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We analyse a model food web in which two plant species compete for a nutrient and are attacked by .

a herbivore species, with both resource and apparent competition occurring between plants. Simple rules
based on equilibrium nutrient concentration (R*) and herbivore density (H*) have been proposed to
govern competitive outcomes (e.g. Holt er al., 1994, Am. Nar. 144, 741-771), buit these earlier analyses
assumed linearity of the nutrient-dependent plant growth function and the herbivore functional
response. We now relax these assumptions. When plant growth is nonlinear, there is a rich set of
potential trade-offs among plant competitive ability, plant maximal growth rate, plant defenses against
herbivores, and preferences of herbivore attack on plants. Given stability, asymptotic outcomes can
include exclusion of one plant species, priority effects wherein exclusion depends on initial conditions,
and herbivore-mediated coexistence. Nonlinear herbivore functional responses potentially frustrate the
application of simple rules for competitive outcomes. Nevertheless, there are circumstances in which
simple rules appear to perform well. In thése. cases, graphical theory. relates properties of food chains
(nutrient, herbivore, and one plant species only) to asymptotic outcomes in food webs (with both plant
species). Competitive outcomes in the graphical theory are summarized by R* and H* quantities. Our
approach works best when plant species differ greatly in- nutrient-dependent growth rates, and
herbivores preferentially attack plants with high ratios of nutritional benefit to cost (measured by
handling and processing times). A parameterized model of Daphnia and several algal species suggests
that our approach could perform well in practice.

1. Introduction

The influence of natural enemies on interactions
among competitors is a recurring theme in ecology.
Perhaps the most common view is that predation
(or herbivory) overrides the influence of competition,
in the sense that coexistence may be possible in
the presence of natural enemies, but not otherwise.
Certainly, there are many theoretical (e.g. Cramer
& May, 1972; Jost et al., 1973a; Armstrong, 1979)
and empirical (e.g. Paine, 1966; Jost et al., 1973b;
Lubchenco, 1978; Inouye et al., 1980) studies
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illustrating this possibility. However, natural enemies
might also reinforce competitive interactions, so
that dominance by a single competitor in the presence
of natural “enemies might be stronger than in
their absence (Holt, 1987; Holt & Lawton, 1994). Or,
they might reverse patterns of competitive :domi-
nance, so that one competitor dominates in their
presence and another in their absence (Crawley
& Pacala, 1991). Natural enemies might even
introduce competition where it would not otherwise
occur: if one prey supports a population of predators
that attack another prey, and vice versa, then the
two prey have a negative indirect interaction,
showing what Holt (1977) called “apparent compe-
tition”. ’ ‘
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For many organisms, competitive interactions in
the absence of natural enemies are indirect, mediated
by the availability of resources. This is especially true
among primary producers, whose growth-limiting
resources are mostly simple chemical substances. In
the absence of herbivores or spatial heterogeneity,
theory predicts that competition among plants for a
single nutrient resource follows a simple rule based on
the amount of available nutrient present at equi-
librium when plant j grows alone with no competitors,
an amount denoted R*. The rule is: the plant with the
lowest R* will competitively exclude the others
(Powell, 1958; Stewart & Levin, 1973; Armstrong &
McGehee, 1980; Tilman, 1982). This rule is largely
model-independent, and emerges from a wide variety
of underlying physiological mechanisms of resource
consumption and utilization (Tilman, 1990). Thus,
R* is a synthetic parameter, distilling the action of
many biological mechanisms into a single number.
The predictive value of the R*-rule has been
experimentally supported in many systems (Tilman,

1977; Hansen & Hubbell, 1980; Tilman & Wedin,

1991a,b; Grover, 1997),

Holt er al. (1994) proposed that a similat synthetic
parameter could be used to predict the outcome of
apparent competition: the equilibrium density of
natural enemies supported by a given prey population
when its competitors are absent. We will denote this
density by H*, because we treat herbivores and their
plant prey in this paper. When both. resource and
apparent - competition occur, we proposed that
competitive outcomes might be predicted from the
values of R* and H* for each competitor growing

alone in a food chain with the herbivore. To examine

this proposition, we analysed a simple food web
(Fig. 1) containing a nutrient R consumed by two
producer populations, X; and X,, which are both
eaten by a herbivore, H.

Our results suggested one could apply R*- and
H*-rules to predict competitive outcomes in systems
with two trophic levels and a limiting nutrient, much
as the R*-rule characterizes systems with one trophic
level and a limiting nutrient. However, our most
detailed analyses relied on a number of simplifying
assumptions.  These included density-independent
losses for prey and predator; all density-dependence
arises implicitly from consumption of shared re-
sources. We also assumed linear functional responses,
and that per capita growth rates of prey and predator
depended linearly on consumption. For prey that are
plants consuming a nutrient, and predators that are
herbivores consuming plants, these assumptions led
us to a Lotka—-Volterra model of a food chain with
stable equilibria.
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FiG. 1. Food web containing two plants (X, X;) growing under
limitation by a nutrient resource (R), and grazed by a herbivore
(H). Solid arrows show consumption flows; dashed arrows show
flows of nutrient recycling from all populatlons to the available
nutrient pool.

In this paper, we begin to evaluate the robustness
of our approach, by relaxing the assumptions of
linearity in ecological rate processes. We return to the
food web of Fig. 1, and consider nonlinear forms of
the plant growth rate, and herbivores with nonlinear
functional responses. We do retain the assumptions of
density-independent losses, “and stability of food
chain equilibria. Nonlinear coupling of nutrients,
plants, and herbivores has been examined before, in
models where herbivores were specialists restricted to
feeding on only one plant type (Wolkowicz, 1989,
1990; Grover, 1994, 1995). Competitive outcomes and
community assembly rules were related to equilibrium
nutrient concentrations, i.e. R*s, of subcommunities
with various combinations of plant and herbivore
species. As yet, the complications that could arise
with generalist herbivores are less well explored.
Earlier investigations of generalist herbivores with
nonlinear rate processes examined conditions for an
equilibrium of all three species in the food web and
showed that its feaS1b111ty and stability depend on
nutrient supply (Jost et al., 1973a; Armstrong, 1979).

We extend these earlier investigations in several
ways. We present graphical approaches intended to
show how nutrient concentration and herbivore
density relate to invasibility conditions and equilibria
in the food web, and we relate outcomes to the
quantities R* and H* that we emphasized in our own
earlier work. We explore in detail how competitive
outcomes relate to biological trade-offs involving
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plant defenses -and their costs, herbivore feeding
preferences, - the nutritional benefits derived from
particular plant species, and the costs- herbivores
might experience in obtaining such benefits. We also
present a parameterized: model of a planktonic
algal-herbivore.system, to- test some ‘of the insights
obtained from simpler analytical models. The exercise
of parameterization is not meant to construct a model
specifically corresponding to any particular. “real”
system. Rather, we use data from natural populations
to demarcate zones of parameter space, within which
we can assess the utility of the graphical models for
interpreting the outcome of more complex ‘models
with realistic magnitudes for nonlinearities in
functional responses.

2. Basic Models

Our approach focusses on a “resource-dependent
" food web” (sensu Grover, 1997), where the model
equations trace the flow of ‘a nutrient resource
through a series of trophic interactions. We assume
that the. system is closed -to immigration by plants
or herbivores, and we ignore complications of
population .structure and developmental time lags.
The symbol R denotes nutrient availability
(i.e. concentration), X, and X, denote densities -of
the two  plant species, and H denotes herbivore
density.

Plant species j grows at a per capita rate w(R),
which is an increasing, saturating function. Math-
ematically, dy/dR > 0, d*u;/dR* < 0, and w(0) =

Plants suffer two forms of density-independent

losses. Species-specific losses at a per capita rate ¢
result in recycling of the nutrient content of dead
plant matter. We also allow for losses at a per capita
rate D, which applies indiscriminately to nutrient,
plants ‘and herbivores. The nutrient content of
the latter losses is not recycled, but is instead exported
from the habitat, Such a process resembles dilution
in a .chemostat (Grover, 1997), and is: a simple
way to represent turnover of all system components.
We call D the “habitat turnover rate”. Applying the
same- export rate to-all system components might
be reasonable in plankton, where . hydrédynamic
turnover of well-mixed aquatic - habitats . can
remove components indiscriminately (Powell &
Richerson, 1985). This assumption of indiscriminate
removal is probably untrue in -many habitats,
however, where. system components are exported at
different rates. We comment on this below.

Plants also suffer losses to herbivory, described
by the . herbivore’s functional response—its . per
capita rate of consumption for each plant species,

(X, X2). We assume that the functional response
increases with the density of the species consumed,
and potentially decreases with the density of the
other species. Mathematically, 21,/0X;> 0, 01/
6Xk < 0 for _] # k, and !](0, Xz) = lz(X|, 0) =0, We
also define functional responses when only one plant
species is present: zl(X,) = zl(X., 0) and 1.(X:) =
l2(0 Xz)

We assume that plants are substitutable resources
for herbivores, such that either plant species in
principle could support a herbivore in a simple food
chain, based on that plant alone. There are constant
efficiencies (¢;) of conversion of ingested plant matter
to herbivore production, The per capita rate -of
herbivore growth is thus ¥,e1. For -the aquatic
systems we model below, it is convenient to measure
plant (algal) density with carbon mass - (e.g.
umol C17"), and herbivores (zooplankton) in units of
individuals - per unit volume. Doing so, e, = a;/b,
where b is the carbon mass of one herbivore, and o, -
is the assimilability of algal carbon. Like plants,
herbivores suffer two types of density-independent
losses. Those at a per capita rate ¢ result in nutrient
recycling, while those at a per capita rate D lead to
nutrient export.

These assumptions allow a wide variety of possible
shapes for the herbivores’ net-growth isocline in the
X, X»-plane (see Holt, 1983). Below, we examine type
I and II functional responses (Holling, 1959),-for
which the herbivore isocline for zero growth is a
negatively-sloping. straight line ‘in the" X, X,-plane
connecting the points X, = Xitn and - X, = X,
which are the equilibrium densities of each plant in its
own food chain, consisting of itself and the herbivore.
We use the superscript “*” to indicate the equilibrium
value-of a state variable, and a subscript of the form
“(y’ to indicate the species composition of the
community to which that equilibrium refers: e.g. the
subscript “(jH)” refers to a community of just plant
Jj and the herbivore. In this paper, plants are “linearly
substitutable” resources for herblvores (sensu Tllman
1982).

We also assume a partlcular form of ¢ preference
by herbivores for different plants, using the
conventions of zooplankton ecology. The “clearance”
or ‘“‘attack” rate (F;) is the rate at which plant
matter . is removed .from habitat units by an
individual ~herbivore (e.g. volume ' per animal
per time), in effect, the contribution of that
herbivore to a plant population’s per caplta loss rate.
Formally,

_ (X, Xy) o '
F= X . M
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For plant species j = 1, ... ., n, dimensionless prefer-
ence coefficients w; are assigned as

F
W, = 77/ H (2)

where F = max,{F;}, so that 0 < w, < 1 (Vanderploeg
& Scavia, 1979). Herbivore preferences are thus scaled
by reference to the “most edible” plant (with the
highest per capita losses to herbivory). We assume the
w; are fixed for all values of X, and X, (as is true for
the type I and II functional responses examined
‘below). Thus the term “preference” as used here need
not imply complex choice behavior by herbivores, but
merely something akin to biased sampling by an
inefficient filter. v

Pulling all of these assumptions together, plant and

herbivore dynamics follow the coupled differential -

equations:
dX; .
Xdi W(R) = Hy(Xs, X)X, ¢ D,
Jj=1,2 (3a)
dH :
— = ey(X1, X)) — 6 - D. 3b
7ai= L on X (3b)

To complete our model, we must also specify
nutrient resource dynamics. In common with many
ecosystem models of food web and nutrient dynamics
(e.8. DeAngelis, 1992), we assume a constant rate of
nutrient input (dimensions: concentration time~'), It
is algebraically convenient to represent this input rate
as the product of a nutrient supply parameter (S,
dimensions: concentration) and the habitat turnover
rate (D, dimensions: time™').

We assume that nutrient consumption by plants is
proportional to growth rate, at a rate uq. The
proportionality  coefficient ¢, is the “quota” of
nutrient per unit of plant (e.g. mol nutrient per mol
C). As noted above, plants suffer density-independent
losses that result in nutrient recycling, at a rate ¢,g; X;.
If b denotes the average carbon mass of one
herbivore, its nutrient content is b/y, where y is the
carbon:nutrient ratio of herbivores. Thus, density-in-
dependent losses of herbivores result in nutrient
recycling, at a rate b6H/y. We assume there is
recycling of nutrient not assimilated by herbivores
during feeding, at a rate (g, — «;/y)Hy,. The factor in
parentheses is the difference between plant nutrient
content and the herbivore’s nutrient demand, whlch
we assume to be positive.

Our assumptions about nuttient transformatlons
include constant stoichiometry (carbon:nutrient com-
position) and yield (relation between individuals and

nutrient content) for both plants and herbivores. We
also assume instantaneous recycling of nutrients lost
from plants and herbivores. This assumption may be
justified by the fact that the decomposers responsible
for nutrient recycling are often microorganisms with
shorter generation times and more rapid metabolism
than other biotic components. However, delays in
nutrient recycling could occur in some systems.
Beretta et al. (1990) analysed such delays, in a model
for a single plant population without herbivores,
which combines our eqn (3a) with an appropriate
modification of eqn (4). They found that conditions
for equilibria and stability resembled (and for many
cases were equivalent 'to) such conditions in models
without delays. Whether delays in nutrient cycling
would have such benign effects in models of food
chains and webs requires further exploration. With
respect to the planktonic systems to which we apply
our parameterized model, a detailed model of nutrient
recycling through detrital pools (Nisbet et al., 1991)
makes very similar predictions to simple food chain
models assuming instantaneous recycling (e.g.
Grover, 1995). Neglect of delays in nutrient recycling
greatly simplifies model structure and analysis, and
this- convenience motivates us to adopt it. It ‘also
allows comparison of our results with other models
sharing this assumption (e.g. Wolkowicz, 1989, 1990;
Grover, 1994, 1995, 1997; Holt et al., 1994).
Pulling together our assumptions about nutrient
transformations, we complete our basic model with
the differential - equation describing change in
available nutrient: '

‘iiR DS~R) - ¥ g

=12

e,)X + ~IZéH

+ Z <q,- ~ %’)‘Hz]. 0

FER

The total nutrient stock in the habitat is the sum of
available nutrient (R), nutrient contained in plants
(¢/X;), and nutrient contained in herbivores (bH/p).
The coupled system -of eqns (3) and (4) displays a
mass balance, in the sense that asymptotically as
t — oo, the total nutrient stock in the habitat goes to
a constant value:

=12

In this asymptotic state, nutrient input balances
nutrient removal. The Lh.s. of eqn (5) is the total
nutrient stock: differentiating this and substituting
eqns (3) and (4) leads to a linear differential equation
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for total nutrient stock, for which eqn (5) is a stable
equilibrium solution. Trajectories in the phase space
(R, X\, X,, H) thus approach a hyperplane defining a
constraint on nutrient availability for the system. We
refer to this constraint as a “‘mass-balance constraint”
(abbreviated MBC). Because our analyses treat
asymptotic outcomes, we assume that this constraint
is satisfied. For the special case of a closed system
(D = 0), the sum of nutrient in all components [i.e. the
Lh.s of eqn [3]] is immediately and forever fixed at its
initial value, which we identify with the parameter S
in an open system.

We emphasize that the MBC is not itself an
assumption of our model. Rather, it is a deduced
property of asymptotic dynamics, which follows from
our complete ‘budgeting of all nutrient transform-
ations, and the nature of the external nutrient
exchanges assumed. Mass-balance constraints can be
derived for a variety of similar models, assuming that
the environment is constant (Grover, 1995, 1997). In
such an environment, the MBC given above holds
even if there are limit cycles or chaotic dynamics of
nutrient, plants,. and herbivores—such dynamics
merely redistribute nutrient- among these forms,
without changing total stock size (see Kot et al.,
1992).

Our derivation of the MBC relies on our
assumption of indiscriminate removal of all system
components, at the habitat turnover rate (D). In most
systems, different removal rates probably apply to
different system components. If we modify our system
in this way, then the analysis of Wolkowicz & Lu

(1992) for systems without herbivores is easily.

generalized to show  that the total nutrient stock
is bounded as ¢ — oo. Moreover, “if the system
reaches a stable equilibrium, state variables will
still obey a mass conservation law analogous to our
MBC. = Thus,
assumption of equal D for all components will lead to
quantitative, but not qualitative differences for the
results presented here, which concern equilibrium
situations. Leibold (1996) constructed a graphical
approach that generalizes: the MBC in such
circumstances. :

A SIMPLE FOOD CHAIN

_We'build up to the properties of our full food web
' (Fxg 1) from well-known properties of its subsystems.
With no herbivores and only a smgle plant type
present, the nutrient concentration and plant
density converge to a globally stable equlllbrlum,
glven by

RY ="' (D +6¢) (62)

we conjecture that relaxing: our.

Xt = (S — R¥)/q: (6b)

which is feasible if S > R¥, and if large values of R
permit u;, > D +¢; (Hsu et al., 1977) [Fig. 2(a)]. No
equilibrium is possible with both plant types present
in the absence of the herbivore; instead, the plant with
the lower value of R competitively excludes the other
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FiG. 2. Graphlcal ana]y51s of a food chain subsystem of our food
web, containing plant j only. Panel (a) shows the per capita growth
rate of “herbivores as an increasing function of plant density.
Herbivore net growth is zero where this function intersects a
horizontal line representing the herbivore loss rate (4), and the
corresponding plant density is X ,5;,) ‘Panel (b) shows the per capita
growth rate -of "herbivores as an increasing function of nutrient
concentration. Plant net growth is zero in the absence of herbivores
where this function intersects a horizontal line representing the
plant loss rate (¢), and the corresponding nutrient concentration
is R¥,. Panel (c) shows the projected plant isocline for zero growth
(curve labelled dX;/d¢ =:0). and mass balance constraint (heavy
line), given that X = X#m. Their intersection glves the equilibrium
herbivore densxty Ho‘m and nutrient concentratlon R for the food
chain.
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(Hsu ef al.,
Tilman, 1982).

With just a single plant species present, we now add
herbivores, and analyse the new equilibrium, at which
plant density is ‘

1977; Armstrong & McGehee, 1980;

(7

[Fig. 2(b)]. This equilibrium is feasible, and the
herbivore can invade when absent, if X > X2, or
equivalently, S > R} + ¢, X¥m; this also requires that
large values of X, permit e, > D + & (Jost et al.,
1973a; Saunders & Bazin, 1975; Grover, 1994).

We graphically represent the asymptotic properties
of the food chain with plant j and the herbivore by
projecting from the three-dimensional phase space
(R, X;, H) onto the RH-plane (for details see Holt
et al., 1994; Grover, 1997). In three dimensions, the
zero-growth isosurface for plant j intersects a plane
defined by the equilibrium plant density, at X; = X2y,.
To produce a two-dimensional graph we call the
“plant isocline for zero growth”, this curvilinear
intersection is projected onto the RH-coordinate
plane. The MBC is a plane in the three-dimensional
phase space, and thus has a linear intersection with
the plane at X; = X¥x. We project this line onto the
RH-plane to achieve a two-dimensional represen-
tation of the MBC. The graph of the plant isocline
zero growth and the MBC [Fig. 2(c)] depicts
the asymptotic behavior of R and H, provided that
X; is fixed at its equilibrium value for the food
chain. The equilibrium values R@, and H@;, are
found at the intersection of the ‘plant isocline and
MBC. :

The equation of the plant isocline for zero growth,

H=((R)~ D — )( (X,fgn )) ®)

has positive slope. This arises because as herbivore
density increases, the plant population needs pro-
gressively higher nutrient availability to compensate
for herbivory. The plant isocline for zero growth is
determined by the two bracketed terms in eqn (8). The
first depends only on plant characteristics, and implies
that the isocline intersects the R-axis at R}. We
assume that 4;(R) saturates at a maximal growth
rate r;, so the plant isocline for zero growth has an
upper asymptote proportional to r;— D —¢,. The
second term -of this isocline depends on the
herbivore’s functional response and plant density at
equilibrium, reflecting several plant and herblvore
characteristics. ,

The equation’ of the MBC is
H=7 (S~ qXtw) — LR ©)

Equilibrium plant density, X%, is independent of
nutrient supply S, as is the plant isocline for zero
growth, but the MBC is proportional to nutrient
supply. These properties result from our assumptions
of density-independent herbivore losses, together with
a prey-dependent functional response,

Enriched nutrient supply increases R, and Hy,.
This can destabilize the food chain equilibrium if the
herbivores’ functional response saturates, producing a
stable limit cycle (Appendix A, see also Jost et al.,
1973a; Saunders & Bazin, 1975). We consider only
systems for which both constituent food chains have
stable equilibria. Our approach might sometimes
apply to long-term averages of time-varying systems,
but more complex outcomes-are also possible (see the
Discussion). In this model framework, plant density
in a food chain is cortrolled by herbivory and does
not depend -on nutrient supply. In food webs with two
plant species, however, total plant density can
increase with nutrient supply, due to species
replacement along a supply gradient (Leibold, 1996).

3. Properties of the Full Food Web

In our earlier analyses of linear 1;and y; (Holt et al.,
1994), we  superimposed graphs of zero-growth
isoclines and MBC$ for -the food chains of two
competing plant species. These superimposed graphs
revealed . invasibility properties, and were used to
characterize competitive outcomes in the full food
web, associated with particular patterns in the
species-specific quantities Rify, and H},. For instance,
both mutual invasibility (i.e. coexistence) and
non-invasibility (priority effects) required that one
plant species have the lower R, and the other have
the higher H,. Based on these results, we proposed
predicting invasibility and asymptotic outcomes in
food webs, using food chain properties.

Ideally, we would -construct similar two-
dimensional graphs for the full food web under less
restrictive assumptions about g and 1, by setting
dH/dt = 0, obtaining equilibrium values of X, and X,
and projecting the phase space onto the RH-plane.
Unfortunately, when the herbivore’s functional
response is nonlinear, the plant isocline for zero
growth in a food chain does not correspond to 1ts Zero
growth isocline in the full food web.

However, requiring dH/dt = 0 does constrain the
values of X and X to the herbivore isocline for zero
growth in the X, X>-plane. This constraint bounds the
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feasible positions of the plant isoclines and MBCs in
the RH-plane and permits some graphical exploration
of both invasibility conditions, and the relations of
food web outcomes to food chain properties. Before
considering this more complex situation of nonlinear
functional responses, it.is instructive to examine
herbivores with a linear functional response, for
which the plant isoclines for zero growth are
equivalent in food chains and food webs. Extending
the results of Holt er al. (1994), one can interpret
competitive outcomes in terms of herbivore prefer-
ences and the costs of plant defenses.

LINEAR FUNCTIONAL RESPONSES, COSTLY DEFENSES, AND
ADAPTIVE PREFERENCES

Despite its simplicity, the linear functional response
may apply to herbivores grazing relatively scarce, but
highly attractive plants (Crawley, 1997). Our treat-
ment of linear functional responses rests on two
observations: first, defenses against herbivory might
exert costs. upon plants, measured by reduced
nutrient-dependent growth rates and competitive
ability; second, herbivores might preferentially attack
plants which provide higher fitness. To- begm the
analysis, let

y(X), Xo) = Fw,X;, (10)

where F is the maximum clearance occurring when
herbivores ingest an idealized “best” food, to which
herbivore preferences for other foods are scaled
(eqn 3). We assume plant species 1 is preferred to
species 2 (i.e. w; > wy).

With a linear functional response, the plant isocline
for zero growth in the RH-plane becomes

H = (w(R) -

which is independent of X; and X;. Thus, plant
isoclines for zero growth are equivalent in food chains
and food webs, Moreover, food: chain. equilibria. are
always stable when the herbivore. has a  linear
functional response, and invasion analyses adequately
indicate the stability of any interior equilibrium for
the food web (Appendix A). A plant with low
preference (w;) has a zero-growth isocline with steep
slope, and the parameter w; can be interpreted as an
inverse measure of defense against herbivory. The
relative shapes of zero growth isoclines for two plants
depend. .on their characteristics involving defenses
against herbivores and their costs, as detailed in the
examples below.

Unlike the plant isoclines for zero growth the
MBCs do depend on X; and thus differ between food
chains .and food webs. The MBC equations are

D = ¢)/Fw;, an

|~€

=bp (S — aXtm) — %

" for food chain 1; (12a)

H=1 (S @ X%m) — R for food chain 2; (12b)

=%(S—(11X1 —¢I2X2)—%R,

for the food web. (12c)

The MBC for the full system shares the common slope
of the MBC:s for the two food chains, and the MBCs
vary only in elevation. For equilibrium analyses, the
plant densities in the full food web, X; and X, lie on
the zero-growth isocline for herbivores, which has the
equation

X + X
Xt Xom

=1 (13)

From this, it follows that any MBC pertaining to the
full food web lies between the two MBCs of the
constituent food chains. If there is a three-species
equilibrium, the MBC of the full food web passes
through it; the food chain MBCs thus bound the
portion of the RH-plane in which a three-species
equilibrium is feasible. The elevation of this band
is proportional to S, and so feasibility of any
three species equilibrium is conditional on nutrient
supply.

Competitive outcomes and thelr relations to the
synthetic quantities R, and H{}, are now explored by
plotting plant isoclines and the MBCs from the food
chains, on the RH-plane (Figs 3-5; see also Holt
et al., 1994; Grover, 1997). A feasible three-species
equilibrium occurs if the two plant isoclines for zero
growth intersect, with the point of intersection lying
between the two food chain MBCs. If the intersection
lies outside, no. three-species equilibrium is feasible,
An intersection of these isoclines occurs when the
plant with the lower R-intercept of its zero-growth
isocline (R*;)) also has the isocline which rises less
rapidly with R.

There are two situations leading to such an
intersection, and we interpret both as representing
costly plant defenses against herbivory. First, reduced
w; (and hence lower losses to herbivory) may reduce
competitive ability in environments lacking herbi-
vores, so that Ry < R¥. If defense against herbivory
is ‘effective, .a smaller magnitude for w, causes the
zero-growth isocline of plant 2 to rise rapidly with R,
so that it intersects the more slowly rising isocline of
plant 1 (Fig: 3).
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Fia. 3. Graphical analysis of food webs in which herbivores have a linear functional response and plant defenses against herbivory are
costly in terms of competitive ability. The forward sloping curves labelled 1 and 2 are food chain isoclines for zero growth of plants 1
and 2, respectively; the negatively sloping heavy lines are their.food chain MBCs; solid circles show stable (noninvasible) equilibria, and
open circles show unstable (invasible) equilibria. Panel (a) shows adaptive herbivore preferences. Panel (b) shows non-adaptive herbivore

preferences.

In the second case, the less-preferred plant is a
superior competitor in the absence of herbivores, and
has the lower Rj. However, the zero-growth isocline
of the less preferred plant 2 may nonetheless rise more
slowly than that of plant 1, so that an intersection of
these isoclines occurs (Fig. 4). The reason is that the
plant growth function (y;(R)) typically saturates at
high nutrient availability, and an intersection of plant
isoclines can occur if the less-preferred plant 2 has a
lower nutrient-saturated growth rate (r,—¢) than
plant 1. We interpret this to represent plant defenses
that are costly in terms of a plant population’s
maximal growth rate.

An intersection of plant isoclines for zero growth is
necessary for coexistence, but not sufficient. Selective
herbivory is insufficient, in itself, to ensure coexis-
tence, because some mechanism must enable invasion
of the more edible species in the presence of
herbivory. Mutual invasibility implies coexistence at
equilibrium, provided the food chain equilibria are
stable (Hutson & Law, 1985). The food chain
equilibrium with only plant j is invasible by the
missing plant type, if the intersection of plant j’s
MBC and isocline for zero growth falls in-a region of
the RH-plane below the zero-growth isocline of the
missing plant. This then allows the latter a positive net
growth rate [e.g. Fig. 3(a)): When the plant isoclines
for zero growth ‘intersect in the region of the
RH-plane between the MBC:s for the two food chains,
the relative positions of these - MBCs determine
mutual invasibility. If the MBC of the plant species
with the lower R} lies above that of the other, then
each food chain equilibrium is respectively invasible
by the missing plant species [Fig. 3(a)]. In some cases,

-mutual invasibility is associated with a positive

correlation of herbivore preference and competitive
ability (as in Crawley & Pacala, 1991). However,
other correlations of plant traits can also produce
herbivore-mediated coexistence in our theory (as
elaborated below). e

Alternatively, mutual invasibility may fail to hold,
in which case neither food chain equilibrium can be
invaded by the missing plant. A priority effect occurs,
in which a resident plant and herbivore can hold
ground against propagules of the other plant. A local
stability analysis (Appendix A) shows that mutual
invasibility is associated with a stable interior
equilibrium, while mutual non-invasibility is associ-
ated with an unstable interior equilibrium.

Competitive outcomes strongly depend on the
positions of the food chain MBCs. These in turn
depend on plant densities at equilibrium in their own
food chains (X)), and nutrient quotas (g;). The
lower the value of the product ¢, X}, the higher the
elevation of the MBC for that food chain. For now,
we assume that quotas are equal for all plants, which
implies that the relative elevations of the MBCs are
completely determined by  equilibrium densities
(Xim). We will relax this assumption below.

The quantity X3 is related to potential competi-
tive interactions of herbivore j with other herbivore
species, in a manner analogous to RY for plants
competing without Hherbivores. Experiments with
zooplankton herbivores show that species which
reduce algal density to the lowest level at equilibrium
(lowest X)) can competitively displace other species
(Rothhaupt, 1990; Grover, 1997). However, if two
algal species are available, and each zooplankton
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species preferentially attacks the alga for which it has
the lower X, stable coexistence is possible

(Rothhaupt, 1988). Thus we argue that herbivores

potentially raise their fitness by preferentially
attacking those plants which they can reduce to low
density at equilibrium. We will say that such a
herbivore has an “adaptive preference”, (In a game
theoretic sense, such a preference permits persistence
in competition.) Adaptive preferences so defined arise
intuitively, from preferential attack on plants with
high assimilability, high nutrient content, or low
handling times.
For a type I functional response

b(D +6)

Xl = Fwa

(14)

Herbivores are automatically predisposed towards
adaptive preferences, because a preferred plant
species (high w)) will tend to have a lower equilibrium
density. If herbivores prefer plants in relation to
their assimilability, then w, >w, when o, > a,
so certainly X¥m < X%m, and the preference is
adaptive.

Given our provisional assumption of equal plant
quotas, and our definition of adaptive preferences,
relative positions of the plant MBCs are dictated by
herbivore preferences. When these are adaptive, the
MBC for species 1 lies above that for species 2.
Non-adaptive preferences produce a reversed
configuration. We now illustrate several cases
pertinent to interpreting the parameterized model
developed below, and which highlight the roles of
costly defenses and herbivore preferences in determin-
ing competitive outcomes. Then  we relax the
assumption of equal plant quotas, and -assume
- alternatively that herbivore preferences and plant
characteristics are determined by differences in plant
nutrient content.

Some.examples

We first consider cases in which costs of a plant
species’ defenses against herbivores reduce its ability
to compete for nutrient in the absence of herbivores.
Let species 2 be more heavily defended than species
1, also an inferior competitor (R} > R};). We assume
that the defense costs do not affect growth rate at
saturating nutrient availability (i.e.. we assume
r:— €& 2 r —¢). Graphically, these assumptions
imply that the zero-growth isocline for species 1 lies
above that for species 2 at low nutrient concentrations
(Fig. 3). However, the zero-growth isocline for species
2 rises more steeply with nutrient concentration, and
eventually intersects the zero-growth isocline of

Herbivore density

\ !
FR

Nutrient concentration

FiG. 4. Graphical analysis of food webs in which herbivores have
a linear functional response, plant defenses against herbivory are
costly in terms of nutrient-saturated growth, and herbivore
preferences are adaptive. The forward sloping curves labelled 1 and
2 are food chain isoclines for zero growth of plants 1 and 2,
respectively; the negatively sloping heavy lines are their food chain
MBCs; solid circles show stable (noninvasible) equilibria, and open
circles show unstable (invasible) equilibria.

species 1. This intersection corresponds toa potentlal
interior equilibrium.

For the interior equilibrium to be feasible, the
intersection of the zero-growth isoclines must lie
between the two MBC-lines (as drawn in Fig, 3). The
width of this feasible band does not depend on
nutrient supply, but its elevation does. For a feasible
interior equilibrium, nutrient supply must not be so
low that the feasible band falls below the equilibrium
point, nor so high that it falls above.

When the interior equilibrium is feasible, the next
question is whether it is stable (producing coexis-
tence), or unstable (producing priority effects).
Herbivore preferences are critical. If these are
adaptive, the MBC-line for species 1 lies above that
for species 2. Plotting these lines together with the
plant isoclines for zero growth [Fig. 3(a)] shows that
the food chain equilibria with either plant species
occur at values of R and H for which the missing
plant species has positive net growth, and so can
invade. Thus, there is coexistence. Alternatively, if
herbivore preferences are not adaptive, then the
MBC-line for species 2 lies above that for species 1.
Plotting these lines together with the plant isoclines
[Fig. 3(b)] shows that the food chain equilibria with
either plant species occur at values of R and H for
which the missing plant species has negative -net
growth, and so is excluded. Thus, there is a prlorlty
effect.

To summarize, with costly defenses against
herbivory, intermediate nutrient supplies produce a
feasible equilibrium for all three species. This implies
coexistence if herbivore preferences are adaptive, and
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FiG. §. Graphical analysis of food webs in which herbivores have a linear functional response and plant defenses against herbivory are
not costly. The forward sloping curves labelled 1 and 2 are food chain isoclines for zero growth of plants I and 2, respectively; the negatively
sloping heavy lines are their food chain MBCs; solid circles show stable (noninvasible) equilibria, and open circles show unstable (invasible)
equilibria. Panel (a) shows adaptive herbivore preferences. Panel (b) shows non-adaptive herbivore preferences.

priority effects if they are not. Comparing the
equilibria of the food chains with single plant species,
coexistence is associated with rank orderings
R&”) < R(TH) and H]"(‘H) > H(’EH) [Flg. 3(3)] The first
ordering implies that species 2 is more tolerant of low
nutrient availability when growing with herbivores.
Notably, this reverses the situation without herbi-
vores, for which RY, < R#, implying that species 1 is
the more tolerant of low nutrient availability. This
reversal is diagnostic of coexistence, and indicates a
reversal of the plant species’ competitive abilities
under herbivory.. No such reversal occurs when there
- are priority effects, in which case the food chain
equilibria have the orderings R®;, > Ry and
Htm < Hiw [Fig. 3(b)]. Nutrient supplies lower than
those producing a feasible interior equilibrium lead to
exclusion of species 2, and nutriént supplies-higher
than those producing a feasible interior equilibrium
lead to exclusion of species.1. These outcomes are
associated either with lower R}, for the winner, or
higher H@,, depending on herbivore preferences
(Grover, 1997). . v
We next consider cases in which costs of defenses
against herbivory affect the nutrient-saturated growth
rate. We assume that the better-defended species 2 is
a superior competitor in the absence of herbivory (i.e,
R# < RY),. which has a lower net growth -rate. at
saturating nutrient availability (i.e. r, — &, <1 —¢).
If this disadvantage is sufficiently large, then the
zero-growth isocline for species 1 lies below that for
species 2 at low nutrient concentrations, but rises
more steeply with R, so that it eventually intersects
the zero-growth isocline of species 2 (Fig, 4).
. When nutrient supply is neither too low nor too
high, the intersection of ‘these isoclines lies between

the MBC-lines for the two food chains (as drawn in
Fig. 4). Herbivore preferences now determine whether
there is coexistence or priority effects. For example,
with adaptive preferences the MBC-line for species 1
lies above that for species 2. Plotting these lines
together with the plant isoclines for zero growth
predicts priority effects (Fig. 4). By assuming that
herbivore preferences are not adaptive, a graph
predicting coexistence for this arrangement -of the
plant isoclines for zero growth could also be
constructed.

In the illustrated case of priority effects, the
equilibria of the food chains for either plant species
alone follow the rank orderings R¥y; < Rly and
Hy > Hiy, (Fig. 4). Moreover, R} < RfY. Thus,
species 2 is more tolerant of low nutrient availability
with or without herbivores. Priority effects are
associated with a consistent ordering of R* quantities
with and- without: herbivores [see also Fig. 3(b)].
Nutrient supplies lower than those producing priority
effects lead to exclusion of species 1 (associated
with the ordering R < Riw). Nutrient supplies
higher than those producing priority effects lead -to
exclusion of species 2 (associated with the ordering
Hitw > Hiw).

We next consider-cases in which defenses against
herbivory are not costly, so that a plant which is
heavily defended suffers no disadvantage in its
nutrient-dependent growth rate. Specifically, assume
that without herbivores species 2 is a superior
competitor for the nutrient (R < R#), and that in
rich habitats with saturating nutrient availability,
species 2 also grows more rapidly (r — e = r — ).
Graphically, the zero-growth isocline for species 2
always lies  above that for species 1 (Fig. 5).
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Immediately, this implies that both coexistence and
priority effects are impossible—species 2 has advan-
tages all across the boards and always outcompetes
species 1.

The invasion analysis supporting this conclusion
can be portrayed graphically once the positions of
each plant species’ MBC-lines are determined. These
depend on herbivore preferences. If these are
adaptive, the dominance of species 2 is associated
with a ranking Rin < Riw (note that the ranking of
H¥y and Hfy is indeterminate) [Fig. 5(a)]. The
victory of species 2 is attributable to its reduction of
nutrient availability below the level which species 1
requires to compensate for- its losses, including
herbivory. Alternatively, if herbivore preferences are
not adaptive, the dominance of species 2 is associated
with a ranking H@y, > Hu (note that the ranking of
R¥y and Ry, is indeterminate) [Fig. 5(b)]. The victory
of species 2 is attributable to its support of a herbivore
population above the level which species 1 can
tolerate on the available nutrients.

It is not surprising that when defenses against
herbivory are not costly, the . less-preferred- plant
species always displaces a species preferred by the
herbivore. Our analysis emphasizes that the outcome
stems from the inability of the. preferred species to
persist under the regime of nutrient availability and
herbivore density enforced by the less-preferred
species. This regime is characterized by the synthetlc
quantities R¥y and H3y,.

Finally, we consider cases in which herbivore fitness
depends on obtaining the same nutrient that limits
plant growth. Such cases seem likely in nitrogen-lim-
ited terrestrial ecosystems (McNeill & Southwood,
1978; Mattson, 1980; Hartley & Jones, 1997), and
phosphorus-limited freshwater ecosystems (Sterner &
Hessen, 1994). It is adaptive for herbivores to prefer
plants with high nutrient content (g;), and we now
relax our assumption that nutrient content is equal
for all plants. p

- For .simplicity, we - assume that preference is
proportional to plant nutrient content (w; = kq;), as s
the herbivore’s growth efficiency (¢, = k’q;). Keeping
our convention that species 1 is preferred, it has a
higher nutrient content than species 2. Assuming the
herbivore ‘has a linear functional response, and
substituting the . above identities into eqns (7) and
(10), -in_its .own .food chain:plant j reaches the
" equilibrium den31ty

D 5' o

This quantity decreases w1th g, so that herbivore
preference for plants of higher nutrient content is

X, /%

“adaptive” in the sense used in previous cases.
The herbivore attacks more strongly those
plant species which it reduces to low density at
equilibrium.

For the food chain with plant j, the equatlon of the
MBC-line is

- D+o)_»
_b<S Fkkq,) sk .19

which shows that elevation of the MBC increases
with ¢.

Plant species with low nutrient content tend to have
lower R} than those with higher nutrient content; that
is, they are good nutrient competitors in the absence
of herbivory (Tilman, 1990; Tilman & Wedin, 1991a).
Therefore, we assume that the zero-growth isocline of
a species with a low nutrient content intersects the
R-axis nearer the origin than the zero-growth isocline
of a species with high nutrient content. Given the
favorable effects of high nutrient' content on
photosynthesis and plant productivity (Mooney &
Gulmon, 1979, 1982), it is reasonable to expect the
nutrient-saturated growth rate of a plant species to
increase with nutrient content. We again assume
proportionality: , = k"q;. Then, for very large R, the
plant isocline approaches an asymptote at

H=("-D—¢) o an

Plant species 2 has lower nutrient content than
species 1, and is less preferred by herbivores. Its
isocline for zero-growth lies above that for species 1
at low nutrient availability, and R} < Rf. However,
according to eqn (17), the zero-growth isocline for
species 2 reaches a higher asymptote than that for

species 1, unless the plant species with higher nutrient

content has a very large disadvantage in density-inde-
pendent losses (i.e. high ¢;). Barring this, the plant
isoclines intérsect, giving an interior equilibrium. As
noted above, species 1 with its high nutrient content
also has a higher MBC than species 2. This leads us
to the construction of Fig. 4. Therefore, when plant
nutrient contents determine both herbivore prefer-
ences and plant growth characteristics, we predict
priority effects at intermediate nutrient supplies.
Several aspects of the ‘scenario we just sketched
appear to hold for some plant communities attacked
by mammalian herbivores (Bryant et al., 1991).
Tundra and steppe vegetation may be alternative
states developing due to- priority effects induced by
such herbivores (Zimov et al., 1995). The relation-
ships between nutrient content, plant growth charac-
teristics, and herbivore preferences are undoubtedly
more. complex ‘than -the: simple proportionality we
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- F1G. 6. Scaled growth rates (labelled curves) of competing plants
in food webs with herbivores that have a type II functional
response. Panel (a) shows a mutually invasible case leading to
herbivore-mediated coexistence of plants; plant defenses are costly
in terms of competitive ability. Panel (b) shows a mutually
noninvasible case leading to priority effects; plant defenses are
costly in ternis of competitive ability. Panel (c) shows plant defenses
that are not costly, for which the less-preferred plant 2 prevents
invasion by plant 1 under all conditions.

assumed (e.g. Chapin, 1980; Hartley et al., 1995;
Hartley and Jones, 1997). More complicated relation-
ships might lead to a broader range of possibilities,
including perhaps herbivore-mediated coex1stence
instead of prlornty effects. ‘

NONL’INEAR FUNCTIONAL RESPONSES

Analysis
When the herbivore’s functional response - is
nonlinear, a plant species’ isoclines in its own food

chain.and in the full food web do not coincide,
complicating graphical theory. Although coexistence
or priority effects require an intersection of the plant
isoclines for the full food ‘web, this does not
necessarily correspond to an intersection of the food
chain isoclines, limiting their utility as analytical
tools. Moreover, the relationships between the
synthetic quantities R}, and H, and competitive
outcomes can be very complex. We illustrate some of
the possibilities arising with a type II, or saturating,
functional response which allows for limitation of
ingestion rate by “handling” time, including possibly
gut processing and mastication: (Crawley, 1997).
Specifically, we use a modified disk equation for two
food types (Murdoch & Oaten, 1975):

Y Xy =—00 g
1 + Z P W/TjA’j

Jj=12

where 7, represent handling time for plant species j.
The parameters F and w; are as before, and plant 1
is assumed to be preferred (w, > w;). Our analysis
shows that, although their action becomes more
complicated, the principles of costly defenses and
adaptive preferences can still organize these food
webs; We also identify some of the cases where food
chain properties successfully predict food web
outcomes, or fail to do so.

Our analysis assumes that food chains with one
plant species have stable equilibria. This depends on
the balance between the stabilizing influence of
intraspecific competition among plants for the
nutrient, and the potentially destabilizing influence of
saturation in the herbivore’s functional response
(Appendix A). If the former is sufficiently strong, food
chain equilibria are stable. High nutrient supply
destabilizes equilibria, by shifting the balance between
these stabilizing and destabilizing forces.

Substituting eqn (18) into our basic model [eqns (3)
and (4)], the resulting plant isoclines for zero growth
intersect if

(11 (R) — D — &1)/wi = (12(R) — D — &2)/wz, (19)

for some R. We refer to each side of eqn (19) as
“scaled growth rates”, because the nutrient-depen-
dent growth curves (u;(R)) of the plants have been
*rescaled™ by subtracting density-independent losses
and dividing by the selectivity coefficient.
Invasibility of food chain equilibria, the conditions
allowing a three-species equilibrium, and the costs of
plant defenses are related to the scaled growth rates,
which we plot as functions of R. If their: graphs
for the two plants intersect .[Fig. 6(a) and (b)), a
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three-species equilibrium and either coexistence or
priority effects occur; otherwise, there is competitive
exclusion [Fig. 6(c)]. Intersecting.scaled growth rates
can occur when plant defenses are costly in terms of
ability to compete in. the absence of herbivores (so
that R}, < -R%, provided w; is small enough to make
plant 2’s scaled growth rate rise more rapidly than
that of species 1. Intersecting scaled growth rate
curves can also occur with R < R{, if plant defenses

(b)

Herbivore density

Nutrient concentration

Fi1G. 7. Relations between plant isoclines in food webs and food
chains when herbivores have a type 1I functional response. The
forward-sloping curves labelled 1 and 2 are food chain isoclines for
zero growth of plants 1 and 2, respectively; the negatively sloping
heavy lines are their food chain MBCs. The forward:sloping light
curves labelled 1’ and 2’ are jsoclines for zero growth of the plants
in the full food web; solid circles show stable. (noninvasible)
equilibria, and open circles show unstable (invasible) equrhbna
Panel (a) shows plant defenses that are not costly, and herbivore
preferences that are adaptrve Panel (b) shows plant defenses that
are costly in terms of competitive ability, and herbivore preferences
that are adaptive. Panel (c) shows plant defenses that are costly in
terms of competitive abrhty, and herbrvore preferences that are not
adaptive. i

are costly in terms of maximal growth rate, although
we do not consider this case further here.

For linear functional responses, plant isoclines for
zero growth are obtained from scaled growth rates by
multiplying the factor 1/F [see eqn (11)]. For type II
functional responses, the zero growth isocline for
plant j in its own food chain is the scaled growth rate
multiplied by the factor

&8 = (1 + FwyXin)/F, (20)

which represents the proportional extent to which
herbivore ingestion is saturated at equilibrium. For
the full food web, a family of curves represents the
possible positions of plant j’s isocline for zero growth.
This family is the scaled growth rate multiplied by the
factor

6 E(l + FW]T]X| + FW;TzXz)/F, (21)
where X, and X, satisfy eqn (13). The factor ¢ thus

“represents the extent of saturation of herbivore

ingestion, for values of plant densities producing zero
herbivore growth in the full food web. The more ¢

.differs from &F and &F, the more plant isoclines

for the food web differ from those for the food
chains.

With nonlinear functional  responses, “invasion
conditions cannot be assessed graphically by superim-
posing food chain isoclines. To determine competitive
outcomes, one must compute the equilibria of both
food chains, and compare the scaled growth rates of
the two plants at each food chain equilibrium. If plant
J is at equilibrium in its own food chain, the missing
plant will invade if it has the higher scaled growth rate
at the nutrient concentration Rf;,. Suppose defenses
are costly .in terms of competitive ability (so -that
R} < RY) and the scaled growth rates intersect at a
value R = R°. If R3y < R° < R, then each food
chain is invasible at equilibrium by the missing plant
(Fig. 6(a)]. “Herbivore-mediated - coexistence thus
occurs. If R¥yy < R < R4y, then each food chain is
not invasible at equilibrium by the missing plant

[Fig. 6(b)], and priority effects occur. If defenses are

not costly, then plant 2’s scaled growth rate lies
above that of plant 1 for all values of R [Fig. 6(c)).
The less-preferred plant 2 competitively excludes
plant-1.

‘We have so far regarded herbivore preferences as

“adaptive” if the preferred plant 1 allows the
herbivore to persist at a lower plant density, i.e. if
Xtim < X%, For a type II functional response, an
alternative (and .intuitive) definition of an adaptive
preference could be based on the benefit of
assimilated matter accruing to a herbivore consuming
a-unit of plant j («), relative to the costs measured by
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handling time (z;). Herbivore preferences would then
be deemed “adaptive” if

o o
%
T T2

When this condition is met, herbivore preferences are
also *adaptive” with respect to plant densities
required for persistence, because X# < X, If we
now assume that plants have equal nutrient content,
satisfaction of eqn (22) implies that the food chain
MBC for plant 1 lies above that for plant 2.

The factors &* and ¢ that convert scaled growth
rates into isoclines depend on herbivore preferences
and cost-benefit ratios of plant foods. For example,
suppose - that preferences are adaptive, but that
defenses are not costly, so that the scaled growth rates
of plants 1 and 2 do not intersect [Fig. 6(c)]. Nor do
the plant isoclines for zero growth [Fig. 7(a)).
Satisfaction of eqn (22), together with eqn (13),
implies that &¥* < ¢ < &, Positions of plant isoclines
for zero growth in the food web are controlled by the
factor ¢, while these positions in food chains are
controlled by the factors & and &.
zero-growth isocline for plant 2’s food chain is
displaced upward from its food web position, while
that for plant 1’s food chain is displaced downward
[Fig. 7(a)]. This displacement increases with the
difference between & and ¢¥, which depends in turn
on the difference between the benefit-cost ratios of the
plant species. Even if this difference is extreme, the
graph obtained by superimposing the food. chain
isocline and MBC plots resembles the corresponding
plot under the simpler theory for linear functional
responses [compare Figs 7(a) and 5(a)]. Like the
simpler case, competitive dominance by plant 2 would
be revealed by plotting both . plants’ MBCs and
isoclines for zero growth.

- Graphs of food chain isoclines and MBCs may also -

sometimes be useful when defenses are costly in terms

of R}, and preferences are adaptive in terms of -

cost-benefit ratios. The scaled growth rate curves
intersect, and rescaling them by the common factor &
preserves the intersection. In particular, a unique
value ¢’ applies to the three-species equilibrium
represented by their intersection.  Because
EF < &’ < £, the zero-growth isocline for plant 2’s
food chain is displaced upward relative to the
zero-growth isocline for the three-species equilibrium,
while the zero-growth isocline for plant 1’s food chain
is displaced downward [Fig. 7(b)]. The plant isoclines
in. their own food chains are thus distorted from their
positions for the equilibrium of the full food web.
Provided that . this. distortion is not too great;
coexistence again would be revealed by plotting both

22)

Therefore, the .

plants’ food chain isoclines and* MBCs [note the
resemblance of Fig. 7(b) to Fig. 3(a)).

. Next, consider herbivore preferences that are not

adaptive. Then, {* > & > &¥, and the MBC for plant
2’s food chain lies above that for plant 1’s food chain,

- if'the plants have equal nutrient content. Suppose also

that defenses are costly in terms of competitive ability,
with priority effects at intermediate nutrient supplies.
The scaled growth rate curves intersect, and rescaling
them by the common factor ¢ preserves their v
intersection . at R=R‘ [Fig. 7(c)]. Because.
¢ > ¢ > ¥, the zero-growth isocline for plant 1’s
food chain is displaced upward, relative to the
zero-growth isocline for the three-species equilibrium,
while the zero-growth isocline for plant 2’s food chain
is displaced downward, [Fig. 5(c)]. If these displace-
ments are large, a graph of food chain MBCs and
zero-growth . isoclines would incorrectly suggest
competitive dominance by plant 1.

We do not present the full range of logically
possible constellations of adaptive vs. non-adaptive
herbivore preferences, and different costs of plant
defenses. Further analysis suggests that food chain
graphs tend to reveal competitive outcomes in the
food web under certain circumstances. Graphical
theory is miost informative when there are large
differences between plant species in their nutrient-
dependent growth rates, and smaller differences in
their interaction with the herbivore. Nonlinearity of
the herbivore’s functional responses frustrates graphi-
cal theory most severely when plant species have
similar nutrient dependent growth rates, and large
differences in their interaction with the herbivore, and
especially when it renders food chain equilibria
unstable [see also Abrams et al. (1998)].

| Numerical model of freshwater plankton

The applicability of our approach clearly depends
on the quantitative properties of plants and
herbivores. Therefore, we parameterized a numerical

-model for an ensemble of freshwater plankton for

which extensive data are available. Although many
aspects of this model are unrealistic, we carried out
this exercise to explore the operational possibilities of
our theory. We used published data on five species of
planktonic * freshwater algae, and 'the important
herbivore Daphnia. Our parameterized model for the
Daphnia-algal interaction is similar to that used in
Grover (1995), and includes a nonlinear functional
response. Our goal is to evaluate whether food chain
propetties (zero-growth isoclines, MBCs, R, and
Hy) reveal outcomes pertaining to full food webs.

We  parameterized our model of resource and
apparent competition ‘using . phosphorus as the
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(d) Scenedesmus (1)
vs. Nitzschia (2)
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(e) Nitzschia (1)
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FiG. 8. Outcomes of competition between various pairs of algae under herbivory by Daphnia, according to the parameterized model.
Each panel shows a rectangle of parameter space formed by a range of habitat turnover rates (D) and nutrient supplies (S). For each
food chain, 100 combinations of D and S were examined to delineate the region of parameter space in which there was a feasible, stable
equilibrium. For each species pair, the intersection of these regions bounds the parameter space in which both food chains have feasible,
stable equilibria, and these bounds are drawn as heavy lines. For combinations of D and S below and to the right of the lower heavy
line, at least one food chain is infeasible; for combinations of D and S above and to the left of the upper heavy line, at least one food
chain is unstable. For combinations of D and S falling within the admissible region for each species pair, invasibility of the food chain
equilibria was assessed, to judge competitive outcomes. Additional points in the admissible region were examined near the more complicated
boundaries. For several parameter combinations, the invasion results were checked against long-term simulations with various-initial
conditions, and found to agree. Numbers and letters indicate competitive outcomes: 1—the preferred alga (listed first in the labels) excludes
the less-preferred; 2-—the less-preferred alga excludes the preferred; C—coexistence; P—priority effects.

limiting nutrient (Appendix B) and analysed pre-
dicted interactions among these species. These
predictions depend on two environmental parameters,
habitat turnover rate (D). and total nutrient supply
(S). The former parameter potentially represents
turnover from several processes; hydraulic flushing,
sinking and other exchanges among stratified water
layers, the action of predators not explicitly
represented in our model, etc. Values of D from 0.01
to 0.1 d-' are plausible. We consider S to range from
0.1t00.6 umo! P 1-', representing habitats that would

conventionally be considered oligotrophic - to
mesotrophic (Rast et al., 1991). Such habitats often
contain Daphnia spp. In constructing a parameterized
model, we relied on data collected from many sources,
differing in conditions such as temperature, pH; etc.,
which probably affect many parameters’ values.. We
do not intend our numerical model to represent any
particular system. Instead, we use it primarily to
introduce biologically plausible complications, and to
test insights obtained from simpler analytical models,
using parameters within biologically sensible bounds.
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In particular, we ask whether the magnitude of-

nonlinearities in functional responses suffices to
prevent the extrapolation of graphical models.
For each algal species, we determined the positions

of its food chain isocline for zero growth and

MBC-line over the above ranges for D and S. If the
positions of these isoclines for algal species in their
own food chains are not greatly affected by the
nonlinearity of Daphnia’s functional response, then
their graphs should predict competitive outcomes
when the whole food web is assembled. The positions
of the food chain isoclines for zero growth are related
to the rank-orders of the synthetic parameters RJ,
Ry, and Hy,. For example, consider this pattern: for
a given range of nutrient supplies (S) at a fixed habitat
turnover rate (D), Ry < R, at a low nutrient supply,
Hiwy > Hy (with any ordering of Rfy), and at a high
nutrient supply, R¥y < R (with any ordering of
HY%p,). This pattern corresponds to- the case of
coexistence illustrated in Fig. 3(a). On the other hand,
food chain graphs, and the associated patterns of
synthetic parameters would fail to diagnose outcomes
for the full food webs if the nonlinearity in Daphnia’s
functional response were sufficiently strong  [e.g.
Fig. 7(a)l. We used numerical routines to predict the
outcomes of the full food web according to the
nonlinear model, and compared the outcomes to
those predicted by food chain properties.

We examined pairwise combinations of algal
species, and restricted D and S to those values for
which both of the food chains were feasible (i.e.
produced a positive herbivore density), and stable (i.e.
we excluded habitats sufficiently enriched to produce
limit cycles in ‘a food chain). This is a potentially
significant restriction, because food chain models of
the sort we use here can exhibit unstable equilibria
and large amplitude limit cycles under nutrient-rich
conditions (e.g. Kretzschmar et al., 1993; Grover,
1995). The empirical literature documents both stable
dynamics of Daphnia and algae, and - oscillatory
dynamics (Murdoch & McCauley, 1985; McCauley &
Murdoch, 1987). However, observed oscillations do
not appear to be enrichment-driven predator-prey
cycles, but arise from other factors such as
age-structure (McCauley & Murdoch, 1990).:Thus, an
equilibrium analysis may be reasonable. For at least
some of the species pairs considered here, a variety of
competitive outcomes can: arise even within the
restricted range of parameters associated with stable
food chain equilibria.

Regions of parameter - space allowing stable
equilibria for each species pair are bounded by the
heavy lines in Fig. 8, which displays competitive
outcomes in the ranges of parameter space examined.

- Asterionella,

Table 1 summarizes the relationships of these
outcomes to food chain properties as summarized
by the synthetic parameters R}, R}, and Hy. For
two of the ten possible species pairs (Scenedesmus
vs. Stephanodiscus, and Nitzschia vs. Stephanodiscus),
no values of -D and S in the ranges examined
predict feasible and stable food chains for both
competitors.

Competitive outcomes: potentially. depend on
nutrient supply for all other species pairs, because
defenses against herbivory in these systems are always
costly. However, because we considered only those
nutrient supplies low enough to allow stability, the
range of competitive outcomes was often”truncated.
For example, feasibility and stability for two species
pairs (Stichococcus vs. Stephanodiscus, and Asteri-
onella vs. Stephanodiscus) are predicted only in a very
small region of parameter space, and so results are not
plotted. For these two species pairs, dominance by the
preferred species was predicted in this small region of
parameter space. For three other species pairs
(Scenedesmus vs. Stichococcus, Scenedesmus vs.
and - Stichococcus vs. Asterionella)
nutrient supplies low enough for stability led to
dominance - by the less-preferred species. Other
outcomes may occur at higher nutrient supplies.

For all five species pairs, the dominance of a single
species in the region of parameter space examined was
predicted by numerical study of the food web model,
as well as inspection of food chain isoclines and
MBC-lines. For the two species pairs in which the
preferred species always dominated, two' consistent
rankings of synthetic parameters also held: R}, < R3,
and Hly > H@y. These imply that the zero-growth
isocline for the preferred species lies above that for the
less preferred, which implies that the former
dominates; this was confirmed by numerical analysis
of the food web. For the two species pairs in which
the less-preferred species -always dominated, the
consistent rankings of synthetic parameters were:
R¥ < Ry, and Ry < RYfx. These imply that the
zero-growth isocline for the less-preferred species lies
above that for the preferred, so that the preferred
species dominates, as again shown by numerical
analysis of the food web. This latter result
corresponds to the case illustrated in Fig. 5(a).

For the three remaining pairs of species, a wider
range of competitive outcomes occurred in the
region of parameter space allowing feasibility and
stability. In each case, increasing nutrient supply
shifted the system from dominance by one species, to
priority effects or coexistence, to dominance by the
other species, before equilibria  finally became
unstable. '
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In the case of Scenedesmus vs. Nitzschia, numerical
analysis showed a progression from dominance by the
less-preferred species at low S, to priority effects at
intermediate S, to dominance by the preferred species
at high S [Fig. 8(d), Table 1]. This is also predicted
from the food chain isoclines for zero growth and
MBC-lines, and summarized by the patterns of
synthetic parameters. The case of priority effects
illustrated in. Fig. 4 corresponds to the predictions of
the numerical model.

In the cases of Nitzschia vs. Stichococcus and
Nitzschia vs. Asterionella, competitive outcomes were
more complicated because herbivore preferences
change from adaptive at low habitat turnover rates,
to non-adaptive at high habitat turnover rates. At any
turnover rate, the preferred species dominated at low
nutrient supplies, and the less-preferred species
dominated at high nutrient supplies. At low turnover
rates, intermediate nutrient supplies produced coexis-
tence [Fig. 8(e),(f), Table 1]. The same progression of
competitive outcomes is predicted by food chain
isoclines for zero growth and MBC-lines, and
summarized by patterns of synthetic parameters. The
case of coexistence displayed in Fig. 3(a) matches the
coexistence observed using the numerical model at
low turnover rates. ;

For these two species pairs at high turnover rates,
intermediate nutrient supplies produced priority
effects [Fig. 8(e),(f), Table 1]. For sufficiently high
turnover rates, the progression of competitive
outcomes is correctly predicted by food chain
isoclines for zero growth and MBC-lines, and
summarized by patterns of synthetic parameters.
However, there is an intermediate range of turnover
rates high enough to produce priority effects at
intermediate nutrient supplies, but for which food
chain graphs predict incorrectly that the preferred
species should win. Qualitatively, food chain graphs
would correctly predict that as the habitat turnover
rate increases from low values, there is a transition
from coexistence to priority effects [which corre-
sponds to a transition from Fig. 3(a) to Fig. 3(b)]. The
food chain graphs fail to locate this transition
quantitatively, however, and thus make an inaccurate
prediction. The situation- is "that illustrated in
Fig. 7(c), where the food chain isoclines and
MBC-lines predict dominance by the preferred
species, when in fact priority effects occur. In all our
numerical analyses for our parameterized model, this
was the only class of outcomes for which the simple
approach based on food chain graphs failed.

Apart from these few cases, analyses based on food

chain graphs successfully predicted the competitive
outcomes obtained for full food webs. This suggests

that the distortion between zero-growth isoclines in
food chains and food webs, illustrated in Fig. 7, was
relatively small, despite Daphnia’s nonlinear func-
tional response. Such low distortion is due to the
combination of large interspecific differences in
nutrient-dependent growth of algae, with smaller
differences in parameters governing their interaction
with the herbivore. Note that the half-saturation
constants. (K;) of algal growth functions differ more
than 100-fold between species, while all other
parameters differ five-fold at most (Table B1). Poor
performance of food chain graphs only occurred for
ranges of D straddling qualitatively different out-
comes, due to changes in the adaptiveness of
herbivore preferences.

- Our results suggest that several strategies poten-
tially characterize algal prey that persist in habitats
with high herbivore density. As might be expected,
less-preferred algae which are resistant to ingestion by
Daphnia sometimes dominate. Perhaps less intu-
itively, their dominance is often associated with a low
value of R}y, indicating resource competition as a
proximate mechanism of dominance, even in the
presence of herbivores. Resistance to herbivory
reduces loss rate and can make a species a more
effective resource competitor, by reducing the nutrient,
concentration required to persist at equilibrium.
Algae resistant to ingestion do not -necessarily
dominate habitats with high herbivore density,
however. Highly edible algae can persist with large
herbivore populations if their maximal growth rates
are high. Indeed, such algae could be formidable
apparent competitors, associated with high H,, and
supporting Daphnia densities high enough to exclude
even resistant algae. It is intriguing that dominance by
edible algae with high maximal growth rates has in
fact been observed in some lakes with large Daphnia
populations (Sarnelle, 1992, 1993). ,

Discussion

There is a large theoretical literature on plant-her-
bivore interactions, much of which essentially
examines pairwise predator-prey interactions. Re-
cently, interest has grown in decomposing the “plant
box™ into populations of differing edibility, so that
competition among plants is also considered in the
context of herbivory (Armstrong, 1979; Leibold,
1989; Abrams, 1993; Kretzschmar et al., 1993; Holt
et al., 1994; Grover, 1995, 1997). Our efforts share
much with these previous investigations. However, we
have gone further in exploring a range of relation-
ships-among plant competitive abilities and herbivore
preferences among plant species, in attempting to
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understand some of the complexities arising from
nonlinearities in herbivore functional responses, and
in parameterizing our model realistically for aquatic
systems.

In exploring nonlinear plant growth functions, we
have uncovered a rich set of biological possibilities.
These depend on whether plant defenses are costly,
either in terms of competitive ability in the absence of
herbivory, or in terms of maximal, resource-saturated
growth rate, and also on herbivore preferences for
different plant prey. Despite decades of research on
plant defenses and herbivore preferences, many of the
implications of defenses for population and commu-
nity dynamics remain unclear (Crawley, 1989;
Crawley & Pacala, 1991). We developed our graphical
theory to help understand how the outcomes of
simultaneous resource and apparent competition are
influenced by the nature of plant defenses. Within
the limits posed by our simplifying assumptions, the
construction of food chain graphs predicts the
consequences of assembling two food chains into a
food web. The configurations of such graphs are
related to the synthetic quantities Ry, and H, that
we introduced earlier (Holt et al., 1994). Determining
these quantities at several nutrient supplies provides
one avenue to operationalize our theory.

In exploring nonlinear herbivore functional re-
sponses, our analysis of selected examples suggests
that graphical theory and synthetic quantities could
be particularly useful when different plant species
evoke quantitatively similar functional responses in
the herbivore. Then, when comparing food chains
and full food webs, distortion in plant isoclines for
zero growth will be small. For the type II functional
response, our analysis suggests that our approach

should apply best to herbivores eating a suite of:

plants with similar nutritional benefits, relative to
costs. With more complex functional responses, such
as those representing ‘‘switching”, herbivore prefer-
ences could depend on plant densities, as opposed to
the fixed preferences assumed here. Relationships
between food chain properties and food web
outcomes might then be so complex as to preclude
predictability. «
Although coexistence -of plants mediated by
generalist herbivores emerged as a theoretical
possibility in our models, we suspect this result needs
further critical analysis. Such coexistence is always
conditional on nutrient supply, it might be evolution-
arily unstable (as plants evolve more effective
defenses), and conditions for coexistence might be
sensitive to departures from equilibrium assumptions.
One general conclusion emerging from our work is
that the effects of generalist herbivores are no panacea

for resolving the classical problem of multiple plant
species persisting on a few limiting resources.

Throughout this paper we took an equilibrium
approach. Simulations of our parameterized Daph-
nia-algal model (unpublished) suggest that periodic
disturbances can dramatically alter competitive
outcomes, even when the model has stable equilibria.
Patterns of competitive dominance, coexistence, and
priority effects can differ from equilibrium predictions
in complex ways (Abrams et al., 1998). For example,
complicated multiple stable states sometimes appear,
involving periodic attractors. We have not explored
competitive dynamics in these systems under con-
ditions in which endogenous limit cycles develop,
though we suspect they will be equally complex.
Nonequilibrium dynamics -might be further compli-
cated by factors we have ignored, such as age
structure and nutrient storage.

Throughout this paper, we made the simplifying
assumption that inter- and intraspecific interactions
among plants are entirely indirect, mediated only by
nutrients and natural enemies. This assumption does
not rule out other niche differences (e.g due to
temperature, moisture, etc.) provided that they act
primarily by affecting the parameters governing
interactions with nutrients and herbivores. This
assumption - does rule out competition for other
resources (e.g. light) or via mechanisms -such as
allelopathy. To accommodate some of the processes
we neglected, one could assume density-dependent
plant losses, and substitute a function ¢(X), X>) in
eqns (3) and (4). We are not convinced that adding
such phenomenological density-dependent terms to
our model would be as valuable as trying to explicitly
describe the mechanisms we neglected.: Mechanistic
models of competition for light (Huisman ez al., 1998)
and allelopathy (DeFreitas & Frederickson, 1978;
Grover, 1997) have been proposed. Combining such
models with those presented here would allow
exploration of a number of issues we have ignored.

Our assumptions also rule out direct intraspecific
interactions among herbivores. To represent these,
one could substitute a density-dependent herbivore
loss rate or a predator-dependent functional response.
If we assume that herbivores have a type I functional
response, but modify our eqn (3b) to have a
density-dependent loss rate, J(H), that is an
increasing function, we can show that some of our
results are robust. The plant isoclines for zero'growth
that we constructed in:the RH-plane are unchanged,
the quantities R, and H, are increasing functions
of nutrient supply, invasion conditions are related to
these graphs and quantities,’ and competitive out-
comes depend on nutrient :supply. Some of the
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biological trade-offs that we have emphasized may be
altered, however. The possible effects of a nonlinear
predator-dependent functional response of the form
(X, X, H) are much more difficult to anticipate, as
models with such functions are not easy to analyse.

A number of complications in the theory of
simultaneous resource and apparent competition
remain unexplored. Undoubtedly our approach is not
robust to all conceivable complications. The critical
question is which complications are prevalent and
strong enough in nature to frustrate our approach.
Simplicity in nature may indeed not exist, but we will
not find what we do not seek.

The essence of our theory is this: a plant population
growing with herbivores creates certain conditions of
nutrient availability (e.g. R,) and herbivore density
(e.g. Hip). Another plant population can invade and
persist only if it has a positive net rate of change
under these conditions. We emphasize that this notion
is operational and testable. The critical quantities are
measurable with standard methods, and could be
assessed in simple laboratory communities, or in field
systems dominated by a few important species.
Aquatic systems similar to those we modelled
numerically would seem a natural choice for such
work, as might some terrestrial systems (Schmitz,
1994, 1997). We look forward to the confrontation of
this optimism with real data, although we do not wish
to understate the technical difficulties of the requlred
experiments.

This research was supported by the NERC Centre for
Population Biology, and by NSF grants to the authors, We
thank Dave Tilman for many conversations on the issues
addressed- here, and two anonymous reviewers for their
comments.
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APPENDIX A
Stability Analysis

We first address the stability of food chain
equilibria, upon which many of our analyses rely. The
food chain system based on plant j alone is a
three-dimensional subsystem of eqns (3) and (4), and
it may be further reduced to a planar system
through the MBC [eqn  (5)]. This eliminates the
dynamic equation for the nutrient, and the stability
of the resulting second order system is assessed by
linearization (May, 1974; Nisbet & Gurney, 1982).

Standard analysis leads to two algebraic conditions
for stability. The first condition can be written

H(,/“H)l:li(XzH)) all < 0, (A 1)

Xt 90X,

d
] 94Xt 3R

where equilibrium quantities are indicated as in the
main text. The first term (in square brackets)
represents any stabilizing or destabilizing tendencies
resulting from nonlinearity of the herbivore’s
functional response. The second term represents
intraspecific competition among the plants for the
nutrient, and is always stabilizing. If the herbivore’s
functional response is linear, then the first term is
zero,.and this stability condition is satisfied, owing to
competition for the nutrient. If the herbivore’s
functional response is saturating (destabilizing), the
first condition could still be satisfied if intraspecific
competition. among the plants for the nutrient were
strong. The -second stablhty condition can be
written

be; oy
—y‘i{wmmm(a,’(l‘_)<dR’> 0, (A2

and it-is always satisfied.:

Therefore, stability of food chain equilibria rests

~ entirely on the first condition (A.1). For the type II

functional response used in the text, this become

Fwlt v A
SHW)((] r ijrija(i;_H))2> 4 Xm de‘ < 0. (A3)

A fully expanded version of this condition is too
complicated to yield much insight into how stability
relates to the elementary parameters of the model, but
two points are clear. First, the saturating functional
response is destabilizing, but this tendency can be
overcome by sufficiently strong competition for
nutrients among plants, in the form of a high nutrient
quota and a steep slope for the function u(R) at
equilibrium. Second, high nutrient supply is destabi-
lizing for two reasons: because H, is increased, and
because the higher R, leads to a lower slope for
1(R), when this is a typical saturating function.

The food web with both plant species has an
interior equilibrium under certain’ conditions
(specified in the main text). In applying a local
stability analysis, it is easiest to consider the
three-dimensional system of differential equations (3),
using the MBC [eqn (5)] to eliminate the dynamic
equation for the nutrient. This leads to three algebraic
conditions for stability. For a general herbivore
functional response 1;(X;, X,), the first of these can be
written -

o n(XF, X))
s

n(XE, X on 1 _ o

XF x|, 0X,,
— q XF xr ¥ <o (A4
q ldR — q247 dR ’ .

where “*” denotes a quantity evaluated at the interior
equilibrium. The first term (in square brackets)
represents any stabilizing or destabilizing tendencies
resulting from nonlinearity of the herbivore’s
functional response. The second and third terms
represent intraspecific competition among the plants
for the nutrient, and are always stabilizing. If the
herbivore’s functional response is linear, then the first
term is zero, and this stability condition is satisfied,
owing to competition for the nutrient. If the
herbivore’s functional response is saturating (destabi-
lizing), the first condition could still be satisfied if
intraspecific competition among the plants for the
nutrient were strong.
The second stability condltlon can be written

A\B\Cy + A,B,C, + A1B.Dy + A,B,D, >0, (A.5)



where
01, 1
. A| =€ ox X* + € XI; .
6 i
A= X* + 2X2

Bl = n(X¥, X¥) +2 Xr dp

By = u(XF, XH) + by St
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dr|,

dR|,

Ci= H*[L'_()%(T)_(z_) g)’(ll ] ~ g X* dp dR).
C = H*[————-’Z(X;}XZ) aa)’; ] @ X* dp
= H* g,‘z aX? %'

The quantities B, and B, are always positive, but the
signs of the remaining quantities depend on
parameter values, and are once again related to
nonlinearities of the herbivore’s functional response,
and to the strength of intraspecific competition
among the plants for the nutrient.

For the special case of a linear functional response,
the second stability condition simplifies to

1 du 1 dp| \[ew: ew
<-W—‘H-R7 —WzdR ><7 7 >>0 (A.6)
The first factor of this expression depends on the
relative positions of the plant isoclines for zero
growth, as given by eqn (11). Consider first the case
(a) where R, > Ry, so that the zero-growth isocline
of plant 1 must rise more rapidly than the isocline for
plant 2 in order to have an interior equilibrium. Then
the first factor of expression (A.6) is positive. For the
opposite arrangement of the plant isoclines for zero
growth [case (b), RY < R3], the first factor is
negative. In case (a), if the second factor of expression
(A.6) is negative, the interior equilibrium is unstable,
which corresponds to the MBC for plant 1 having
higher elevation than that for plant 2. This leads to
the construction of Fig. 4, which illustrates an
unstable interior equilibrium and priority effects. In
case (b), if the second factor of expression (A.6) is
positive, the MBC for plant 2 lies above that for plant

1, and the interior equilibrium is again unstable
leading to a priority effect [this leads to the
construction of Fig. 3(b)].

The third stability condition is always satisfied for
a linear functional response, and therefore in such
cases, the stability of the interior equilibrium is
completely determined by the second condition. In
case (a), where R, > RY, the interior equilibrium is
locally stable if the MBC for plant 1 has lower
elevation than that for plant 2. In case (b), where
RY < Ry, the interior equilibrium is locally stable if
the MBC for plant 1 lies above that for plant 2. This
case of coexistence leads to the construction of Fig.
3(a). In both these cases of coexistence, mutual
invasibility of food chain equilibria, together with
their assumed stability, permits application of the
permanence theorem of Hutson & Law (1985). Thus
coexistence equilibria are globally stable.

For nonlinear functional responses, the third
stability condition can be written

H*(A,B,D, + A,B\D; + A,B,C, + A\B,(,)
=(Ci+ C)A B H* + A:B. H* + C.C, — Dy D) > 0,
: ‘ (A7)

which admits little interpretation except to repeat that
stability is related to nonlinearity of the herbivore’s
functional response and intraspecific competition
among the plants for the nutrient.

APPENDIX B
Parameterization of the Numerical Model

We modify a previous model (Grover, 1995), which
treated one herbivore, its plant prey, and an inedible
competitor of the prey. To represent freshwater
plankton, phosphorus is taken as the limiting nutrient
(Schindler, 1977), and we take Geller’s (1975) data on
Daphnia pulex as representative of this genus, using
his length-dependent allometric formula to calculate
parameters for-an animal 2 mm long, having a carbon
content (b) of 1.9 umol Canimal~'. Geller (1975)
examined the functional response of D. pulex for
several algae, from which we calculate parameters for
a Holling type II curve (Table B1). Since the highest
clearance rate in the limit of zero food concentration
(0.041 1an~' d~") was found for Scenedesmus acutus,
we take this as an estimate of F, and set w; =1 for
Scenedesmus. The remaining w; are then calculated
relative to Scenedesmus from clearance rates reported
by Geller, in the limit of zero food concentration for
these species. Values of handling time (z;) are
converted from the maximal ingestion rates reported
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TABLE Bl
Model parameters for Daphnia pulex and several algal food species studied by Geller (1975)
T K;

Algal food species (d (umol C)-1) w; o r(d=" (pmol P1-") Reference for r; and K|
Scenedesmus’ acutus 1.2200 1.6000  0.9900 0.9100 0.0200 J. Grover, unpublished
Stichococcus minutus 0.7500 0.6800  0.6100  0.8000 0.0150 cf. small chlorophytes, Grover (1989)
Nitzschia actinastroides 1.6700 0.8800 0,9900 0.3500 0.0023 cf. N. acicularis, Grover (1989)
Asterionella forimosa 1.2800 0.5600 ~ 0.9900  0.5900 0.0060 Tilman (1981)
Stephanodiscus hantzschii 1.0000 0.2000 - 0.8100  0.8000 0.3100 Van Donk & Kilham (1990)

Values of 7 and K; were assigned from the references listed, by comparison to similar taxa as noted. -

by Geller (1975). Using the allometric relation
between Daphnia length and metabolic losses
suggested by Gurney et al. (1990), we set
d=0.165d"".

For algae, population growth usually depends on
phosphorus concentration as a rectangular hypebola

_hR_
K+ R

where r; is the maximal growth rate, and K is a
half-saturation constant (Tilman et al., 1982; Grover,
1989). For the algae studied by Geller (1975), the
parameters of this curve are known, or can be inferred
from taxonomically and morphologically similar
organisms (Table B1). Density-independent losses (¢;)
were set to zero for all algae, since these losses are
typically small relative to other losses (Reynolds,
1984). Values of ¢, vary widely within algal species,
depending on physiological and environmental
circumstances (Turpin, 1988). A molar carbon:
phosphorus ratio- of 200 - is representative of
moderately phosphorus-limited algae (Hecky &
Kilham, 1988; Sommer, 1989), corresponding to
¢, = 0.005 umol P/umol C, which we assign to all
algae. . :

Direct measurements of assimilabilities - in
zooplankton herbivores vary considerably, depending
on what is meant by assimilability and upon the
methods used. For our purposes, an indirect
estimation suffices: when a single food type is
saturating, the herbivore population is expected to
grow at a maximal rate equal to o« /bt; — 6. We take
0.26 d~! as the food-saturated population growth rate
of Daphnia pulex, based on life table studies (Meise
et al., 1985), and thus calculate the values of &, shown.
For Nitzschia and Asterionella, calculated assimilabil-
ities exceed one, so we set them to 0.99, the highest
value observed among other algae (for Scenedesmus),
thereby giving .reduced food-saturated growth rates
for Daphnia populations feeding on these two species.
Geller (1975) studied more algae than those listed in
Table Bl, but for these algae, even complete
assimilability did not give Daphnia positive growth

(B.1)

rates under food saturation. The high assimilabilities
forced on us in this exercise are not unreasonable:
metabolic losses that vary in proportion to ingestion
are parameterized with o;, but Daphnia is a filter
feeder that continually pumps water, so much of its
losses may be independent of food intake, and are
thus parameterized with 6. Lampert (1978) directly
measured quantities close to 1 — o; for many of the
same strains used by Geller (1975), and often found
values near 0.1.

We take y, the molar carbon:phosphorus ratio of
the Daphnia, to be 200 for two reasons. First, this
ensures that rates of phosphorus recycling by Daphnia
are positive (g, — a;/y > 0 for all algae). Second, the
resulting fluxes of regenerated phosphorus are
comparable to those found by Olsen & @stgaard
(1985) for D. pulex feeding on a Scenedesmus sp., and
those found by Lehman (1980) for other species of
Daphnia and algae. The value of y used is higher than
reported values based on tissue composition of
Daphnia spp. (Peters, 1987), and y is best interpreted
as a “demand” ratio for carbon and phosphorus,
differing from measured tissue ratios due to the
simplistic representation of chemical fluxes in our
model.

In parameterizing our model, we calculated o; in
such a way that the benefit-cost ratio («;/1;) would be
constant for all algae, except when it was necessary to
constrain oy <1. For pairs of algae that have
equivalent benefit-cost ratios, food chain and food
web isoclines for zero growth do not differ, and
relations between competitive outcomes and R, and
H{y must follow the patterns pertaining to linear
functional responses: However, for five of the six algal
pairs analysed in Fig. 8, benefit-cost ratios differed
due to truncating a; at 0.99 for some species. Hence,
the food chain and food web isoclines for zero growth
of our model algae usually differed. In principle, such
differences cause patterns  of association between
competitive outcomes and R, and H}, to differ from
simple expectations. However, as noted in the main
text, such discrepancies appear to be the exception,
rather than the norm.





