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CHAOTIC POPULATION DYNAMICS FAVORS
THE EVOLUTION OF DISPERSAL

Dispersal—movement between populations—is a central feature in the biology
of most organisms. There is an enormous literature on the ecology and evolution
of dispersal (e.g., Swingland and Greenwood 1986). Many theoretical studies
have explored factors favoring the evolution of dispersal, including competition
among kin and inbreeding effects (e.g., Hamilton and May 1977; Comins 1982;
Frank 1986; Taylor 1988; Wiener and Feldman 1991), the influences of extrinsi-
cally generated, spatiotemporal heterogeneity (Gadgil 1971; Roff 1975; Metz et
al. 1983; Levin et al. 1984; Cohen and Levin 1991), and the interplay of within-
population and between-population selection (Kuno 1981; Olivieri et al. 1995)..

It has been demonstrated (Hastings 1983; Holt 1985) that if individuals dis-
perse at fixed per capita rates between sites with local density dependence, then,
without temporal heterogeneity, spatial heterogeneity in abundance alone is un-
able to select for dispersal (see also Liberman and Feldman 1989). The reason is
that if habitats vary in carrying capacity, K, there is an asymmetric flow of
individuals from high-X to low-K patches (Holt 1985). Such flow, in turn, reduces
density in high-K patches (increasing fitness there) while lncreasmg density in
low-K patches (depressing fitness there). Because dispersal is basically mong
individuals down gradients in fitness, on average, dispersal is disfavored in spa-
tially (but not temporally) heterogeneous environments. These theoretical results
highlight the importance of temporal hetcrogeneny in favoring dispersal. In a
metapopulation of open patches, if the rank order of fitness among patches varies
through time, dispersal can be selectively advantageous (Bull et al. 1987). Dis-
persal in effect provides an evolutionary strategy that permits individuals to ex-
ploit spatiotemporal variation in fitness. The theoretical expectation of a relation
between temporal variability and dispersal matches some data from natural popu-
lations (Roff 1990).

We previously examined a simple two-patch, dlscrete-generauon model lnv
which individuals dlspersed at constant rates between two patches and experi- -
enced density dependence in each patch (McPeek and Holt 1992), We showed
that temporal variation in density-independent growth: rates, partially uncorre-
lated across patches, favored dispersal. Moreover, a polymorphism in dispersal
rates could be stably maintained if the two patches were heterogeneous (with
different carrying capacities). Other authors have also shown that dispersal poly-
morphisms may be maintained in temporally and spatially heterogeneous environ-
ments (Frank 1986; Cohen and Levin 1991; Karlson and Taylor 1992)

In this note, we demonstrate that chaotlc population dynamics in otherwise
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constant (but patchy) environments favors dispersal and that chaotic populations
tend to evolve toward evolutionarily stable states with a mixture of dispersal
rates when patches differ in X.

Increasing evidence suggests that many natural populations exhibit- chaotic
dynamics (e.g., May 1976; Schaffer and Kot 1985; Sugihara et al. 1990; Tilman
and Wedin 1991; Turchin and Taylor 1992; Hastings et al. 1993; Ellner and Tur-
chin 1995). A signature of chaos is sensitive dependence on initial conditions
(Ruelle 1989)—trajectories with slightly different initial conditions diverge (i.e., ,
have positive Lyapunov exponents) (Hastings et al. 1993). Chaotic trajectories in
simple population dynamic models portray populations that sometimes rise above
carrying capacity, and sometimes fall below, in a seemingly random fashion when
viewed over long enough time scales (e.g:, May and Oster 1976).

Given density dependence, fluctuations in population size are experienced by
individuals as fluctuations in fitness, described, for instance, by temporal variance
in per capita growth rates (an appropriate measure of fitness for clonal organisms,
and a reasonable approximation in many other cases) (Charlesworth 1994). Chaos
is a potent generator of temporal variation in fitness. Previous theoretical treat-
ments of the selective conditions favoring dispersal in heterogeneous. environ-
ments (Gadgil 1971; Balkau and Feldman 1973; Roff 1975; Asmussen 1983; Metz
et al. 1983; Levin et al. 1984; Bull et al. 1987; Liberman and Feldman 1989;
Cohen and Levin 1991; McPeek and Holt 1992; Olivieri et al, 1995) have assumed
that extrinsic environmental variation provides the requisite spatiotemporal vari-
ance in fitness. The basic point we make here is that chaotic dynamics can also
generate the fitness variation needed to favor dispersal, in the absence of these
external driving forces. :

In patchy systems with chaos but no dispersal, subpopulations on different
patches with slightly different initial conditions will diverge as their population
trajectories unfold in time. Given a sufficiently long time series, the rank order of
fitness among patches should vary, even if the environment is physically constant.
Based on this verbal argument, we conjectured that chaotic dynamics in a patchy
environment should favor the evolution of dispersal. To examine this conjecture,
we have studied a wide range of dynamic models for patchy populations with
nonoverlapping generations. In this note, we use one exemplar model to illustrate
the basic effect. .

For simplicity, assume clonal genetic variation. In patch j in generation 1, clone
i has density Ny(1). Clones differ only in a fixed dispersal rate, e,, defined as the
fraction of individuals dispersing from their natal patch each generation. Assume
realized fitness in patch j, W/(Ny[1]), is identical for individuals of all clones and
depends functionally on the summed abundances N (1) of all clones in patch j
(i.e., density dependence is spatially localized). Without dispersal, the per capita
growth rate for clone i in patch j is W/(Ny[f]), and its dynamics are governed by
the usual recursion: :

Nyt + 1) = W(ONLO).

Given dispersal, a fraction m of dispersers survive to enter their nonnatal patch
(the quantity 1 ~ m is a measure of the “‘cost of dispersal’’). For two clones in
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two coupled patches, we assume the dynamics can be described by a model (see
McPeek and Holt 1992), which for clone 1 is as follows:

N“(t + l) = (1 hd el)W'[Nn(t)]N“(t) + mele[er(')]le(t) N
and '

Nyt + 1) = (1 = e )W, [N, (DIN,(0) + me,W\[Nn(DINy, (0.

Similar equations describe clone 2 or, more generally, clone i (recall Ny is
summed abundance of all clones in patch j). The above model assumes that
reproduction and density dependence precede dispersal, the census immediately
follows dispersal, costs of dispersal for a clone are experienced entirely by those
individuals who actually disperse, and population densities are sufficiently high
that they can be represented by continuous state variables (local densities) rather
than discrete integers. The last assumption implies that when a given clone is
sufficiently rare, it does not experience significant density dependence from itself
but only from the more common clone, which in turn reduces the importance of
kin interactions (as in, e.g., Hamilton and May 1977; Taylor 1988) versus ecologi-
cal mechanisms in the evolution of dispersal (Holt 1985). -

For illustrative purposes, we here use the functional form W, = exp(r{l —
ZNy/K;)) (the Ricker model; May and Oster 1976), generalized to multiple clonal
genotypes, to describe local population growth in patch j (without dispersal). The
quantity N is the abundance of clone J in'patch i, and the parameters ryand KX;
are, respectively, the intrinsic rate of increase and the carrying capacity of patch
J (which we assume to be the same for all clones). (Other density-dependent
submodels describing within-patch growth lead to qualitatively similar conclu-
‘sions to those reported here; B. D. Holt and M. A, McPeek, unpublished data.)
In an isolated patch, if 0 < 1; < 2, the population stabilizes at X; for2<r<
2.69, it exhibits stable limit cycle behavior; for 2.69 < r; the dynamics are chaotic
(May and Oster 1976). \

Consider the implications of dispersal in the absence of direct dispersal costs
(i.e., let m = 1). Because clones have identical realized fitness within patches,
evolution in our model is driven solely by how dispersal modulates interpatch
variation in fitness. Dispersal influences clonal fitness in three ways. First, dis-
persal has a demographic effect on fitness: because of density dependence, by
changing within-patch densities via immigration and emigration, dispersal mod-
ifies patch-specific fitnesses (Nakano 1981; Holt 1985). Second, because of such
density dependence, the rate of dispersal indirectly influences the spatiotemporal
correlation structure in local fitnesses: Third, the magnitude of dispersal for a
given clone determines how that clone averages among spatially variable local
fitnesses to determine its overall global fitness (a kind of *‘bet hedging”’; Seger
and Brockmann. 1987). All three of these effects enter in determining how dis-
persal will evolve. '

Figure 1 shows examples of characteristic patterns in evolutionary dynamics
we observe when clones differing in dispersal rate (and no dispersal costs) com-
pete against each other in numerical experiments. In the examples shown, the
ordinate is the frequency -of clone 1, with a high dispersal rate of e, = 0.5,
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FiG. 1.-—~Numerical examples of the influence of chaos on the evolution of dispersal in a’
two-patch environment. The basic model structure is described in the text. The ordinate is
the frequency of clone 1, with e; = 0.5 (high dispersal rate), competing against clone 2, with
e, = 0.01 (low dispersal rate). Four examples (denoted by letters) are shown for two patches
with carrying capacities of 100 and 50 and equal r;'s. Example q has r = 1 (stable dynamics),
initial frequency of clone 1, po = 0.95. The high-dispersal clone is selectively disfavored.
Example b has r = 2,5 (stable limit cycles); py = 0.95. Dispersal is again disfavored. Example.
c has r = 3.0 (chaos); pp = 0.95. A polymorphism persists with both high- and low-dispersal
clones. Example d has r = 3.0 (chaos); py = 0.05. The high-dispersal clone successfully
invades, The persistent dispersal polymorphism is characterized by chaotic genetic dynam-

ics, punctuated by sharp increases and gradual declines in the frequency of the high-dispersal
clone.

competing against clone 2, with a low dispersal rate of e, = 0.01. Four examples
are shown for two patches with carrying capacities of 100 and 50 and equal r;’s
(i.e., both clones have equal r’s, within and between patches):

1. r = 1 (stable dynamics), initial frequency of clone 1 is p, = 0.95. The
high-dispersal clone is selectively disfavored.

2. r = 2.5 (stable limit cycles); p, = 0.95. Dispersal is again disfavored; the
patches fluctuate in abundance but with synchronized cycles.

3. r = 3.0 (chaos); py = 0.95. A polymorphism persists with-both high- and
low-dispersal clones.

4. r = 3,0 (chaos), po = 0.05. The high-dispersal clone successfully invades,
when initially rare, but without fully displacing the low-dispersal clone. Together
with example 3, this example suggests that the polymorphlsm is robust, since it
arises from widely different initial conditions.

Two general features emerged in our simulations. First, chaotlc dynamics per-
mits a dispersing clone to invade, given an initial condition of low dispersal; in
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contrast, dispersal is disadvantageous given stable or cyclic dynamics. Second,
the population evolves toward a persistent polymorphic state where there is a
mixture of low- and high-dispersal clones, which fluctuate in their relative fre-
quencies. It is useful to look at these two general features more closely.

At sufficiently low intrinsic rates of increase (i.e., low r's), the population
settles into stable point or cyclic equilibria (May and Oster 1976). Given popula-

“tion stability, clones with relatively lower dispersal rates displace clones with
higher rates, as predicted analytically (Balkau and Feldman 1973; Asmussen 1983;
Hastings 1983; Holt 1985; Liberman and Feldman 1989). As noted above, the
intuitive reason for dispersal to be disadvantageous in stable populations is that
dispersers flow from high-K to low-K patches, indirectly increasing fitness in the
former, while decreasing fitness in the latter (Hastings 1983; Holt 1985; McPeek
and Holt 1992). Hence, dispersers have lower fitness, on average, than nondis-
persers. The evolutionarily stable state of a dynamically stable population is zero
dispersal. : ' ‘

The evolutionary outcome changes dramatically at higher r's, permitting cha-
otic dynamics (fig. 1). The parameter conditions that give rise to chaotic popula-
tion dynamics define a regime of persistent-polymorphism in dispersal rates, given
that patches have different K's. This regime is characterized by chaotic genetic
dynamics, in which in time series (see fig. 1) one sees gradual declines in fre-
quency of the high-dispersal clone, punctuated by sharp increases in frequency.
These episodic increases in the frequency of the high-dispersal clone increase the
mean dispersal rate, which in turn tends to synchronize population dynamics in
the two patches. Once the patches are synchronized, dispersal becomes dis-
favored (as with stable or cyclic dynamics). The frequency of the high-dispersal
clone then declines, the patch dynamics become progressively uncoupled, and
the shifting rank order of relative fitnesses among patches generated by chaotic
dynamics once again reemerges. This dynamic by-product of a low average dis-
persal rate in turn provides the conditions in which dispersal is once again advan-
tageous. The net effect is a pattern of bounded fluctuations in the frequency of
dispersal. ~

When clones with dispersal rates ranging from completely sedentary (e = 0)
to uniform mixing (¢ = 0.5) compete in pairwise trials, three evolutionary do-
mains tend to emerge. An example is shown in figure 24. In region a of the figure,
low dispersal is favored over no dispersal, and no polymorphism is observed; in
region b, high dispersal rates are disfavored when competing against more moder-
ate dispersal rates, and no polymorphism is maintained. In effect, when clones
that are similar to each other in dispersal compete, the system moves toward an
inflection or saddle point (roughly e = 0.125, for the example shown with K, =
100 and X, = 50). In region c, clonal combinations with high and low. dispersal
rates (relative to the inflection point) coexist and beat out clones with intermediate
dispersal rates. Similar outcomes emerge for each pair of patch-species carrying
capacities we have examined, in that pairs of clones with high and low dispersal
rates (relative to a saddle point, which varies with patch carrying capacities) can
coexist and displace clones with intermediate dispersal rates. Lo

The arrows in figure 24 indicate the direction of evolutionary trajectories ob-
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FiG. 2.-—A, The outcome of pairwise and three-way trials among competing clones with
dispersal rates ranging from completely sedentary (¢ = 0) to complete, uniform mixing (e
= 0.5). The parameters used are r) = r,-= 3, K, = 100, K, = 50. By convention, clone 1
has the higher dispersal rate. In region a, clone 1 displaces clone 2; that is, the population
evolves toward higher dispersal. In region b, clone 2 displaces clone 1; that is, the population
evolves toward lower dispersal. In region ¢, clones 1 and 2 persist; that is, the population
evolves toward intermediate dispersal, with a polymorphism in dispersal rates. The heavy
arrows indicate the direction of evolutionary change in the system if three clones compete
at once, If all possible pairs of three clones have dispersal rates falling in region a, the one
with the highest dispersal rate displaces its competitors. In region b, the clone with the
lowest dispersal rate wins. In region ¢, the clone with intermediate dispersal rate is excluded,
and a persistent polymorphism of high- and low-dispersal types emerges. B, The influence of
patch-specific carrying capacity on the positions of the regions of parameter space describing
monomorphlsm and polymorphism, in pairwisé competition between clones differing only -
in dispersal rates. In all, r, = r, = 3. The boundaries between the three regions are shown
for three different combinations of carrying capacities for the two patches. The solid line
repeats the line in A. The advantage of dispersal weakens with increasing spatial disparity
in K’s. In the limiting case of equal K's, dispersal can successfully invade nondispersing

populations; however, as discussed in the text, populations synchronize such that abun-
dances are equal across space, and thenceforth clonal frequency remains unchanged at
levels dependent on initial abundances.

served when mutants of small effect arise and *‘test’ preexisting monomorphic
or polymorphic populations. If all possible pairs in a clonal triplet lie in region a,
the clone with highest ¢ wins; when all combinations fall in region b, the clone
with lowest e supplants those with higher e’s; when a persistent polymorphism
is feasible (region c), intermediate values for e are driven extinct. Given sufficient
time and genetic variation, a polymorphism for dispersal (with high [e near one-
half] and low [e near zero] clones coexisting) is a likely evolutionary outcome.

The particular combination of dispersal rates that can coexist in a persistent
polymorphism varies with the relative carrying capacities of the two patches.
Figure 2B shows a numerical example. We should emphasize that the “‘inflection
point” of the figure is not an evolutionarily stable strategy (ESS) dispersal rate
but an evolutionary saddle. The system evolves toward it if all clones have either
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“higher or lower dispersal values; but if the clones straddle it, a polymorphism
persists if one clone disperses at a higher rate, and another at a lower rate, than
the saddle (with clones dispersing at intermediate rates being excluded).

The existence of this evolutionary attractor reflects two opposing forces. With-
out dispersal, chaos generates spatially uncorrelated variance in fitness, favoring
dispersal. But high dispersal synchronizes population dynamics, producing condi-
tions selecting against dispersal. Inspecting the patch-specific abundances of each
clone (data not shown), we observe that the high-dispersal clone tends to predom-
inate in the low-K patch, whereas the low-dispersal clone tends to predominate
in the high-K patch. This partial spatial segregation permits clonal coexistence.

Because the above model describes the dynamics of asexual clonal genotypes,
it can also portray competition between species. Our model shows that function-
ally identical species that differ solely in dispersal rates can coexist in a spatially
heterogeneous landscape, if their intrinsic rates of increase are sufficiently high
to generate chaotic dynamics. Differences in dispersal rate need not be correlated
with differences in local competitive ability, or niche differences, for regional
coexistence to be observed. The model provides one clear way in which chaotic
dynamics may matter in addressing traditional questions in community ecology,

- such as competitive coexistence. ‘

The specific results reported in the figures assume that dispersal has no costs
@i.e., m = 1). Repeating the simulations, but using small dispersal costs (e.g.,
m = 0.95), leads to essentially the same outcomes as shown in figure 2A and B
(R. D. Holt and M. A. McPeek, unpublished data), It is obvious that large costs
to dispersal tend to disfavor dispersal. For instance, if m = 0, dispersal is always
disfavored, regardless of the value for r. However, dispersal can be strongly
favored in populations with chaos, surmounting even large dispersal costs. For
instance, in the example shown in figure 1, the high-dispersal clone successfully
invades a population made up of low dispersers, even if m = 0.3.

A limiting case of the model is for the two patches to have identical carrying
capacities. In the above model, if K's are equal, dispersal tends to synchronize
dynamics in the two patches, such that abundance, and hence fitness, becomes
equal in the two patches (even if abundances stiil vary chaotically through time).
Without direct costs to dispersal, given such synchronized dynamics and spatial
homogeneity, it is clear that the rate of dispersal will be a neutral trait.

However, if one starts the system with zero dispersal and chaotic dynamics,

. such that uncoupled patches with slightly different initial conditions follow differ-

ent trajectories around the same K, numerical studies show that a high-dispersal

clone can always increase when rare. As such clones increase in frequency, they
have the demographic effect of synchronizing the patch dynamics, and the system
becomes selectively neutral (without the dispersal clone going to fixation). More-
over, the frequency of the dispersing clone at the time neutrality is achieved
varies greatly, depending on the detailed initial conditions of the populations in

the two patches, v

Thus, chaotic dynamics on its own, in the absence of spatial heterogeneity in
carrying capacity, does favor dispersal over nondispersal when the population is
largely comprised of nondispersers, but it only weakly defines the ultimate state
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of the system. However, it should be noted that the neutral stability observed
with two identical patches and synchronized dynamics is unlikely to be particu-
larly relevant to natural populations, in which spatial variation in carrying capac-
ity is the norm, not the exception. '

The following simple heuristic argument helps explain why chaos favors dis-
persal. In the absence of dispersal, populations in different patches will have
independent population histories. Given deterministic dynamics, each population
should persist with bounded fluctuations. Such persistence implies that in each
patch, the long-term geometric growth rate (local fitness) is unity, with variation
through time around unity in realized fitnesses. Imagine that all patches can be
described by the same frequency distribution in realized fitnesses (the argument
is heuristic, because we do not provide a formal proof for this assumption).
Introduce a clone that disperses uniformly across all patches, without any dis-
persal costs. The growth rate of this dispersal clone when it is rare (too rare to
. affect local densities) will be an arithmetic average of the realized fitnesses in
each patch. Because the arithmetic average of a distribution always exceeds the
geometric average, this clone should increase each generation. Thus, clones that
disperse should always be able to invade a nondispersing, chaotic population. (A
similar argument was developed more formally in Metz et al. 1983 for populations
experiencing externally forced temporal heterogeneity in local growth rates.)

Our results.complement earlier theoretical analyses of the role of extrinsically
driven environmental variability in the evolution of dispersal (see previously cited
references). We have explored a variety of different models with localized density
dependence and chaotic dynamics. These include changing the order of dispersal
and density dependence in the life cycle, using alternative functional forms for
density dependence, increasing the number of patches, employing global versus
localized dispersal in 'spatially explicit patch arrays, blending random environ-
mental variation with chaos, and permitting dispersal rates to be patch dependent
(M. A. McPeek and R. D. Holt, unpublished data). The basic message that chaotic
dynamics promotes selection for dispersal seems to be robust to all such changes.
These changes in model structure should, of course, be quantitatively important,
in particular in determining the precise conditions leading to persistent polymor-
phisms (as in McPeek and Holt 1992), but they do not affect the force of the
conclusion that chaotic dynamics favor dispersal in patchy environments.

-Recent demonstrations (Allen et al. 1993; Holt 1993) that chaotic dynamics can
promote the global persistence of metapopulations with weak dispersal point out
the importance of moderate dispersal rates for species’ persistence. Our results
suggest that an incidental (but- welcome) by-product of evolution toward low
average dispersal rates; bounded away from zero, may be enhanced persistence
for populations experiencing chaotic dynamics. Turning this around, we see that
the ubiquity of dispersal in natural populations may be a signature of pervasive
spatiotemporal variation in fitness arising from either external environmental vari-
ation or chaotic dynamics, or both. ~

Our results highlight one potential evolutionary implication of chaotic popula-
tion dynamics. For some evolutionary questions, chaos may prove to have little
effect on the direction of evolution (e.g., as in the evolution of competitive ability;
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Godfray et al. 1992). By contrast, chaotic dynamics can crucially modulate the
evolution of any trait whose dynamics is sensitive to the existence and structure
of spatiotemporal variance in fitness. Dispersal is paradigmatic of such traits;
others include sex and diapause.
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