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2.1 INTRODUCTION

A full understanding of evolution requires one to consider the absence
of evolutionary change as well as its presence. A surprising feature of the his-
tory of life is that populations exposed to novel environments often seem to
fail to adapt to, or even persist in, those environments. For instance, Bradsaw
(1991) has noted that although many plant species have evolved resistance to
herbicides, many others have failed to evolve resistance despite repeated ex-
posure. Such evolutionary “failures” span short and long time scales (Holt and
Gaines 1992). There are many possible explanations for evolutionary conser-
vatism. In this chapter we present one class of explanations, emphasizing how
population dynamics can constrain species’ evolutionary responses to novel
environments.

We will examine the evolution of a species’ “fundamental niche,”
which is intimately tied to population persistence and extinction. If N, denotes
population size at time ¢, a population goes extinct if N, — 0 with increasing
t. The basic model for population growth in a closed, discrete-generation pop-
ulation is N;..; = AN;, where A is the finite rate of increase per generation. A
population deterministically goes toward extinction if, at low densities, A < 1.
A crisp definition of a species’ niche is thus: all sets of conditions, resources,
etc. for which A > 1 (Figure 2.1). A given habitat is within a species’ niche
if A > 1. Conversely, if » < 1, the habitat is outside the species’ niche, and
any population found there deterministically reaches densities where, in the
real world, it would face inevitable extinction due to “demographic stochas-
ticity” (i.e., chance demographic events in small populations; see, e.g., Ren-
shaw (1991).) We refer to populations inside their species’ fundamental niche
(i.e., A > 1) as “source populations” and those outside the niche (A < 1)as
“sink populations.” In this terminology, niche evolution occurs when a pop-
ulation evolves such that a sink environment becomes a source environment.
Our primary interest is in determining the circumstances in which populations
will evolve sufficiently to permit persistence in an initially unfavorable envi-
ronment,

A species’ fundamenta] niche can evolve either as a correlated evo-
lutionary response of populations that occupy source environments (“indirect
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Figure 2.1. A hypothetical species’ niche. The shaded region indicates combina-
tions of temperature and humidity conditions within which population size can increase
(A > 1). Environmental conditions in habitat A permit a population to persist determin-
istically. By contrast, in habitat B, the same population becomes extinct — unless the
niche itself evolves.

niche evolution”) or through the evolution of populations directly exposed to
sink environments (“direct niche evolution™). In this chapter we analyze four
circumstances with the potential for direct niche evolution: (1) an isolated sink
population, (2) a sink population maintained by recurrent immigration from a
source population, (3) coupled sink and source populations, and (4) a network
of source and sink populations (“metapopulation”).

The material presented here focuses on our own past and present re-
search. Important contributions to understanding niche evolution are also be-
ing made by other investigators (Pease et al. 1989; Brown and Pavlovic 1992;
Lynch and Lande 1993; Burger and Lynch 1995; Kawecki 1995).

2.2 NATURAL SELECTION AND EXTINCTION IN A
CLOSED ENVIRONMENT: DETERMINISTIC
APPROACHES

We begin with a population that has suddenly encountered a novel en-
vironment outside its fundamental niche. This could characterize a colonizing
group that encounters an inhospitable habitat, or a closed population experi-
encing abrupt environmental change. In either situation, the initial population
occupies a sink habitat. When will such a population evolve into a source,
thereby expanding its species’ niche?

Consider an isolated sink population with discrete generations. We
assume the population’s finite rate of increase at time ¢ is identical to the mean
fitness of its members, W,. Population size thus changes according to

Nt+1 = WtNt- (2'1)

Since the population is initially a sink, Wy < 1. If the finite rate of increase



does not change, then
N, = W(;No ‘ (2.2)

where Ny is initial population size. Although the population deterministically
tends toward extinction, N, # O for any finite 7. A more complete treatment
that included demographic stochasticity (Renshaw 1991) would show that ex-
tinction becomes increasingly certain as the population declines to small sizes.
For now, we will bypass the complexities of demographic stochasticity en-
tirely by using a crude deterministic approximation for its effects. Specifically,
we assume there is some “critical density” N, below which a population is
highly vulnerable to rapid extinction. This approximation can be justified on
the grounds that the probability of rapid extinction often rises dramatically as
population size declines (MacArthur and Wilson 1967). (The results in the next
section offer a more direct justification.) One can thus approximate the time
until extinction, #g, by solving N, = NoW}, for t: 1z = (In N, — In No)/ In W,
generations until extinction.

Without evolution, extinction is inevitable. However, a population
may be able to avoid extinction if it can adapt sufficiently rapidly in the sink en-
vironment. This follows from Fisher’s fundamental theorem of natural selec-
tion which suggests, roughly, that given genetic variation in fitness, mean fit-
ness, W,, should increase through evolution by natural selection (Fisher 1958;
Burt 1995). Consider the following very simple model of this adaptive pro-
cess: assume mean fitness increases by a fixed amount § each generation, i.e.,
W11 = W, + 8. Then 1 generations after a population first encounters the sink
environment, W, = Wy + 6. Population density will increase whenever mean
fitness exceeds one. Thus, the first time at which a population grows, ¢z, can
be found by solving 1 = W, = Wy +15 forr: 1z = (1 — Wo)/8. Adaptation will
“rescue” a population from extinction if rx < ¢z, whereas extinction is likely,
even with adaptive evolution, if rz > 1.

This simple model gives us a sense of the important time scales in-
volved in the race between evolution and extinction, but it is much too sim-
plistic because mean fitness does not generally increase at a constant rate per
generation. We now consider a more realistic evolutionary model that more ac-
curately describes changes in a population’s mean fitness under selection, viz.,
a quantitative genetics model.

This model makes the following basic assumptions. First, we assume
individual fitness depends on a trait, z, with polygenic autosomal inheritance
(e.g., body size). We assume fitness in the novel environment has the form
W(z) = Wpax exp [—zz/2a)], where w is a parameter inversely related to the
strength of selection, so that (without loss of generality) the optimum pheno-
type lies at z = O with fitness Wiy,x. This “Gaussian” form can represent a vari-
ety of biological situations, including directional and stabilizing selection (it is
also mathematically convenient). The distribution of phenotypes in generation
1, p:(z), is assumed normal with mean d, (the distance of the mean phenotype
from the local optimum, z = 0) and variance P:

pi(@) = @n P)" 2 exp[~(z - d)?/2P].

Quantitative traits are often normally distributed when measured on an appro-
priate scale (Falconer 1989). By completing the square in the exponent and



simplifying, it can be shown that the mean fitness in generation ¢ is

- . —d?
W; = / W(Z)Pt(Z) dZ = WeXp [m] (23)

where W = Wiux/0/(P + o) is the population growth rate when the mean
phenotype is at the local optimum (d = 0). Finally, we assume the effects of
other evolutionary forces (e.g., drift) are negligible.

A standard result from quantitative genetics (Falconer 1989; Lande
1976) predicts that the mean phenotype, d;, of a quantitative trait z changes
between generations (i.e., evolves) according to the equation

Ad, &

diy1 —d; = h’s, (2.4)
where A2 is the “heritability” of z and s s the “selection differential.” Roughly,
h? measures the degree to which offspring phenotypes resemble their parents’
phenotypes, in the absence of common environmental influences. The selec-
tion differential is the difference between the mean phenotype of individuals
selected to be parents and the mean phenotype before selection. For our model,

def - —d, P
= W)/ W, dz —dy = —— 25
s fz[ @)/ W] p+(2) dz ~ d; o (2.5)
which implies that (2.4) has the form
d, P
Ady = —h?——, .
! h Pt+w 26)
Therefore,
1—-hr¥)P
diy1 =di + Ad, = er )t +( ) d, = kd, 2.7
P+ow

where k = [w + (1 — k%) P]/(P + ) is the “evolutionary inertia” of the mean;
0 <k < 1. Note that k will be near 1 if heritability is low (h? = 0) or selection
is weak (@ > P). If P and h? are constant, then

d, = k'dy. (2.8)

We now turn to the dynamics of population density, which are de-
scribed once again by (2.1). Because W changes through time, N, =
No ]'[;;(1) W;. Recall that our goal is to determine the times 7z and ¢z. To do this,
we try to write No [T'3 W; as an explicit function of . Substituting (2.3) for W,
into (2.8) results in an expression with the geometric series ZE;}, k% in the ex-
ponential term. This series can be rewritten in the closed form (1—k%)/(1—k2),
giving

2.9)

o —d3(1 — k%)
Ny = NoW exXp m .
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We now use (2.9) to compute ¢, the time to reach N,, and 1R, the first
time at which W > 1. By definition, ¢z must satisfy

. 1( 42 ~ ke
N, = NoW's exp [--2- (P+°w> (11 _kk )] . (2.10)

While it is not possible to solve for 7z explicitly, (2.10) provides an implicit
definition for 7z as a function of the parameters. Two parameters can be elim-
inated by defining vy = N,/Ny and Bo = dg /(P + w). These give “natural”
scales for measuring, respectively, the relevant initial population density and
distance from the optimum phenotype. This rescaling reduces (2.10) to

N - L2
vo = W' exp [—% (11 kk >] 2.11)

The time ¢z must be a solution of the equation W, = 1. Using (2.3)
and (2.8) leads to

In (In W) — In(Bo/2)
2Ink

With expressions for ¢z and ¢ in hand, we can examine in detail the influence
of adaptive evolution on the chances of population persistence.

We begin by using (2.11) and (2.12) to determine whether an adapt-
ing population is likely to persist (because 1z > fz) or risk rapid extinction
(te < tr). We are especially interested in the respective influences of initial
population size, Ny, and the magnitude of dg, which indicates the initial degree
to which the population is maladapted to the novel environment. We want to
know the set of Ny and dy at which 7z = t5 separates the combinations of initial
values consistent with likely persistence (t5 > tr) versus extinction (tz < tg).
We determined these critical values by substituting (2.12) into (2.11). This
eliminates ¢, resulting in an equation that defines the relationship between vg
(the scaled form of Ng) and Sy (the scaled version of do) at which tz = 5.
Graphs of this relationship, for various values of heritability, 42, are shown
in Figure 2.2. Populations whose initial density and degree of maladaptation
lie below the curve of critical values for a particular 4% are likely to persist,
whereas populations with combinations falling above the critical curve have a
high risk of rapid extinction.

While evolution will not rescue all initially maladapted populations
from extinction, evolution might slow the decline of populations destined to
reach critically low densities. To assess this potential effect, we compared the
times ¢ to reach N, with evolution (2.11) to the times to reach N, without evo-
lution:

IR = 2.12)

e InN, —In Ny _ In vy
E= anO —anO

(2.13)

Some of the results are shown in Figure 2.3. Evolving populations with initial
degree of maladaptation less than a critical level (8* in Figure 2.3) never drop
below N.. This figure also shows that, in contrast to our expectations, evolu-
tion does little to slow the decline of populations destined to reach critically
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Figure 2.2. Combinations of scaled initial population densities (vo) and degrees of ini-
tial maladaptation (8) leading to likely persistence or high extinction-risk heritability,
h* = 0.1 (solid curve) and h? = 1 (dashed curve). For a given level of heritability, pop-
ulations with vy and §, below the curve persist deterministically because they remain
above N_; those with vy and 8, above the curve decline below N, and become highly

vulnerable to rapid extinction by stochasticity. (Adapted from Gomulkiewicz and Holt
(1995).)

|

\. ] with evolutipn
3 \ ! == no evolutio

i

INITIAL MALADAPTATION
B 0

Figure 2.3, The time 7z a population will first reach N, as a function of its initial degree

of maladaptation (2.11). The dot-dashed curve indicates analogous times for the case
of no evolution (2.13).

low densities. Apparently, the main effect of evolution is to prevent extinc-
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tion altogether, rather than slow the approach of populations that are destined
to reach critically low densities and face rapid extinction risks.

While a population whose size drops below N, faces a high risk of
extinction, it may nevertheless avoid this fate. Such a population would con-
tinue to adapt and, at time ¢, begin to grow. Provided the population persists,
at some later time, ¢p, its size will climb above N,. Thereafter, the population
will be relatively invulnerable to extinction by demographic stochasticity. The
time ¢, needed for a population to grow above N, is, like t£, a solution of (2. 11),
because N;, = N,. In fact, (2.11) has either zero or two roots for (essentially)
every pair of initial conditions. When there are two roots, the lower one is tg
while the upper root is . The difference, ¢ —z, defines the maximum period
that a population’s density will be below N,. It can be shown (Gomulkiewicz
and Holt 1995) that this “period of extinction risk” is longer for populations
that are initially more highly maladapted. Equations (2.11) and (2.12) can also
be used to explore the dependence of 1z, tg, and ¢, on initial density, Np. Ini-
tially small populations are similarly likely to face a period of extinction risk.

The above results lead to four main biological conclusions. First, only
initially large and mildly maladapted populations are expected to evolve suf-
ficiently to persist in novel environments, while small or severely maladapted
populations are likely to face a high risk of rapid extinction. The range of initial
population sizes consistent with likely persistence shrinks rapidly for interme-
diate degrees of initial maladaptation (Figure 2.2). Second, populations that
are more severely maladapted (or initially small) will face a high extinction
risk sooner and, if they manage to avoid chance extinction, remain at high risk
for a longer period of time. Third, the main effect of local adaptation in a sink
environment is to allow some populations to avoid facing high extinction risk
altogether. Evolution by natural selection does little to slow the approach of
populations destined to reach critically low densities (Figure 2.3). Finally, if
niche evolution occurs primarily through isolated colonizations of novel envi-
ronments outside a species’ current fundamental niche (or through populations
exposed to rapid environmental deterioration), then niche expansion will occur
only rarely, unless colonizing groups tend to be very large.

The above models permit extensive analysis. An important task for
future work will be to examine the robustness of our conclusions to relax-
ation of genetic and ecological assumptions. (We have elsewhere considered a
standard one-locus diallelic model of a continuously breeding population and
reached thematically similar conclusions (Gomulkiewicz and Holt 1995)). In
the following sections, we first examine stochasticity, then permit recurrent
immigration into the sink, and then emigration back to the source.

2.3 NATURAL SELECTION AND EXTINCTION IN A
CLOSED ENVIRONMENT: STOCHASTIC
APPROACHES

In the last section we considered the dynamics of a closed popula-
tion that is suddenly exposed to an environment outside its species’ niche. We
found that the main issue is whether the population can evolve sufficiently
rapidly to avoid reaching low densities where it is highly vulnerable to chance
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extinction. Our deterministic treatment of evolution and extinction in :i closed
environment rested on a crude (but mathematically convenient) device, the no-
tion of a critical density N, to avoid dealing with the complicated probubilistic
details of the actual extinction process.

Besides validating our deterministic approach, a fully stochastic anal-
ysis can address issues that a deterministic analysis cannot. For example, de-
terministic analyses do not provide a probability distribution of actual times to
extinction which may be important in applications. However, stochastic mod-
els are typically difficult to analyze, except for certain simple cases, and usually
require approximations or computer simulations. In this section we present a
stochastic model of evolution and extinction that is sufficiently simple to allow
mathematical analysis.

The simplest version of our basic ecological scenario involves a pop-
ulation of clonal organisms facing a novel environment. As it turns out, a
substantial body of empirical work involves such systems. The experiments
performed by Lenski, Bennett and their colleagues (e.g., Lenski and Bennett
(1993)) on the evolutionary responses of E. coli to novel thermal and nutri-
tional environments is one prominent example. Our mathematical model as-
sumes that reproduction is asexual and generations do not overlap. Suppose
that the population contains two genotypes, A; and A,. In the novel environ-
ment, individuals with genotype A; have an expected absolute fitness W; > 1
while those with genotype A, have expected absolute fitness W, < 1. The
actual number of offspring left by an individual is a random variable. Finally,
resources and space are sufficient to allow individuals to survive and reproduce
independently of one another.

Our analysis has two goals. First, we will determine how the probabil-
ity of extinction depends on the size and composition of the initial population,
particularly when the “adapted” clone A is initially rare. Second, we want
to examine how initial population size and composition affect the probability
distribution of times to extinction. Besides providing useful quantitative in-
formation, these analyses will allow us to compare the results of our previous
deterministic analyses with a full-blown (albeit simple) stochastic model and
thereby begin to assess the adequacy of our deterministic approximations.

Our asexual model is an example of a “two-type branching process”
(Karlin and Taylor 1975). The standard way to analyze branching processes
is through the use of a probability generating function. Probability generat-
ing functions are useful for studying stochastic processes because they conve-
niently “package” critical information about the process.! In particular, it is
straightforward to compute extinction probabilities and times once an appro-
priate probability generating function is available. We thus begin by defining
and computing a generating function for our asexual model.

It is easiest to construct the probability generating function for our
two-type branching process by combining two separate generating functions,
one for each of the two genotypes. The generating function for genotype Ay,

To quote Lin and Segel (1988), pg. 76: “It is not difficult to follow manipulations using the
generating function, but it is amazing that anyone would have thought of this device, Amazement
is lessened upon learning that the first person to make use of the generating function was the genius
Euler ... . In discussing the motivation for using a generating function, Polya ... states that ‘a
generating function is a device somewhat similar to a bag. Instead of carrying many little objects
detachedly (the individual coefficients), which could be embarrassing, we put them all in a bag (a
generating function), and then we have only one object to carry, the bag.””
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f (), is defined as

fl) = Z piu (2.14)

where p; is the probability that an individual with genotype A, produces i. off-
spring (i = 0,1,...). Similarly, the generating function for genotype Aj is
defined as

HOEDIN TS (2.15)
i=0

where ¢; is the probability that an individual with genotype A, produces i off-
spring (i = 0,...). Variables u and v are “dummy variables”; they serve as
nothing more than placeholders during computations.

To make further progress, we must make specific assumptions about
the offspring-number distributions, {p;} and {¢;}. We assume that the proba-
bility distribution of an individual’s offspring number follows a Poisson dis-
tribution whose expected value depends on genotype. Assume that the off-
spring number of an A; individual is a Poisson random variable with expec-
tation Wi > 1, and the offspring number of an A; individual is a Poisson ran-
dom variable with expectation Wy < 1: p; = e~ " Wi/iland g; = e" "2 W} S/l
Not only are these assumptions mathematically convement they conform to
the offspring distribution assumed in a frequently used model of genetic drift
(Crow and Kimura 1970). With these assumptions, (2.14) and (2.15) simplify
(using the result e = 372 (ax)'/i!) to

0 ~W Wi i
f(u) = Z i__l'_lu — er(M—l) (2.16)
i=0 '
and
% o=Wapyiyi
gw) = ) Tk = oD, @.17)
i=0 :

We now use f(u) and g(v) to define k,(u, v), the probability generat-
ing function in generation ¢ for an asexual population that initially consists of
xp clones with genotype A; and y, clones with genotype Aj:

ho(u, v) = u™v™ (2.18)

and
he(u, v) = Ao (f (), g0)) fort=1,2,.... (2.19)
For example, 7, (u, v) = [f()}°[g(W)]*, ha(u, v) = [f(f @)]*[gg)],
etc. In most cases (including the present one), it is difficult to obtain a closed-
form expression for #,(u, v) for any given r. We overcame this difficulty by

using a symbolic manipulation program to compute the generating functions
for different generations.
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The generating function 4, (u, v) can now be used to determine critical
information about the stochastic process associated with our model. In fact, the
joint probability that there are k copies of genotype A; and [ of genotype A; in
generation ¢ is exactly the coefficient cy,; of the product u*v' in the bivariate
power-series expansion of A, (u, v):

o0
he(u,v) = Z Zc,-j,,u"vj (2.20)
i=0 j=0
where
8%a'h, (u, v)
o L 2.21
Ckj,t ukoul rmt ( )

(Karlin and Taylor 1975). In particular, the probability of extinction (i.e., of
1 = k = 0) at or before generation ¢, denoted F;, is

F, = coo, = 1:(0,0). (2.22)

Note that F; is the cumulative probability distribution function for the time to
extinction.

With our simple model, it is possible that a population will never go
extinct. The exact probability that this occurs is Foo = 7’ Jrzy", where 7, and 73
are the respective unique non-zero solutions less than or equal to one of 7 =
fr) = eM@Dand w = g(r) = ™=V, It can be shown that W < 1
implies that 7, = 1 (clone A, goes extinct with probability 1), so

Foo = 10, (2.23)

(See Karlin and Taylor (1975), Chapter 8, for details.) We can use the above
definitions and results to address our main questions about how adaptive evo-
lution affects the probability and timing of extinction of a population facing
a novel environment, given both demographic stochasticity and genetic drift.
First, consider how initial population size and the initial degree of population -
maladaptation affect the likelihood of extinction. If there are initially xo indi-
viduals with genotype A; and yo with genotype Az, then the initial population
size is Ng = xo + yo. We let the initial frequency of the maladaptive A, geno-
type, go = yo/No, indicate the initial degree of population maladaptation. It is
not hard to show that, for a given go, the probability of extinction at or before
generation ¢ decreases with Ny, whereas, given N, this probability increases
with go. The minimum Nj that is consistent with at least a 95% chance of ex-
tinction by generation 100 varies with go in a qualitatively similar manner to
the deterministic results shown in Figure 2.2. This suggests that an appropriate
interpretation of “likely to face a high risk of rapid extinction” in our determin-
istic treatment is that there is at least a P% chance of extinction by generation
T, for specified P and T.

We are also interested in how initial population size and composition
affect the time a population persists. We can use our generating function meth-
ods to determine Ej, which is the smallest time ¢ such that F; > k. The graph of
Eo.0s versus go for a fixed initial population size closely resembles Figure 2.3,



which indicates how the “time until high extinction risk” in our deterministic
treatment depends on the initial degree of maladaptation for fixed Ny. (Similar
comparisons hold when the initial degree of maladaptation is fixed, rather than
No.)

While these results support the qualitative results of our determinis-
tic analyses, this stochastic model can provide quantitative and further quali-
tative information about the extinction process that our deterministic approach
cannot. For example, using the cumulative distribution function F,, it can be
shown that the most rapid increase in extinction probability occurs in the first
few generations. This suggests that if a population is destined to become ex-
tinct, it will likely do so quickly. Median times to extinction can also be easily
computed using F;. Infact, M = Eys. It can be shown that M increases rapidly
with Np, as one might expect.

Our analysis of this simple stochastic model yields two main conclu-
sions. First, the qualitative features of the race between extinction and adapta-
tion suggested by our deterministic analyses are supported. Second, our anal-
ysis found that populations tend to go extinct quickly, if they go extinct at all.

Our simple, asexual model could be extended in many ways, but in
most cases, analysis will be sufficiently difficult to require Monte Carlo simu-
lation methods. We have analyzed a one-locus, two-allele version of the above
scenario in this way and found that the above results hold for this more com-
plex model. However, much more work needs to be done before we will be
fully convinced that the deterministic results are robust to stochasticity.

2.4 THE INFLUENCE OF IMMIGRATION ON LOCAL
ADAPTATION: FRESH PERSPECTIVES ON AN
OLD PROBLEM

In Sections 2.2 and 2.3 we considered a completely isolated popula-
tion that finds itself outside its species’ niche. How is niche evolution affected
given recurrent immigration from a source? In this section, we consider a sim-
ple case we call a “black-hole sink,” a sink population that recurrently receives
locally maladapted immigrants that arrive from a separate source population
but returns no emigrants to the source (Holt and Gomulkiewicz 1996).

A black-hole sink closely resembles the “island-continent model”
used in population genetics theory to understand how one-way recurrent gene
flow from a “continent” can impact local adaptation on an “island.” Before pre-
senting our model, it is instructive to consider the intuition provided by popula-
tion genetics theory. Generally speaking, analysis of an island-continent model
results in a “rule of thumb”: for a given selective advantage of a locally fa-
vored allele, there is some rate of gene flow below which that allele will spread
when rare (e.g., Nagylaki (1977), p. 125). This implies that the greatest scope
for local adaptation should occur at low to zero rates of gene flow. Now sup-
pose that the island population is a “sink” population. Without immigration,
such a population goes extinct deterministically. This presents a paradox: At
zero immigration — which provides the greatest scope for local adaptation —
a sink population goes extinct and, thus, local adaptation is impossible! How
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can this be explained? To answer this, one must examine more explicitly the
demographic consequences of immigration.

Consider, as in the last section, a discrete breeding asexual popula-
tion with two genotypes, A; and A,, where the absolute fitness on the island of
genotype A; is W;. Assume that A; individuals have the higher local fitness, or
W) > Wa. The mean fitness (and finite growth rate) of the island populatlon is
W = pW) + (1 — p)Wa, where p is the frequency of A;. Immlgrants arrive on
the island just after reproduction at a rate m per generation, where m is the per-
centage of the post immigration island population that consists of immigrants
(i.e., the rate of “gene flow”). We assume all immigrants have the locally less
fit genotype A, (Nagylaki 1992). The frequency of A in the next generation
is

Wi
o= (1_m)(W>p, Q24

The first term in (2.24) indicates how the frequency of A, is reduced by A,
immigrants who arrive at gene flow rate m; the second term describes how se-
lection increases the frequency of the locally fitter genotype A;.

The conditions under which the locally favored allele A; will increase
in frequency when 1mt1a11y rare are found when p ~ 0 and W ~ W, in (2.24),
which shows that p’ > p if (1 — m)W;/W > 1, that is

W1 1

> 1 ' (2.25)

Equation (2.25) is an example of the rule of thumb mentioned above: for given
fitnesses (W;,W>), there is a rate of migration (1) below which the locally more
fit genotype will spread when initially rare. Note that the maximal scope for
local adaptation (spread of A;) occurs as the gene flow rate m approaches zero.

We now reanalyze the same scenario, but follow genotype numbers
rather than frequency. For this purpose, let N; denote the number of genotype
A; and let N be total population density, N = N; + N,. Consider first the
dynamics of a population fixed for the less fit genotype A, so that N = N;.
Because the island population is a sink, W, < 1. We assume that a constant
number I of A; individuals immigrate to the island each generation. The island
population size changes according to

N =NW,+1. (2.26)

The size of this population will equilibrate when N’ = W, N +1 = N. Solving
for N gives the equilibrium density of A, genotypes:

A I A
N= N,. .
= =" @27

Now assume that a few A; individuals are introduced to such an equi-
librium population. The frequency of A is p = N;/(N; + N;). Because all
immigrants have genotype A, the dynamics of A are simply

N{ = N|W,. (2.28)
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The density of A; will return to its equilibrium N,. The dynamics of A; are
determined completely by the absolute fitness W;. On the one hand, if W; < 1,
then N; — 0 and p — 0; the locally favored A is lost. On the other hand, if
Wi > 1, then Ny — oo and p — 1; the locally favored A; spreads through
the population. This analysis provides a criterion for determining whether a
locally favored genotype will spread: its absolute fitness must be greater than
one —regardless of the immigration rate / or the fitness of the less fit genotype.
This criterion seems strikingly different from the rule of thumb provided by
(2.25), which involves both the immigration rate and fitness of A,.

The key to resolving the apparent discrepancy between these two cri-
teria is to recognize that the migration rate m is a variable, not a fixed parameter
as is implicitly assumed in the standard approach. Consider the recursion for
total population size:

N =NW+1. (2.29)

By definition, m = I/N’, which implies that 1 —m = NW/N’'. By substituting
this expression in (2.24), the recursion for p can be rewritten as

1- N
p' = (7’1_1) Wlp = <ﬁ’-> Wlp (230)

Now if A is rare and the immigrant genotype A, is near its equilibrium density,
then N’ ~ N which implies from (2.30) that p’ &~ W; p.. Thus we have recov-
ered from (2.24) that the necessary and sufficient condition for A; to increase
when rare is Wy > 1,

Our analysis of this simple model leads to two unexpected conclu-
sions. First, absolute — not relative — fitness governs the spread of a locally
favored allele in a sink population. Second, provided it is not zero, the immi-
gration rate, /, has no influence over the spread or loss of the favored allele in a
sink population. To what extent do these conclusions depend on the simplicity
of the model we analyzed? We next analyze the same black-hole-sink scenario
for a diploid sexual population.

Consider a model in which fitness is determined by variation at a di-
ploid locus with alleles A; and A;. Assume that adults immigrate after selec-
tion but before reproduction, and that the population is censused immediately
after (sexual) reproduction. (Similar conclusions hold if immigration occurs
before selection.) As above, let N be total population size and p be the fre-
quency of the locally favored A; allele. Assume that I immigrants, all with
genotype Az Ay, arrive each generation. Denote the birth-to-immigration via-
bility of A;A; by v;;. For simplicity, we assume that the expected fecundity is
[, independent of genotype. The fitness of genotype A; A j is thus W;; = fu,;.
Finally, assume that Wy, < 1, so that in the absence of A,, the population is a
black-hole sink maintained only by immigration.

Recursions for the dynamics of this population can be derived as fol-
lows. Following random mating, genotype frequencies are in Hardy-Weinber
proportions: the densities of A; A, A A;, and A; A, among newborns are Np?,
N2p(1-p),and N(1-p)2. After viability selection and immigration, the den-
sity of breeding adults is

N* = v Np? + viaN2p(l — p) + veN(1 = p)? + 1 (2.31)
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Following reproduction, the density of newborns, N’, is
N = fN*=NW+ fI (2.32)

where W = pWi + 2p(1 — p)Wiz + (I — p)*Wp is mean fit-
ness. Random mating returns genotype frequencies to Hardy-Weinberg pro-
portions without altering allele frequencies. The frequency of A; of the
newborns, p’, is equal to the frequency of A; of the parents, ie, p' =
(number of parental Ajalleles)/2N* = (2Np?v;;+2Np(1—p)viz)/2N*. Mul-
tiplying the numerator and denominator by f and using (2.32) shows

N
p= (1—\,—) Wip (2.33)

where Wi = pWy; + (1 — p)W), is the average fitness of individuals with an
Ay allele. This recursion closely resembles the asexual equation (2.30).

Now examine the conditions under which the fitter A; allele will
spread when rare. As above, consider first a population in which A; is the only
allele present. Then p = 0 and W = W»,. Setting the left-hand side of (2.32)
equal to N and solving for N shows that the population will equilibrate at den-
sity ‘

= Nyp. (2.34)

Now suppose a few copies of A; are introduced into this population so that p ~
0 and N’ =~ N. The gene-frequency recursion (2.33) is given approximately
by p' & pWp. Cleatly, p' < pif Wi < land p’ > pif Wiz > 1. The
locally favored allele will increase when rare-provided the absolute fitness of
heterozygous individuals exceeds one. As in the simpler asexual model, the
spread of A; depends on absolute — not relative — fitness, and is independent
of both the rate of immigration, I, and the fitness of the immigrant genotype,
Waa.

Together, our asexual and diploid model results suggest that an abso-
lute fitness criterion for spread of an initially rare allele is a generic feature of
local adaptation and, hence, niche evolution in a black-hole-sink population.
Before taking such a generalization too seriously, it is important to consider
some potentially important ecological and genetic limitations of our two mod-
els.

The most obvious ecological deficiency in our models is that pop-
ulation size may increase without bound. How does density regulation af-
fect the spread of a rare locally favored aliele? We have analyzed a version
of the above haploid model in which fitness is density dependent (Holt and
Gomulkiewicz 1996) as well as the diploid model (Gomulkiewicz, Holt, and
Barfield, in preparation). Our analysis shows that, once again, the locally fit-
ter allele will spread in a black-hole sink population if the absolute fitness of
heterozygotes is greater than one. Because fitness is density dependent, this
criterion does depend on population size, but only indirectly through its influ-
ence on absolute fitness. (Density-dependence plays a more pronounced and
complicated role in determining the eventual size and genetic composition of
a population, once an initially rare locally favored allele increases.)
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There are also a number of genetic limitations in our models (e.g.,
no mutation or genetic drift). Given our analysis in the first section, it is rea-
sonable to ask how populations might adapt in the face of recurrent immigra-
tion if fitness depends on characters with polygenic inheritance. One could
easily (and naively) extend the quantitative genetics model we considered in
the first section to include recurrent immigration as follows. The population-
size dynamics is described by (2.32) except that mean fitness W is defined by
(2.3). It is not hard to show that the evolution of d, the distance of the cur-
rent mean phenotype from the local optimum, satisfies the recursion equation
d' = (1 — M)kd + md;, where k is the evolutionary inertia (see Section 2.2),
M = fI/(NW+ fI)is a gene flow variable, / and f are as defined above, and
d; is the (fixed) difference between the mean phenotype of immigrants and the
local optimum,

The dynamic features of this model are relatively simple to explore,
and they are, in fact similar to those of the one-locus models. Unfortunately,
there are several reasons why it seems premature to declare with any con-
fidence that these evolutionary features are “robust” to genetic assumptions.
First, this quantitative genetic analysis completely ignores departures from
normality that are caused by immigration. Such departures are known to alter
dynamical behavior under some circumstances. Second, this formulation also
ignores the linkage disequilibrium (nonrandom associations between alleles at
different loci) that is constantly generated by immigration, which in turn can af-
fect variances and heritability. In the future, we plan to explore whether these
neglected assumptions will have a noticeable impact on our main biological
conclusions by analyzing more realistic (and complex) multilocus models.

2.5 NICHE EVOLUTION IN COUPLED SOURCE-SINK
ENVIRONMENTS

The previous section considered evolution in a sink population main-
tained by immigration without dispersal back to the source. A natural general-
ization is to two habitats, one a source, the other a sink, with reciprocal disper-
sal (Holt 1996). For simplicity we consider a species with discrete generations
and haploid genetics. \

Census the population following dispersal. Let N;(¢) be population
size in habitat i at the start of generation ¢. In generation ¢ +1 there are N; (r+1)
individuals, who either immigrated from habitat j (denoted N; ;(t + 1)) or did
not (denoted N;; (¢ + 1)). Necessarily, Ni(t + 1) = Nt + 1) + Nt + 1).
Individuals in habitat i at time  contribute to the population there at ¢ + 1 via
production of offspring which do not emigrate. Let N;;(t + 1) = a;; ()N, (z).
The quantity g;; is the per capita contribution of habitat i to itself. Likewise,
Nij(t+1) = a;;(t)N;(z) defines the per capita contribution of habitat j to habi-
tat i. With this notation, a 2 x 2 matrix model describes the dynamics of the
two coupled habitats over a single time step: N(t + 1) = A(r)N(¢), where the
vector N(r) = (Ni(#), N2(#)), and the ijth element of matrix A is a;;(t). In
general, g;;(t) may vary as the external environment changes, or because dis-
persal or local growth rates are density dependent and population size changes.
Consider first the case of constant transition rates, A(¢) = A.

As with any matrix model (Caswell 1989), as ¢ increases the popula-
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tion settles into a stable patch distribution , defined by the right eigenvector of
A, and changes in size at a constant rate A (the dominant eigenvalue of A),

1
A= 5(6111 +azn + /(a1 — an)? + 4apan). (2.35)

(Because of the low dimensionality of the above model, one can explicitly
solve for eigenvalues and eigenvectors as a function of arbitrary matrix ele-
ments a;;; this is not generally possible). The stable patch distribution has a
defined fraction of the population in each patch. A right eigenvector for A (with
elements summing to unity) is

(2.36)

A—ap a2
(wy, wy) = < ) .

A—an+ay’ A—an+a
A familiar interpretation of the left eigenvector in an age-structured
matrix model is that it gives “reproductive value” (Caswell 1989) — the rela-

tive contribution of an individual to future generations — as a function of age.
A left eigenvector of this stage-structured patch model is

A —axp ap )
A—ap+apn A—ap+an

('U], U2) = ( (2.37)

which likewise describes spatial reproductive value, the contribution of an in-
dividual in habitat i to future generations (in both habitats).

Adaptive evolution may occur if genetic variants arise with different
values for the a;;. A novel mutant spawns a subpopulation, whose dynamics
can also be described by a 2 x 2 matrix model; this subpopulation settles into its
own stable patch distribution and grows at its own asymptotic growth rate. If
this growth rate exceeds that of the resident clone, then initially the new clone
is favored, and it will (deterministically) increase in frequency. Because favor-
able mutants can be lost to stochastic birth-death effects when sufficiently rare,
the larger the positive effect of the mutational change upon clonal fitness, the
more likely it is to increase when rare.

A concept which underlies much of the modern theory of life history
evolution (e.g., the evolutionary theory of senescence) is the notion of the force
of selection. If we have a measure of fitness F which is a function of parameters
gi, the force of selection on parameter i is 3F/dq;. If 3F/8¢; > 0, a clonal
variant with slightly higher ¢; increases when rare; the larger this quantity is,
the more rapidly the mutant spreads, and the less likely it is to be lost due to
demographic stochasticity.

In the above matrix model, an appropriate fitness measure is the dom-
inant eigenvalue of A. This measure is a function of all the a; ;. Caswell (1989)
formalized the notion of force of selection for transition matrices using eigen-
value sensitivity analysis. He showed that if one tweaks only element a;; in a
ransition matrix, the effect on the dominant eigenvalue is

o _wwj 2.38)

oayj <v, w>

where <v, w> is the inner product of v and w. If mutations arise which slightly
alter single matrix elements, the above expression can be used to evaluate the
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relative strength of selection favoring, or disfavoring, them. Selection should
be strongest for transitions from classes that numerically dominate the popula-
tion (large w;) into classes with a high reproductive value (large v;). The quan-
tity v;w; in essence describes a demographic “weight” accorded by selection
to favor (or disfavor) some transitions, over others.

More generally, mutations may affect multiple transition elements.
Assume all the matrix elements are functions of a single parameter, g. The
strength of selection favoring mutations increasing g is

O _ g _viw; day (2.39)
9g 45 v, u> 3g '

‘We now make the model a bit more concrete. We will first describe an
ecological realization of the above matrix model, then return to the evolution-
ary question. Imagine that in generation ¢, the growth rate in habitat ; before
dispersal is R;(¢). A fraction e of individuals in habitat 1 disperse to habitat 2;
a fraction ¢’ of individuals disperse from habitat 2 to 1. The following matrix
model describes population growth in the two coupled habitats:

Nit+1) (1-e)R; e'Ry Ni(t)
Nyt + 1) eRi  (1—¢)R, M@ | (2.40)

Now assume that the external environment is constant and that habitat
2is asink with R; less than 1. In habitat 1, growth rates are locally density de-
pendent, such that R; declines monotonically as a function of density. Denote
the density at which R{(N{) = 1 as K| (the carrying capacity of habitat 1) and
let the maximal growth rate as Ny approaches 0 be R;.

If the population persists at a stable equilibrium, A = 1. After substi-
tution and some algebraic manipulation, we find

1-(1-€e)Ry
l-e)—(1—e—eR,y

Ri(N)) = >1>R 241

where N7 is equilibrium density in habitat 1. Thus, N} < K;; coupling to
a sink depresses source density. This increases source growth rates, compen-
sates for decline in the sink, and permits landscape-level equilibrium. The abil-
ity of a species to compensate is set by its maximal growth rate in the source,
Ry; if this is less than the left quantity in the above inequality, the species is
driven to extinction because dispersal drains away source growth. A sufficient
condition for persistence is that R{(1—e) > 1. We assume source growth rates
permit persistence.

At demographic equilibrium, the realized source growth rate is inde-
pendent of source parameters (e.g., R}) and depends solely on the rate of de-
cline in the sink, and dispersal. At this equilibrium, the matrix elements have
fixed values, and we can apply the machinery of the force of selection to study
adaptation. The relative reproductive values and patch abundances of source
and sink habitats are as follows: (1) vsource > Vgink if 1 > Ry (which is always
true for a sink); (2) Wsource > Wsink if 1 > (1 — )Ry + eR(N{) (which often
— but not always — holds).
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Now, consider mutations which improve fitness slightly in the sink
habitat. The cumulative effect of such mutations as they become fixed may
be to transform a sink habitat into a potential source habitat. If so, a species’
niche will have evolved: the population can persist in the original sink habitat
without immigration. We now have the ingredients needed for predicting the
likelihood of such evolution. Holt (1996) describes a number of limiting cases
(e.g., involving tradeoffs in fitness in the two habitats). Here we consider two
simple examples (the student should work out details as an exercise). Consider
mutations whose only effect is a slight increase in sink fitness (with no back-
effect on source-fitness parameters).

First, assume e ~ O (little dispersal, source-to-sink). This implies
Ry ~ 1, and az; =~ 0. Hence, the stable patch distribution is approximately
(w1, wz) = (1,0). After substitution, one finds 9A/dRy ~ 0. The force of
selection for increasing fitness in the sink is negligible, basically because no
individuals encounter the sink habitat.

Second, assume ¢’ = O (little back-dispersal, sink-to-source). In this
case, R = 1/(1 —¢), and a1, ~ 0, so the vector of spatial reproductive values
is (v1, v2) &~ (1,0). Again one finds that 91/ R, ~ 0. Because individuals in
the sink make no long-term contribution to the overall population, small im-
provements in their fitness are of negligible evolutionary importance. More-
over, if mutations arise which have deleterious effects in the sink (but not in
the source), selection is weak for removing such mutants from the population.
With recurrent mutation, the load of deleterious mutations is likely to be heav-
ier in the sink, than in the source (Kawecki 1995; Holt 1996).

This result meshes with the explicit genetic models for a “black-hole”
sink in the last section. The two-patch model should converge on a black-hole-
sink model when ¢/ — 0. We showed above that mutations of very small effect
on fitness are unlikely to be selected in black-hole sink at demographic equilib-
rium. Because the expression for the force of selection aims at characterizing
the fate of mutations of small effect, the two results are equivalent.

Drawing these examples together, they suggest that niche evolution
is less likely when dispersal rates are low, or are asymmetrical, with little dis-
persal from sink to source. Conversely, niche evolution may be more likely if
dispersal rates are high and symmetrical (Kawecki 1995; Holt 1996).

2.6 EVOLUTION OF DISPERSAL AND TEMPORAL
HETEROGENEITY

2.6.1 Implications for niche conservatism

This model, explored in the last section, highlighted the importance
of dispersal in defining how selection averages over different environments in
determining the evolutionary trajectory of a species. There is an enormous lit-
erature on the ecology and evolution of dispersal. This is an entire topic on
its own, beyond the scope of this chapter. However, the above simple matrix
model can be used to illustrate a few basic points about the evolution of dis-
persal relevant to niche evolution in heterogeneous landscapes.

Consider genetic variants which have the same fitness within patches,
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but differ in their rates of movement. Evolution in dispersal occurs because
different dispersal syndromes define how a given variant experiences envi-
ronmental heterogeneity in determining its overall fitness. Let habitat 1 have
higher fitness than habitat 2. In the two-habitat matrix model, for the mo-
ment assume that local fitnesses R; are fixed, and that dispersal is symmetrical
among patches (i.e., ¢ = ¢'). Overall fitness A is a function of dispersal rate
e, A(e); fitness decreases monotonically with e, declining from A(0) = R, to
ALS) = (R + Ry)/2t0o AM(1) = /R R;.

Now assume the population is initially fixed for a particular disper-
sal rate, e”, that fitness in the source habitat is density dependent, and that the
resident population is at demographic equilibrium (viz., A(e”) = 1). An invad-
ing clone with a different dispersal rate, when rare, experiences density depen-
dence in the source from the resident. When the invader is rare, the resident’s
abundance can be assumed fixed during the initial stages of invasion; the in-
vader thus experiences constant habitat-specific growth rates and settles into
its stable patch distribution and asymptotic growth rate. Because of the mono-
tonic relationship between overall growth rate and dispersal rates, a rare clone
with lower e than the resident always increases when rare; a clone with higher
e is excluded. A fuller analysis shows that a polymorphic equilibrium is not
feasible, provided one habitat has a fixed fitness less than one, and the system
moves toward demographic equilibrium.

This suggests that dispersal rates should evolve toward lower values
in spatially heterogeneous (but temporally constant) environments. Given un-
limited flexibility in dispersal, the evolutionarily stable state of the system de-
scribed by our two-patch model is zero dispetsal, with all individuals occupy-
ing habitat 1, and none in habitat 2. (This conclusion depends on the assump-
tion that abundances are sufficiently large to be treated as continuous variables,
rather than discrete integers (Holt 1985; Holt and McPeek 1996).) As disper-
sal becomes lower, so does the exposure of individuals to the sink habitat. We
earlier saw that the force of selection favoring improved adaptation to the sink
becomes negligible at low dispersal rates. Thus, ‘evolution of dispersal in a
spatially heterogeneous landscape indirectly strengthens the tendency toward
niche conservatism.

McPeek and Holt (1992) and Holt and McPeek (1996) have explored
the evolution of dispersal in two-habitat models, in which local fitness in each
habitat is a monotonically declining function of density, R;(N;), and there is
some N; = K; > 0, where R;(K;) = 1, but K| > K>. In this case, no habi-
tat is inevitably a sink. However, given dispersal, if more individuals leave a
patch than enter it, densities there decline, leading to an increase in local fit-
ness. Conversely, more individuals must enter than leave the low-K patch,
pushing numbers up and depressing local fitness. The net effect of dispersal
is to create gradients in local fitness, down which individuals on average tend
to move. This is clearly disadvantageous.

In one special circumstance, however, dispersal can occur without this
deleterious fitness effect. If ek = ¢'K>, as many individuals leave as enter
each habitat. Thus, each habita: ¢quilibrates at its respective carrying capac-
ity, such that fitnesses are equaii-ed across space (the “ideal free distribution”
of habitat selection theory (Fretwell 1972)). McPeek and Holt (1992) showed
that this fitness equilibration couid be generated in two distinct ways: (1) phe-
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notypic plasticity, in which each individual disperses at different rates in dif-
ferent habitats, or (2) a mixture of fixed dispersal types, one low and one high.

An extreme but illuminating case is for all individuals to leave their
natal habitat each generation, but then to resettle into the ideal free distribution.
The probability that an individual will end up in habitat i is thus K; /(K| + K>).
Individuals carrying novel mutations with habitat-specific effects on fitness in
habitat i are likely to experience this change in fitness a fraction K; /(K1 + K>)
of generations. This implies that adaptive evolution is “skewed” toward the
habitat with the greater K. For a given allelic change in local fitness, positive
selection should be greater in the habitat with higher K, and negative selection
weeding out deleterious mutants should likewise be stronger. This may imply
that low-K habitats, initially within the niche of the species, might be lost over
evolutionary time.

Drawing together the various strands of theory presented above, we
see that spatial heterogeneity alone tends to foster niche conservatism. Given
limited dispersal, selection tends to be weighted against adaptive improvement
in sink habitats, outside a species’ niche. This tendency is weakened if disper-
sal forces individuals to experience the sink habitat. Yet selection acts against
dispersal if there is spatial heterogeneity in fitness, which is ensured if some
habitats are permanent sinks. Considering the coevolution of dispersal and lo-
cal adaptation suggests an overall tendency toward increased habitat special-
ization or niche conservatism.

2.6.2 Temporal variation and niche evolution

All the above models assumed environments in which fitness param-
eters varied in space, but not in time. Introducing temporal variation raises
challenging, unsolved research problems in evolutionary ecology. In this sec-
tion we will touch on several distinct issues, indicating the range of effects of
temporal variation to be expected.

Consider again the haploid black-hole-sink model. Let local absolute
fitnesses and immigration rates vary with time, as follows

Nit+1) = N@OWi @)+ 1) (2.42)
Na(e + 1) Nao()Wa (1) (2.43)

where allele 1 is the ancestral immigrant type, and allele 2 is a new mutation.
Further, imagine that temporal variation is cyclic, with period T. In the ab-
sence of density dependence, the fate of allele 2 is clearly independent of the
fitness or rate of immigration of allele 1. Allele 2 increases, provided its ge-
ometric mean rate of increase over T generations exceeds 1; if the geometric
mean fitness is less than 1, allele 2 will decline toward extinction. Because the
geometric mean is always less than the arithmetic mean, temporal variation in
fitness makes it harder for an allele to increase when rare.

This simple model suggests that temporal environmental variation
tends to hamper niche evolution in sink environments. Extending this to the
coupled source-sink environment quickly leads to models which are analyti-
cally intractable. There are two sources of difficulty.

First, even in the absence of density-dependence, temporal variation
in fitness parameters can confound expectations. Tuljapurkar (1991) [p. 82]
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provides an interesting example for a 2 x 2 matrix model. There is cyclic vari-
ation between matrix A in one generation, with dominant eigenvalue A, < 1,
and matrix B in the next, with dominant eigenvalue Az < 1. Yet the overall
eigenvalue for the compound matrix AB, which describes growth over suc-
cessive generations, exceeds 1. Unraveling the effects of different patterns of
temporal variation in fitness parameters on the overall course of selection in a
spatially heterogeneous environment is an important, challenging problem.

Second, given density dependence, temporal variation in fitness pa-
rameters implies variation in local densities. Even in the simplest models (e.g.,
logistic growth in two habitats in a cyclic environment), this leads to nonlinear
expressions for local density that cannot be solved explicitly; thus the temporal
pattern of variation in fitness cannot be expressed analytically.

One indirect consequence of temporal variation which may have pro-
found implications for niche evolution is its effect on dispersal. If local fitness
varies through time, dispersal can become advantageous. Theoretical studies
have highlighted the importance of asynchronous temporal variation in fitness
in promoting the evolution of dispersal in heterogeneous landscapes. Such
temporal variation can arise from extrinsic environmental factors or endoge-
nously. For instance, Holt and McPeek (1996) examined a two-habitat model
in which local fitnesses were defined by Ri(N;) = exp[r; (1 — N;/K})]. Asis
well known, at low ;, in the absence of dispersal populations settle into stable
equilibria, whereas at high r;, chaotic dynamics emerges. At low r, dispersal is
strongly selected against. At high r, the population exhibits chaotic dynamics;
a dispersing clone can increase when rare, and persists in a stable equilibrium
with a low-dispersal clone. If individuals have habitat-specific dispersal rates,
a chaotic population evolves toward a state with persistent dispersal. Similarly,
extrinsic temporal variation in fitness parameters that is uncorrelated among
habitats favors persistent dispersal (McPeek and Holt 1992). Temporal varia-
tion in local fitness parameters thus favors dispersal. High rates of dispersal in
turn tend to weaken forces favoring niche conservatism. Thus, temporal envi-
ronmental variation may indirectly lead to niche evolution via its influence on
the evolution of dispersal.

2.7 NICHE EVOLUTION IN METAPOPULATIONS

So far, we have concentrated on the details of adaptive evolution in
very simple landscapes: single habitat patches coupled to an external source,
and pairs of habitat patches with reciprocal dispersal. Most species exist in
much more complex landscapes, with mosaics of discrete habitat types and
smooth gradients. A useful way station between simple one- and two-habitat
landscapes and realistic landscapes is provided by metapopulation models
which ignore the details of localized dispersal but do capture some important
aspects of patchiness. In this final section of the chapter, we explore the inter-
play of niche evolution and metapopulation dynamics.

There are two canonical metapopulation structures: (1) island-
mainland, and (2) multiple identical patches (Hanski 1991). We consider each
of these in turn:
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2.7.1 Island biogeography

The black-hole-sink model considered a species in a single habitat
patch, coupled to a source which did not experience reciprocal effects. Now
imagine there are many such habitats, which like islands in a sea may vary in
size and distance from the source.

Rather than consider the detailed population and evolutionary dynam-
ics of the species in each patch, we can attempt to abstract the essence of the
microevolutionary and population dynamic processes as follows (where, for
simplicity, we refer to “islands” rather than patches):

1. All immigration is from the mainland, which is assumed to contain a
species at its evolutionary equilibrium. Colonization is defined as immi-
gration onto unoccupied islands; the rate parameter c,, defines the rate of
colonization per empty island.

2. All colonizing propagules are initially maladapted to the local environ-
ment and therefore will inevitably go extinct, in the absence of evolution
(see Section 2.2). We assume that such extinctions are described by an
exponential distribution with rate parameter e,,. All the rate parameters
may vary with island area or distance (see below).

3. Given appropriate genetic variation, a local population may evolve so as
to increase its mean fitness or carrying capacity, which enhances popula-
tion persistence. Catastrophes can still occur, however, leading to local
extinctions even for well-adapted populations. We assume that such ex-
tinctions occur at rate e, < e,,.

4. The final ingredient we need is the rate of evolution. We assume that
local populations exist in just two states: “maladapted” (their original
state, just after colonization) and “adapted” (their final state, conditional
on local persistence, after selection has pushed the population to its new,
local optimum). For simplicity, we ignore intermediate states and as-
sume that an exponential distribution with rate parameter E describes
evolutionary transitions from maladapted to adapted states.

Any given island can occur in three states: empty; occupied but mal-
adapted; occupied and adapted. Let P,, be the fraction of islands in which pop-
ulations are maladapted, and P, be the fraction in which local adaptation has
occurred. The fraction of empty islands available for colonization is 1 — P, —
P,. The dynamics of the system are described by a coupled pair of differential
equations:

P
dd_t = ¢y(1 =P, —Py)—EP, —e,Py (2.44)
dP,
= EP,—e P, 4
o e (2.45)
At equilibrium,
E P E
Pf=—P; £ = =¢ (2.46)

¢ e ™ P*+P:x E+e,
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The quantity € describes the fraction of island populations which have become
adapted to their environments. Because we assume no interisland migration,
each such population is a distinct taxon, so € also measures the fraction of is-
land populations which might be viewed as endemic by a taxonomist. By writ-
ing down the above set of equations, we implicitly assume that the number of
islands is sufficiently great that ensemble dynamics can be treated determinis-
tically.

Island area, and distance to the source, can influence both the ecolog-
ical rate parameters of colonization and extinction, and the rate of evolution
from a maladapted to adapted state. Somewhat surprisingly, the average equi-
librial evolutionary state does not depend upon the rate of colonization from
the source, or the rate of extinction of maladapted populations, but only upon
the rate of local evolution and extinctions of adapted populations.

Consider first purely ecological effects upon extinction. Owing to de-
mographic stochasticity, adapted populations on large islands are likely to per-
sist longer, per population, than adapted populations on small islands. If dis-
persal from the source is rare, it is not clear that distance should have any
systematic effect upon extinction. However, there may be indirect effects of
distance on extinction rates, such as fewer competing or predatory species on
more distant islands, leading to reduced extinctions at greater island distance
from the source. Considering just these ecological effects, one expects e, to
increase with island area, and possibly to increase as well with island distance
from the source (see Holt (1997) for examples and further discussion).

Island area and distance could also indirectly determine the rate of mi-
croevolution, E. For instance, if evolution is limited by the pool of variation,
then all else being equal, larger islands will harbor larger populations, which
can generate more variation via mutation and sustain such variation in the face
of genetic drift. The rate of evolution could thus increase with island area, aug-
menting the ecological effect of island area on endemism.

2.7.2 “Proper” metapopulation

In the long run, even source populations can go extinct, or evolve.
Consider a species which occupies an ensemble of habitat patches, where each
occupied patch is a potential source of colonists for empty patches. Let P be
the fraction of patches occupied. The canonical metapopulation model (Han-
ski 1991) is

P P —P)—cp = PP=1-% (47
dt c

where e is the rate of local extinction, per patch, ¢ describes the rate of colo-
nization of empty patches, per occupied patch, and P* is patch occupancy at
equilibrium,

Now, as before, assume that local populations can be either adapted or
maladapted, and that their evolutionary state is made manifest in local extinc-
tion rates. One can imagine various scenarios re garding colonization (Holt and
Gomulkiewicz, in prep.). The simplest is to assume that only empty patches are
colonized, and that only adapted populations are sufficiently vigorous to send
out colonists. Assuming again that the rate of local evolution is characterized
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by a constant transition-rate parameter, £, the metapopulation model is

dP, |

—2 =! —¢,P, —EP, (2.48
PP e (2.48)
dP,

o = cg(l1 =P, - PP, +EP, —e,P,. (2.49)

There are two possible equilibria: (1) global extinction, if e, > ¢4; (2) P} =
0,and P} = 1 — e,/c, if e, < ¢,. The rate of evolution, E, is thus irrele-
vant to the long-term state of the system (in sharp contrast to the above island
model). However, evolution can matter crucially in determining transient dy-
namics in the metapopulation. Consider a system in which there has been an
abrupt change in climate, such that all initial populations are maladapted. Nu-
merical integration of the above model reveals that a species may display an
excursion to very low values of occupancy P, + P, before the population in-
creases to its eventual equilibrium. As noted above, a key assumption in patch
occupancy models is that the number of patches in question is very large, so
that deterministic approximations of stochastic processes are sensible. In real
metapopulations, when occupancy gets very low, there is likely to be a small
number of actual populations in question, and a metapopulation equivalent of
demographic stochasticity can arise (Hanski et al. 1996). Analogous to our ini-
tial model of adaptation in a changed environment in a single patch, a metapop-
ulation may suffer extinction due to chance events as it passes through a phase
of transient maladaptation in a novel environment.

The above metapopulation models, of course, provide a caricature of
population and evolutionary dynamics. Future work will address the adequacy
of some of their key assumptions (e.g., constant evolutionary rates). Moreover,
an obvious next step will be to assume localized dispersal, and to examine evo-
lutionary dynamics in environments with different patterns of heterogeneity.
Environments are heterogeneous in many ways, ranging from gentle spatial
gradients, fixed in time, to ephemeral habitat vatches winking on and off dur-
ing succession, to landscapes with complex fractal spatial structure. The “tex-
ture” of the selective environment is likely to be a key determinant of whether
or not a species exhibits niche conservatism, or evolution.

The basic message of this chapter is that population dynamics acts as
akind of constraint within which evolutionary dynamics occur, and that an un-
derstanding of niche conservatism and evolution, in particular, mandates ana-
lyzing evolutionary processes within an appropriate landscape and population
dynamical context.
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