated
with particular plant species may be needed for a web
to be anchored (Riechert and Gillespie 1986, Uetz
1991). For (2), more complex, larger plants have a
greater range of microclimatic conditions, permitting
them to harbor a greater species richness of small-bod-
ied ectotherms with narrow thermal niches (Claridge
and Reynolds 1972). Category (3) is often patently
obvious. For instance, host-specific insects cannot per-
sist unless host plants are present, so insect abundance
often reflects host plant abundance (Denno and Rod-
erick 1991).

In addition to direct effects, a plethora of indirect
effects are possible. For instance, vegetation hetero-
geneity can modify indirect interactions between insect
hosts via the numerical responses of shared parasitoids,
for instance by affecting refuge availability and spatial
fiows of searching parasitoids (Holt and Lawton 1993).

Itis thus clear what might be wished of a plant model
used as a driver for an animal SEPM: its output should
provide spatially referenced variables corresponding
(possibly after transformation) to landscape descriptors
used in the SEPM (i.e., Smith 1986). When available,
a mechanistic understanding of habitat use patterns
helps focus attention on causally important aspects of
vegetation structure, an emphasis that should reduce
the noise in model predictions.

What is available?

The most widely studied models of plant community
dynamics are the menagerie of simulators developed
for tree communities, particularly temperate forests
(Botkin et al. 1972, Shugart and West 1977, Shugart
1984, Smith and Huston 1989, Huston 1992, Shugart
and Prentice 1992). These simulators are called “‘gap™
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models because they are scaled to the canopy gap left
by the death of a large tree. Their complexity usually
entails simulation, ideally guided by study of related
tractable, analytic models (Pacala 1989).

The original gap models were individual-based, but
not spatially explicit. They incorporated mechanistic
functions predicting tree performance (growth, mor-
tality, and fecundity) from local resource (e.g., light)
availability, and submodels for how resource avail-
ability was affected by consumers (e.g.. by shading)
(Clark 1992). Two pragmatic decisions shaped their
formulation. The first was to utilize functional forms
and parameter values estimated from published data.
This decision constrained the models in several ways.
For example, a function relating light to growth rate
was assigned using species’ shade tolerance, as re-
ported in published classifications (i.e., Baker 1949);
it was assumed that all species in a given shade tol-
erance class have equal growth responses to light. Sim--
ilarly, because species-specific data on resource-de-
pendent mortality was not generally available, all .

" species were typically given the same function relating

mortality and growth rates. Finally, because of the
small size of modeled plots, new recruits were drawn
from a fixed species pool, rather than produced by the
modeled trees themselves.

The second pragmatic decision was to produce model
output matching data typically gathered in forestry
practice, in particular tree diameters and growth incre-
ments (Huston 1992). The models have successfully
predicted changes in species composition and woody
stem size structure during succession (Shugart 1984,
Horn et al. 1989, Shugart and Prentice 1992). Because
the models output successional trajectories, they have
on occasion been used to predict animal community
responses to disturbance, by splicing these trajectories
with previously known correlations between animal
distributions and plant community composition (Smith
et al. 1981, Smith 1986).

The current generation of simulators, such as SOR-
TIE (Pacala et al. 1993) and ZELIG (Smith and Urban
1988), relaxes these pragmatically justified assump-
tions. Methods have been developed to estimate, from
field data, parameters in species-specific submodels for
growth, mortality, fecundity, dispersal,“and establish-
ment (as affected by local resource abundance), and in
submodels of local resource availability (as affected by

_individual resource acquisition [see Pacala et al. 1993,

and references therein]). The newer models are spa-
tially explicit in three dimensions. Each individual tree
has a specified spatial position and canopy geometry;
mechanistic, spatially localized processes govern re-
source availabilities; recruits are produced endoge-
nously; and, dispersal is spatially explicit. At present,
these models predict some things with reasonable ac-
curacy for northeastern US forests (Pacala et al. 1993)
including: (a) structural (i.c., geometrical or architec-
tural) forest features, particularly basal area, foliage
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profile, and age structure, all by species; (b) species
diversity patterns through time and space.

This brief overview highlights the kind of output
currently generated by simulators, potentially usable as
inputs for animal SEPMs. The first requirement, of
course, is a set of empirical descriptors for habitats
potentially occupied by a given animal species. It is
better to have a mechanistic understanding of habitat

- use, but this is not strictly necessary, and is in any case’

often unavailable.

Predicting animal habitat distributions

Sometimes, the distribution of an animal species may
be adequately predicted by simple structural features.
If woody stem density (say, exceeding a given DBH)
is correlated with a given animal species’ presence,
extant plant models can directly output an input pa-
rameter for the animal models (Smith 1986). Or, the
simulators can be used to generate’transition rules
among cell states in landscape models such as BACH-
MAP (Pulliam et al. 1992) or OWL (Noon and
McKelvey 1992), and the models can be run with the
transition rules. At times, a simple transformation or
model augmentation may be needed to forge a link
between a vegetation model and an animal SEPM. For
instance, combining the age structure of the forest with
a mortality submodel allows one to estimate the rate
that dead stems in different diameter classes are pro-
duced (Morrison and Raphael 1993). Together with ad-
ditional information on decomposition rates as a func-
tion of stem diameter, one could predict the standing
crop of resources (e.g., nest sites, foraging substrates)
for a guild of woodpeckers. (For an example of this
approach, see Garman et al. 1992.) Certain structural
features of vegetation not currently produced by the
simulators may be important. Consider again the Am-
azonian bird community example. Along the sandbar-
to-forest gradient, average tree height and diameter in-
crease. These variables may not directly matter to
insectivorous birds, which instead respond to other,
_ correlated structural variables. A dominant group in the
insectivorous bird assemblage is the flycatching guild.
Flycatchers sit on a perch and launch attacks after prey
into open spaces, and different-sized species use dif-
ferent-sized spaces for turning and maneuvering (Leis-
ler and Winkler 1985). To a flycatching bird, a forest
has a “Swiss cheese™ structure; the important aspect
of the three-dimensional structure of the forest is the
frequency distribution of “hole"" sizes constraining the
fiycatching strategies mechanically feasible in a given
forest. Current forest simulators do not directly predict
such three-dimensional structural features (but see Ur-
ban et al. 1989). It is an open question as to how com-
plex the models must be made to make such predictions
directly. A simpler approach would be to carry out
additional field studies and construct statistical re-
sponse surface models that relate key structural fea-
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“tures to those vegelation attributes alrcady well pre-

dicted by the models.

Along with predicting mean vegetation states. forest
simulators predict with reasonable accuracy variances
around the means and spatial autocorrelations. Given
that different animal species differ in habitat require-
ments, variance estimates for structural measurements
may be important outputs from plant models, for in-
stance in estimating how animal diversity might scale
with successional age. or in defining the spatial scale
of variation in the plant community to which the animal
community can respond (Urban and Smith 1989).

Predicting temporal fluctuations in resources

Current plant models adequately predict structural
attributes and species composition, but rather poorly
predict temporal patterns in the availability of certain
key resources (e.g., seeds, flowers). For instance. seed
production and survivorship exhibit considerable spa-
tial and (especially) temporal variation because of
masting and seed predation, among other factors. Most
forest models do not capture this variability. This de-
ficiency does not markedly affect the overall power of
the model in predicting vegetation dynamics; for ex-
ample, doubling the number of seeds that fall in a fresh-
ly opened site may have little effect on which tree
species captures the resultant gap. Yet this same mag-
nitude of variation in food supply. could dramatically
affect seed predator dynamics, with reverberating ef-
fects through the food web. We expect that current plant
models will be more useful in providing inputs for some
spatially explicit animal models (e.g., if vegetation
structure is paramount in explaining animal distribu-
tional patterns), than for others (e.g., if resource avail-
ability drives animal population dynamics).

Scaling up models

Recently Shugart and Prentice (1992) discussed the
problem of scaling up local, individual-tree-based eco-
system models to landscape, or even global, scales. The
range of approaches they outline should also be useful
in linking spatially explicit vegetation and animal mod-
els. Shugart and Prentice point out that with recent ad-
vances in supercomputers and massively paraliel com-
puting, it should soon be feasible to carry out gap model
simulations for entire landscapes. Thus, one could take
a brute force method to project landscape dynamics and
how this is tracked by mobile animal populations.

However, it will often be more useful to devise sim-
plifications and -short-cuts for studies carried out at
large spatial scales. This raises the problem of model
aggregation (Rastetter et al. 1992). The two primary
approaches to mode! aggregation are formal and op-
erational aggregation. To complete a formal aggrega-
tion, one must find a way of omitting or averaging fine-
scale information (a scheme of aggregation)for which
the model converges mathematically to a simpler sys-
tem at some larger scale (see Iwasa et al. 1987, 1989,
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Levin 1992). To date, forest simulators have resisted
attempts at formal aggregation (though admittedly, few
such efforts have been made). For example, S. W. Pa-
cala, S. A. Levin, and J. Saponara developed a version
of SORTIE (unpublished data) containing a grid with
user-specified cell size. They performed runs at a series
of cell sizes in which either the positions of trees were
randomly scrambled within each cell (in each iteration),
or the position of each tree was rounded to the center
of the cell containing it. They found that gap phase
species, such as Betula alleghaniensis (yellow birch),
were unable to persist in the scrambled treatment, even
if cell sizes were considerably smaller than a canopy
gap (all cell sizes <100 m?). This implies that very
fine-scale spatial information is essential to maintain
diversity. Alas, at such small scales, forest simulators
such as ZELIG or SORTIE belong to a notoriously
intractable class of mathematical models (stochastic
nonlinear point or contact processes, see Durrett 1988,
Durrett and Levin 1994). Though this is a discouraging
observation, useful schemes of formal aggregation may
yet be discovered for predicting forest species com-
position, or other forest characteristics important for
animals (e.g., foliage height profiles across a land-
scape). .

In contrast, to complete an operational aggregation
one simply fits a simple dynamical model to output of
a forest simulator. For example, gap models can be used
to estimate probabilities of species replacements, or
transitions among multivariate state classes used to
classify animal habitats. These probabilities can then
be used in Markov matrix models summarizing the en-
tire pattern of transitions among vegetation-habitat
classes (Horn 1975).

Alternatively, consider a system of finite difference
equations of the form: N,,., = F(N), where N,, is the
abundance of species i at time £, and N, is the vector
of abundances of all species at time . S. W. Pacala
(unpublished data) fit systems of this form to the output
of the simulator SORTIE. Excellent, predictive fits
were obtained from:

N,

N
$ o

Thd)

Niwa =

i=(,2...,0,
1+(ri-1)

1)

where N,, is the basal area (in hectares) of species iat
time ¢, the time step is 50 yr, Q is the number of species
(up to 10 in SORTIE), and the remaining parameters
have the same meaning as in the Lotka-Volterra com-
petition equations.

Fig. 1 provides one example showing that, when cal-
ibrated using one set of runs, system (1) predicts the
behavior of the simulator in independent runs. Systems
such as (1) provide neither good fits nor accurate pre-
dictions if the state variables summarize areas that are
too small (i.e., 0.1 ha), essentially because stochastic
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effects dominate at small spatial scales, or if the time
step is too long or too short (i.e., 10 or 100 yr) (S. W.
Pacala, unpublished data). We suspect that in this ex-
ample, the 50-yr time step works because it is consis-
tent with the time scale of the development of advance

. regeneration (a layer of suppressed saplings of shade-

tolerant species in the understory). For many spatially
explicit animal models, approximate models such as
(1) may provide sufficient resolution and thus an casy-
to-scale-up alternative to complex vegetation simula-
tors that track each plant.

The problem of reconciling scales
across models

The problem of scaling-up forest models is one facet
of a larger problem: the range of spatial and temporal
scales targeted by plant and animal models may differ.
For instance, gap models traditionally use a unit of
=~0.1 ha (Huston 1992), yet spatial models for single
vertebrate species typically use spatial units equal to
one territory or home range. For example, BACHMAP
uses an array of 2.5-ha cells, whereas OWL (Noon and
McKelvey 1992) has much larger units (>0.5 km?). If
organisms have nonlinear responses to resource avail-
ability or habitat characteristics (e.g.. & bird may need
only a single suitable nest site within its territory),
simply averaging over multiple runs of the local plant
models may give a misleading picture of habitat qual-
ity. This is particularly worrisome if one does not un-
derstand the mechanisms actually determining habitat
quality and is instead using descriptive, correlative
models. Conversely, invertebrates may be sensitive to
small-scale heterogeneities that are only noise in the
plant models. Successful linkages between animal and
vegetation models will require not only direct corre-
spondence between the output and input variables in
each model, but also the judicious meshing of spatial
and temporal scales. '

We should emphasize that in addition to the class of
models emphasized above, another major type of veg-
etation model comes from forestry models that use in-
dividual trees or stands as basic units (e.g., PROG-
NOSIS, Wykoff et al. 1982; J. Liu and P. §S. Ashton
have carried out a comparative review [in press}). Us-
ing regression techniques and site-specific remeasu-
rement data (e.g., forest variables and site quality),
forestry models have as a primary aim  projecting
growth and yield of timber species in managed forests.
However, such models may be useful beyond their pri-
mary purpose, because their outputs include variables
that determine the structure of animal habitats, includ-
ing: tree density (stems per area), heights, basal area,
crown ratio, amount of cover and leaf biomass in the
tree canopy by height class, height and cover of shrubs,
forbs, and grasses in the understory, and overstory and
understory cover, and stand biomass (Moeur 1986)—

_all standard descriptors of habitat for animal popula-

tions.
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FiG. 1. The ability of the simple model (1)
to predict the outcome of simulations of two-
species communities; Tsiuga canadensis (Ca-
nadian hemlock) is denoted by circles. The cir-
cles on the erratically rising line indicate output
from the complex forest simulation; the uncon-
nected circles, smoothly rising through time, are
predicted from model (1) in the text. The
squares similarly denote dynamics of Fraxinus
americana (white ash) generated by the simu-
lator (squares along erratic, peaked line), and
the approximate model (1). Each run was ini-
tiated with 300 saplings/ha of 1 cm diameter.
The initial ratio of ash to hemlock was 5 in (A)
and 0.2 in (B). In all cases, the models had been
previously calibrated on independent runs.

Basal Area (m?/ha)
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Gap models vs. forestry models

Gap models such as ZELIG and forestry models
could play complementary roles in animal modeling.
The former are developed for natural foresgs, the latter
for managed forests or plantations. Gap models have
typically dealt with the dynamics of an area ranging
“from 0.01 to 0.1 ha, and their output may be quite
sensitive to simulated area (Shugart 1984). In contrast,
forestry models deal easily with large tracts of forest,
and so may be especially useful for animals with large
territories such as the Spotted Owl (Noon and Mc-
Kelvey 1992). With site-specific forest and/or environ-
mental information, forestry models have the potential
to provide spatially specific outputs for spatially ex-
plicit animal population models. For instance, Liu
(1992) successfully used a stand-level forestry model
(Borders et al. 1990) to simulate the habitat and pop-
ulation dynamics of the Bachman's Sparrow. A few
gap models have been used to assess animal habitats.
An early example was provided by Smith et al. (1981),

600
Year

800 1000

who developed two gap models to assess the impact of
various management schemes on avian populations.
Garman et al. (1992) modified ZELIG to evaluate the
suitability of a Douglas-fir forest under different man-
agement schemes for 14 species of birds in western
Oregon. Structural features such as tree density, basal
area, snag, and log density were simulated for 500 yr.
A notable feature of this work is that routines simu-
lating snag and log dynamics were integrated into the
generic version of ZELIG, along the lines of the wood-
pecker scenario sketched above. '

CONCLUSIONS

Vegetation models are no panacea for animal SEPMs,
even at long time scales. Animal communities are com-
posed of species that both experience the world at vastly
different spatial scales (Addicott et al. 1987, Holt 1993)
and exhibit distinct, species-specific responses to veg-
etation. Because current vegetation models target a re-
stricted range of spatial scales and output variables (viz.,
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those pertinent to questions in plant community ecology
or forestry), these models are likely to be more useful
for some consumer groups than for. others.

Despite these cautionary remarks, we believe the re-
cently developed plant models alluded to above are ripe
for direct linkage with spatially explicit animal models.
Because vegetation structure is usually important for
most members of animal assemblages, linkage to veg-
etation models provides one avenue for the development
of more general, multi-species approaches-to spatially
explicit animal models. Such models, if successfully de-
veloped, could provide essential tools for assessing ef-
fects on the landscape of shifting land-use practices,
natural catastrophes, and global climate change, and ul-
timately assist in mitigating the pernicious influence of
such forces on renewable resources and the conservation
of endangered species. Fostering these linkages will be-
come increasingly important as ecologists try to under-
stand and, if possible, mitigate the looming effect of
. processes operating over long time scales.
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