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Hyperparasitism is a widespread ‘interaction in natural communities, but has to date received little
attention in the theoretical literature. In this paper, we compare canonical models for food chains
(resource-prey—predator systems) - and host-parasite-hyperparasite interactions. We focus on
microparasites, so the dynamical variables are the abundances of host individuals in different classes
(e.g. with or without a particular parasite), and assume that the parasite is the only factor regulating
a host population. Analysis of a “donor-controlled” model in which the primary parasite regulates host
population growth, but with no additional demographic impact of the hyperparasite, suggests that

intrinsic growth rate r of the host population is a fundamental parameter governing persistence of the

hyperparasite. We then examine a model in which the hyperparasite can affect host births, deaths, and
rate of recovery from the primary parasite. A wide range of outcomes are possible. For instance,
hyperparasites can stabilize inherently unstable host—parasite systems, or destabilize stable systems.
Persistence at a stable equilibrium often requires that the host intrinsic growth rate r lie within defined
bounds; at low r, the hyperparasite may not be able to persist (in stable systems), whereas at high r
the system is unstable and the host population grows in an unbounded fashion. We conclude by
sketching directions for future work, and suggesting some possible practical implications of our results.

&

The Coexistence of Competing Parasites. Part II—Hyperparasitism and Food

Introduction

Obligate hyperparasitism is an interaction wherein
one species of parasite is parasitized by a second
species of parasite, which cannot on its own parasitize
an uninfected host. We here use the term “‘parasitism”
in an expansive sense, for instance to include the
“Kkleptoparasitism” which- may arise when one
parasite differentially attacks and in effect “steals”
hosts already infected by another parasite (the
primary parasite), as well as systems where one
parasite lives intimately within the body of the
primary parasite. Though pervasive in nature (e.g.
Cook & Baker, 1983; Levin & Bull, 1996), this
interaction has received rather scant attention in the
theoretical literature of host-parasite interactions
(though for early studies involving insect parasitoids,
see Beddington & Hammond, 1977; Hassell, 1978;
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May & Hassell, 1981), at least compared with the
enormous theoretical literature on single parasite—
host dynamics (see, e.g. Grenfell & Dobson, 1995;
Anderson & May, 1991). There is an increasing
appreciation of the need to consider multispecies
dynamics when examining host—parasite interactions
(Hochberg & Holt, 1990; Begon & Bowers, 1995), and
more broadly the factors organizing ecological
communities (Holt, 1996a). The dynamical inter-
actions between any pair of species, including host
and parasite, can be strongly modulated by effects of
other species (Begon et al., 1996).

In this paper, we examine some aspects of the
dynamics of host—parasite-hyperparasite  systems.
Our aim is to compare the dynamics of these systems
to the more familiar dynamics of food chains in
ecological communities, highlighting both similarities
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and differences. An obligatory hyperparasite is in
some ways akin to a top predator in a food chain. For
instance, energy and nutrients may flow from host, to
parasite, to hyperparasite, much as energy and matter
flow up food chains from plants, to herbivores, to
carnivores (Hutchinson, 1959). With specialized
parasitism, as with trophic specialization in a food
web, there is a kind of sequential dependency among
species, which can lead to regular patterns in

community assembly even in the absence of more

complex population dynamical effects (Holt, 1996b).
Moreover, if parasites negatively influence demo-
graphic parameters in their hosts, hyperparasitism
can alter the impact of a primary parasite upon the
host, much as predators can reduce the impact of prey
upon a basal resource population (the “top-down”
effects of food web ecology). ’

But there are also obvious differences between the
two systems, which may have important dynamical
consequences. For instance, if an individual host
mounts a defensive reaction against a primary
parasite and recovers, that reaction can incidentally
remove any hyperparasites * within the primary
parasite, as well. This response does not correspond
closely to any obvious feature in standard food
chains. Moreover, parasitized hosts may still give
birth, or recover from parasitism, thus providing a
source of recruitment of healthy individuals into
host populations that does not have any ready
parallel in prey recruitment in predator—prey systems.

Hyperparasitism may, at times, increase the impact of

such reproduction, by allowing hosts to recover from
deleterious effects of the primary parasite. Depending
on the natural history of the within-host dynamics, it
is also possible for a hyperparasite to impair more
severely host recruitment or recovery, compared with
just the effects of the primary parasite. As we will see
below, the direction of the impact of hyperparasitism
on host demography has a major effect on the
stability of systems with hyperparasitism. One crucial
difference we will observe between a host—parasite—
hyperparasite system and a classic food chain is that
the existence of a persistent equilibrium in standard
food chain models requires direct density-dependence
in births or deaths (usually assumed to be present
in the basal - species),, whereas - host-parasite—
hyperparasite systems can stably persist without any
such direct density-dependence in the birth or death
rates of either healthy or infected hosts.

This paper constitutes the second part of a study on
the coexistence of parasites. The first part focused on
the role’ of interference between two microparasite
species. competing for the same host (Hochberg &
Holt, 1990). The model we examined there permitted

one pathogen strain to infect either hosts previously
infected with another strain (which was then
supplanted) or healthy, susceptible hosts, We found
that parasite coexistence is governed by an interplay
between exploitative competition (driven by direct
transmission to healthy hosts) and interference
competition (arising from mixed infections). Depend-
ing upon the relative strengths of these two effects, it
was shown that a wide range of outcomes could
occur; two parasite species may coexist at a stable or
unstable equilibrium point; or, one parasite species
may always competitively exclude the other; or,
alternative states exist.in which either parasite can
dominate (with the winner dependent on initial popu-
lation densities of the host and both parasites). In a
broad sense, this system exhibits all the dynamical -
features of omnivory or intraguild predation (Holt &
Polis, 1997), a class of interspecific interactions in

" which a top predator feeds on multiple trophic levels.

We begin by briefly reviewing well-known results of
the dynamics of a simple Lotka—Volterra food chain.
We than examine a “donor-controlled” system,. in
which the hyperparasite is in effect a commensal of
the host—primary parasite system. We next consider a
limiting case of the model explored in Hochberg
& Holt (1990), corresponding to a host—parasite—
hyperparasite chain where the hyperparasite has
substantial demographic impacts, and describe in
detail how hyperparasitism modulates the stability of
the system. We conclude by summarizing key
similarities and differences between standard food
chain models. and models  of  hyperparasitism,
and briefly discuss some potential implications of
hyperparasitism for biological control.

A Simple Food Chain Model

The canonical food chain model involves a chain of
predator—prey interactions, where a basal resource
population sustains an intermediate predator popu-
lation, which in turn is consumed by a top predator.
If we assume that the basal species experiences logistic
growth, and linear functional responses linking each
successive predator—prey interaction, the food: chain
dynamics can be described by the following
Lotka—Volterra model (e.g. Hallam, 1986):

dRr

@ = Rl — RIK)—aN]
%—]:’ = N[baR — m — a'P] ()
& PlyaN —m]
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where R, N, and P-are, respectively, the densities of
the basal prey, intermediate predator, and tep
predator; r and K are the intrinsic growth rate and
carrying capacity of the basal prey; a and a’ are attack
rates, respectively, of the intermediate predator on the
basal prey, and the top predator on the intermediate
predator; b and b’ convert prey consumption.into
predator births; and, m and m’ are density-
independent mortality rates. The basal prey, when
alone, equilibrates at R = K. The equilibrium of the
basal prey and just the intermediate predator is
R’ =mjab, N' = (r/a)(1 = m/abK). The intermediate
predator only persists if K > m/ab. The full chain has
an equilibrium of R* = K(1 — aN*/r), N* =m’[a’}’,
and P* = (baR* — m)/a’. This equilibrium exists if
two conditions hold: K > (m/ab)(1 — aN*/r)~!, and
m’jla’b’ <rfa. If these two- and three-species
equilibria exist, they are asymptotically stable
(Hallam, 1986).

This simple model illustrates key properties of more
general food chain models (e.g. Oksanen et al., 1981;
Logofet, 1993). Comparing persistence conditions for
the two- and three-link systems, it is clear that adding
a top predator requires the basal prey to have a larger
K than required for just the intermediate predator to
persist. Hence, along a gradient in K (i.e. a gradient
in basal prey density-dependence) one should find
longer. food ~chains -only -at higher K, where
density-dependence is weak in the basal species
(Pimm, 1982; Oksanen et al., 1981). However, large
K is not sufficient for the full chain to persist; » must
also be sufficiently large (ensuring enough intermedi-
ate predators sustained by the basal resource to
support the top predator). .- N

A final observation about the above food chain
model is that direct density-dependence in' recruit«
ment of the basal species is necessary for a stable
equilibrium to exist. Assuming that the top predator
is absent, if one lets K — o then the two-link model
reduces to the classical, neutrally stable Lotka-—
Volterra model:

%—If = R[r — aN]
| @
%];Y = N[baR — m]

If the parameters are all positive, then the equilibrium
N’ =r/a, R’ = m/ab always exists, and the predator
limits prey population growth. However, solutions of
the Lotka—Volterra predator—prey model are neu-
trally stable, and small changes in assumptions can
have radical effects on system behavior (May, 1973).

Nonetheless, the equilibrial abundance expressions do
capture aspects of more complex, realistic models.
For instance, increased r translates into increased
predator abundance, whereas increases in predator
efficiency (@) depress -both - predator and prey
numbers.

If m’ja’b’ > r/a, the top predator cannot invade a
system comprised of the basal prey and intermediate
predator. If, instead, m’/a’b’ < r/a, then the top
predator can invade. In this case, however, there is no
finite equilibrium for the system defined by eqns (1)
in the limit K — oo—abundances. of the basal species
and - top ‘predator are unbounded, and the system
explodes exponentially (Hallam, 1986). Similar effects
arise .in any food chain model without direct
density-dependence (Logofet, 1993).

Thus, in the above food chain model, persistence
at an equilibrium with finite abundances requires
direct density-dependence in the basal species.
Moreover, the food chain persists only if the intrinsic
growth rate (r) of the basal resource population is
sufficiéntly high. ‘'We now compare these results
with comparable host—parasite and host—parasite~
hyperparasite systems.

A Canonical Host—parasite Model

We suggest that the canonical host-microparasite
model, appropriate to systems where hosts do not
have an immune response, is the basic differential
equation model of Anderson & May (1986). This
model embodies several basic assumptions:

(1) the host is regulated (if at all) by parasitism.
Hence, in the absence of the primary parasite, the
population of susceptible hosts of density S grows
exponentially. These hosts have per capita rates of
birth and death of a and b, respectively, so their net
intrinsic rate of increase is ¥ = a — b;

(2) the rates of parasitism are described by mass
action terms BSI, where 8 is the coefficient of direct
transmission of the primary parasite (of density I)
from infected to.susceptible hosts;

- (3) once infected, a host may either recover to the
susceptible state at a per capita rate of v, give birth
to susceptible offspring at a per capita rate of a, or
die from natural or disease-induced causes, at per
capita rates of b or m, respectively. The parameter d
denotes the net intrinsic loss rate of infected hosts (i.e.
d =m + b + v). The parameter e represents the net
contribution of infected hosts to the growth of the
susceptible fraction of the host population (i.e.
e =0+ a).
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With these assumptions,
following form:

ds
dr

the model takes the

=rS + el — IS

g ©)
1

a—; = ﬁIS —sl

The equilibrium S* =d/f, I* = rd/[B(d — e)] exists
and is stable, provided 1 > e/d (see Holt & Pickering,
1985).

The above model is a close analogue for
host-parasite models of the Lotka—Volterra preda-
tor-prey model [eqns (2) above]. Some parallels are
apparent - from inspection of the expressions for
equilibrial abundances. For instance, in model (2), an
increase in the predator attack parameter a depresses
the abundance of both predator and prey (due to
overexploitation). Likewise, in - the host-parasite
model, an increase in the transmission coefficient
reduces both host and parasite. Similarly, an increase
in r indirectly enhances abundance of the natural
enemy (predator or parasitized hosts), with no effect
on prey or host abundance. In both models, there is
assumed no direct density-dependence in the basal
population (prey or healthy hosts).

The key difference between the models is the el
term, describing how infected hosts can give rise to
uninfected hosts (via birth or recovery); when e
approaches 0, the host-pathogen model converges on
the neutrally stable Lotka—Volterra model. This
difference has crucial effects on dynamics. First, it can
weaken the ability of the parasite to regulate the host
population. If e/d > 1, then the host population
grows in an unbounded fashion (presumably until
limited by some factor other than parasitism, not
included in the above model). Second, as long as
0 <ef/d <1, the dynamics converge to a stable
equilibrium. In effect, given some births or recovery,
parasitized hosts provide a kind of time-delayed
recruitment into the subpopulation of susceptible
hosts, buffering changes in host numbers. A general
message of this model is that in some circumstances,
parasitism on its own can regulate host numbers to a
stable equilibrium, independent of any other regulat-
ory factors (e.g. food limitation).

The demographic ratio e/d thus plays a- deﬁnmg
role in host—parasite dynamics. We will see that this
ratio also characterizes the behavior of systems with
hyperparasites. If parasitism affects death rates, but
not birth rates, the condition for 'population
regulation may be written as r < m, where m is
additional mertality from parasitism (Anderson &
May, 1986). This simple inequality suggests that

pathogens imposing a given level of mortality are
likely to stably regulate only hosts with a sufficiently
low intrinsic growth rate. However, expressing the
condition for persistence in this way to .a degree
obscures the fact that what matters in determining
stability in this canonical model is the intrinsic growth
rate of the parasitized portion of the host population,
and not the growth rate of unparasitized hosts.
If e/d < 1, the birth rate of parasitized individuals
is less than their own ‘death rate, and the population
is regulated by parasitism, irrespective of the value
for r. As will be seen shortly, hyperparasitism
changes this conclusion; host r plays a vital role in
determining the persistence and stability of host-
parasite-hyperparasite systems. :

A Donor-controlled System

One limiting case of - hyperparasitism . .involves
“donor-controlled” (DeAngelis, 1992) systems, in
which the hyperparasite is an obligate commensal of
the primary parasite, with no effect on host

- reproduction or mortality beyond those imposed by

the primary - parasite - alone, and no effect on
persistence or transmission of the primary parasite. In
the above canonical host—parasite model, we divide
the infected portion of the host population into two
parts, such that I=1I + L, where I, and I,
respectively, denote hosts parasitized with only the
primary parasite, and hosts parasitized with both
primary and hyperparasites. To complete the model,
we need to include an equation for the dynamics of
hosts with hyperparasites. We assume that a mass
action law describes the rate at which hosts
with primary parasites acquire hyperparasites, with
parameter & scaling the - transmission rate of
hyperparasites. The following equations describe
the dynamics of a tritrophic, . donor-controlled,
host—parasite-hyperparasite system:

‘(‘f 'S+ el + 1) — PSUL + 1)

b _ S + 1) — df - 61
% = 51112 dlz

In this model, the subscript 1 is for hosts which have
just the primary parasite, where subscript 2 denotes
hosts which -have both the primary parasite and
hyperparasite. Note that adding the equations for the
two infected components leads to the canonical
host—parasite model (3), because the hyperparasite
has no influence on the demographic consequences of
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parasitism imposed upon the host by the primary
parasite. An equilibrium clearly only exists if d/e > 1.
Assuming this is the case, the equilibrial density of
hosts infected with just the primary parasite is
I¥ =dJ/5, and of hosts with the hyperparasite is
I¥ = (rdd — dp(d — €))/6B(d — e). The hyperparasite
persists if

16> B(d—e)

This inequality is also the condition for invasion by
the hyperparasite, given that the primary parasite is
present at its equilibrial prevalence.

This donor-controlled model predicts that the
presence of the hyperparasite depends on a combi-
nation of host properties, parameters describing the
host-primary parasite interaction, and the rate of
transmission of the hyperparasite itself. Hyperpara-
sites can only persist in donor-controlled systems if
host growth rates are sufficiently large. The more
pathogenic (higher d, lower e) is the primary parasite,
the more difficult it is for a hyperparasite to persist.
Moreover, increases in transmission of the primary
parasite, paradoxically, make it harder for the
hyperparasite to persist. This reflects a kind of
overexploitation of the host by the primary parasite,
parallel to the effect of the attack parameter a in the
food chain model noted above.

Many of these features also arise in models in
which hyperparasitism influences host demographic
parameters.

Two Parasites Competing for a Single Host

More generally, one might expect that hyperpara-
sites could influence the demographic parameters of
infected hosts, and the transmission success of the
primary parasite in multiply infected hosts. Hyperpar-
asitism involves two species of parasite, both
sustained (directly or indirectly) by the same host
individuals, and so in a broad sense competing for the
same packet of host resources. For reasons that will
become apparent shortly, it is useful to review briefly
the basic features of a model for multi-parasite
competitive interactions explored by Hochberg &
Holt (1990) before going on to consider the
special case of obligate hyperparasitism. This model
permits either parasite species to infect uninfected,
susceptible hosts. The model is a system of ordinary
differential equations describing changes in the
abundance of susceptible host (of density S), hosts
infected with parasite species 1 (of density ), and

hosts infected with parasite species 2 (of density 1),
as follows: '

ds

—(—17 =rS+ el + el — BIIIS — B.LS
‘{d—fl = BLLS — diI, — 8L, @)
dIz

== = B,L,S — &L, + 01,1,

The assumptions leading to this model include those
for the canonical Anderson-May model presented
above. In addition, we assume that when a given host
individual is Jomtly infected with parasite 1 and 2,
either parasite 1 is rapidly displaced by parasite 2, or,
if it persists within the host, it is dynamically
irrelevant, in that it is unable to produce propagules
to infect healthy hosts. The rate of infection by
parasite 2 of hosts already infected by the primary
parasite 1 is given by a mass action term, scaled by
the transmission parameter . The parameter d can be
thought of as a form of predation between the
parasites, since cross-transmission entails the effective
elimination of reproductive output from the primary
parasites in multiply infected hosts.

Hochberg & Holt (1990) discuss in some detail the
conditions for coexistence between parasites in this
model. One general necessary condition is that two -
parasite species can only coexist if one is the superior
exploitative competitor (i.e. at transmission), whilst
the other parasite is the superior interference
competitor (i.e. at cross-transmission). A further
necessary condition for parasite coexistence is that
e:/d» < ei/d,, so that the parasite species which can
successfully infect hosts -already infected with the
other parasite, must also inflict greater demographlc
damage on the host.

The quantity e;/d; will also prove to be crucial in the
following analysis of the dynamics of hyperpara-
sitism. When e;/d; <1, we say that parasite i is
potentially regulatory, which is to say that in model
(4), where each ;> 0, parasite i could by itself
regulate the host population, without any other
regulatory factors being involved. By contrast, when
e;/d; > 1, we say that a parasite is non-regulatory, in
that some other factor is required to regulate the host
population (which is not to say that the parasite does
not play a contributory role, only that on its own it
is insufficient to regulate host growth to an
equilibrium).
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Obligate Hyperparasitism

The special case of the multiparasite model (4)
comparable to a simple food chain arises when one of
the parasites is an obligate hyperparasite. Formally,
we say that parasite 2 is an obligate hyperparasite if

B.=0 and 6 >0, so the hyperparasite can only .

parasitize individuals already infected with the
primary parasite. This dynamical definition of
hyperparasitism encompasses several distinct biologi-
cal scenarios. For instance, the hyperparasite may
actually be a superior competitor within individual
hosts, supplanting the primary parasite. Or, the
hyperparasite may not supplant the primary parasite,
but instead subsist within it and suppress transmission
by the primary parasite to fresh, uninfected hosts.
Because the model assumes complete suppression of
transmission of primary parasites from hosts with the
hyperparasite, it represents an opposite limiting case
of hyperparasitism to the assumptions of the
donor-controlled model considered above, where the
hyperparasite had no effect upon transmission
dynamics of the primary parasite. -

It is clear that the hyperparasite (species 2) cannot
regulate the host in the absence of the primary
parasite (regardless of the value of ¢;/d;), and indeed
it faces inevitable extinction if the primary parasite,
species 1, is absent. There are two basic questions we
can ask about obligate hyperparasitism. In what
circumstances can the hyperparasite persist? Given
that it persists, what is the effect of the hyperparasite
on the stability of the original primary parasite-host
association?

The system is at equilibrium when

It = dys,
/’ % (4 — e) — rdy
* =
R F T ©

S* = [d, + oL)/B..

For this eqﬁilibrium to exist with each species present
in positive numbers, either
dy
4@

el) > > (dz — ez) (6)

Bi
or

(dl —e) <2 < (dy — e). Q)

/3
must hold. The Appendix shows,that the system is
locally stable at the above equilibrium, if

ré < ﬁl(dz - ez). ) (8)

This implies that only inequality conditions (7)
define a stable equilibrium for the host—parasite-
hyperparasite chain; conditions (6) lead to a locally
unstable joint equilibrium, A fact that is useful below
is that (6) implies di/e; > dy/e,, whereas (7) requires
dl/el < dz/ez.

The various possible outcomes can be categorized
in terms of the potential regulatory ability of each
parasite, as summarized in Table 1, and discussed as
follows:

(I) di/e; < 1 and dy/e, < 1: there is no equilibrium.
The quantity e;—d, gauges the net per capita’

TABLE 1
Potential -outcomes of obligate hyperparasitism in model (4)

A: Invasion of hyperparasite if 70 > Bidi(1 — ei/dh). B: Local stability criterion: 'ré < Bi(d: — 02)

<Bi(d: — e2) ﬂ (dz - e)

1. Neither parasite is potentially regulatory (dife < 1, dy/es < 1)
Full host—parasne—hyperparasne chain persists, but with unbounded host growth
IL. Only the hyperparasite is potentially regulatoty (di/e < 1, dyfe; > 1)

Full chain persxsts but stable only if' B holds.

III. Only the primary parasne is potentially regulatory (di/e > 1, dfe; < 1).

Alternative states arise if B holds:

Hyperparasite absent, and system stable, or
Full chain persists, but with unbounded growth
If B does not hold, full chain persists, but with unbounded growth
IV. Both primaty and hyperparasites are potenually regulatory (dife, > 1, difer > 1)

If 4 holds, fuil chain persists

at a stable equilibrium if B also holds, otherwwe with unbounded growth

If A does not hold, but B holds.
Alternate states exist:

Hyperparasite absent, and system stable, or
Full chain.persists, but with unbounded growth
If neither 4 nor B hold, the hyperparasite cannot persist
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contribution of a host parasitized with parasite i to
host population growth—births of new hosts to
parasitized hosts, minus parasitized host deaths. The
primary parasite cannot regulate the host in the
absence of the obligate hyperparasite (e; — d, > 0),
and the latter is not even potentially regulatory
(e2—d>>0). Because dN/dt=rS+ (e —d) +
(e2 —dy))I, > 0, (where N =S + I, + L), the total host
population has unbounded growth, with the hyper-
parasite increasing once I > di/§. The magnitude of
host r is in this case clearly irrelevant to hyperparasite
persistence.

(I) d/er<1 and dy/e;, > 1: the hyperparasite
increases deaths or decreases fecundity of parasitized
hosts, relative to hosts with just the primary parasite.
Without the hyperparasite, the primary parasite
cannot regulate the host, and both S and I, increase
without limit; the hyperparasite can invade when
L >d/. If ré < Pi(d,—e), a stable equilibrium
exists; otherwise, no point equilibrium exists, and the
host population grows in an unbounded. fashion.
Thus, if the primary parasite is non-regulatory, the
hyperparasite can persist and moreover can stabilise
an unstable host-primary parasite association if (1)
the hyperparasite is -sufficiently pathogenic or
depresses host ‘birth or recovery (relative to the
primary parasite), (2) the transmission rate of the
primary parasite is high, (3) the transmission rate of
the hyperparasite is relatively low, and (4) host r is
low.

These conditions make intuitive sense. For
parasitism to be able to regulate the host, some
parasitized hosts must have a birth rate less than their
own death rate. Given our assumptions about
parameter. values, the only hosts with such demo-
graphic characteristics are : hyperparasitised hosts.
Each such host must first pass through a state with
just the primary parasite. In effect, the non-regulatory
primary parasite is a “bottleneck” diluting . the
regulatory impact of parasitism on the host. The
hyperparasite tends to limit the abundance of hosts
with just primary parasites. High transmission rates
for the hyperparasite lowers this density (a kind of
over-exploitation), thereby freeing uninfected hosts to
grow. By contrast, higher transmission rates for the
primary parasite more quickly move healthy hosts
into a state where they can be then attacked by.the
potentially regulatory hyperparasite. The higher the
intrinsic growth rate of the host, the more likely it an
escape regulation by parasitism, Hyperparasitism is
thus most likely to foster stable host dynamics for
low-r hosts.

(II) dife; > 1 and dyfe; < 1. now, the primary
parasite is regulatory, -but the hyperparasite . is

non-regulatory (e.g. it may free the host . from
deleterious effects of the primary parasite). Without
the hyperparasite, the host and primary parasite settle
into a stable point equilibrium. The hyperparasite can
invade if ré > B,dx(1 — ei/d)). Given such an invasion
(e.g. high host r) there is no equilibrium, and the host
population grows in an unbounded manner. If instead
ré < Bids(1 — ei/d)), the hyperparasite cannot invade.
An equilibrium exists with all three populations
present, but this equilibrium is locally unstable.
Numerical studies suggest that when perturbed, the
system may either converge toward the equilibrium
with the hyperparasite absent, or grow exponentially,
depending upon the magnitude and direction of the
perturbation.

Thus, if the primary parasite is regulatory but
the hyperparasite is not potentially regulatory,
either the hyperparasite will not invade (e.g. low host
r) and the host will be regulated by the primary
parasite, or the hyperparasite will invade, but the host
population will not then be regulated to a constant
abundance by parasitism at all (e.g. high host ). A
non-regulatory hyperparasite creates a potential for a
host population with high r t6 escape regulation,
because such a hyperparasite automatically weakens
regulation by the primary parasite.

(IV) dijes>1 and dyje; > 1: this is the most
complicated case. In the absence of the hyperparasite,
the host and primary parasite persist at a stable
equilibrium, and the hyperparasite is potentially
regulatory. There are two sub-cases to consider:

(1) if ré > Bidi(1 — e//d), the hyperparasite can
invade the equilibrium consisting of the primary
parasite and host. If, in addition, (i) ré < fi(d: — &),
a locally stable 3-species equilibrium exists. These
inequalities together imply as a necessary condition
for stability that di/e, < d»/e,. Note that if both the e
approach 0, these two inequalities cannot be jointly
satisfied. In this limit, the host—parasite-hyperparasite
model converges on the Lotka—Volterra food chain
model without basal density-dependence, which as
noted above is unstable. By contrast, if - (ii)
ré > Bi(d» — e;), the system is destablhzed by an
invading hyperparasite.

We can conclude that for the full chain of
host—parasite-hyperparasite to stably persist at an
equilibrium, hosts with the hyperparasite must have
either higher death rates, or lower birth rates, or lower
recovery rates, than hosts with the primary parasite.
Moreover, persistence of such a chain requires that
the compound quantity. ré/f; lie within particular
bounds. If this quantity is too low, the hyperparasite

cannot invade or persist; if too high, the hyperparasite
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F1G. 1. A numerical example of how increasing host growth rates
can destabilize a host—parasite-hyperparasite system. Model (4)
was numerically integrated using a Runge—Kutta, variable step size
algorithm. Initial conditions were equilibrial densities for the host
and primary parasite, calculated in the absence of the
hyperparasite, and an invasive propagule of the hyperparasite equal
to 0.001. Parameter values were 8 = 1.0, fi = 1.0, &1 = 0.5, e, = 0.2,
di = 1.0, d = 1.0. § = uninfected host density; I, = density of hosts
infected with primary parasite, I; = density of hosts infected with
hyperparasite. (a) Host intrinsic growth rate r = 0.75. The three
species system settles into a stable equilibrium; (b) at higher host
production, r = 0.82, the three species system is unstable.

destabilizes an intrinsically stable host-parasite
interaction. Figure 1 provides a numerical example of
how an increase in host intrinsic ‘growth rate can
destabilize a host—parasite-hyperparasite interaction.
Although a host—parasite-hyperparasite chain can

stably persist without the operation of other limiting
factors, the parameter combinations permitting stable
persistence may be rather restricted. For instance, if
the transmission coefficients and depletion coefficients
(the ds) are approximately unity, the condition for
stable persistence is 1—e <r<1-—e, Stable
persistence occurs only for a narrow band of values
for the host rate of increase. ,

(2) if ré < Bid (1l — e)/d)), the hyperparasite cannot
invade when the primary parasite and host are at
equilibrium. With ré > B,(d, — e,) as well, an unstable
3-species point equilibrium exists. (These inequalities
together imply e/d < e,/d>.) Following a pertur-
bation, numerical studies suggest that the system can
either lose the hyperparasite, or explode exponen-
tially, depending upon the magnitude and direction of
the perturbation. Finally, when ré < Bi(d; — e,), no
3-species equilibrium exists at all, and the hyperpara-
site cannot persist.

In the canonical host—parasite model (3), para-
sitism is regulatory provided only that infected hosts
have higher death than birth rates. In a multispecies
context with obligate hyperparasites, this simple
demographic “rule-of-thumb” for potential regu-
lation” of - hosts by . parasitism may not hold.
Hyperparasites tend to limit the response of primary
parasites to increases in host numbers, thereby
weakening or even precluding the regulatory potential
of parasitism, even if all parasitized hosts are
observed to have higher death than birth rates.

Discussion

We have considered here the persistence of
hyperparasites, in systems where parasitism is the sole
factor regulating host populations. To recapitulate
our main results, we first examined donor-controlled
parasite—hyperparasite interactions, and showed that’
hyperparasites are more likely to persist if hosts have
high intrinsic growth rates. Moreover, hyperparasites
are less likely to occur if the primary parasite is highly
pathogenic, or has a high transmission rate. We then
turned to systems ‘where hyperparasites either
suppress or supplant primary parasites, and showed
that--a hyperparasite - may either "facilitate host
regulation (mediated by the primary parasite), or
preclude such regulation. There are many parallels
between food chain and host—parasite~hyperparasite
dynamics, and some key differences as well. A
hyperparasitoid ' functions much as a top-level
predator in conventional food-chain meodels. How-
ever, the greater complexity of the parasitic life-style
means a much wider array of demographic -effects,
and thus dynamic outcomes, are possible than would
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be the case for predators (Hochberg & Holt, 1990).
Structurally speaking, predation in the Lotka-—
Volterra model (2) is isomorphic to a special limiting
case of the canonical host~parasite model (3) where
births and recoveries by the parasitised hosts are
precluded. We expect that the implications of
hyperparasitism, and more generally parasitism, for
population and community ecology will be more
variable and complex than the effects created by
predation.

We have seen that persistence of the full system in
each case can depend upon the intrinsic growth rate
of the basal resource or host population. A common
result of food chain models is that an increase in the
productivity of the lowest level makes it easier for the
secondary consumer to persist. In like manner, when
the primary parasite is able to regulate. the. host
population (i.e. dife, > 1), the hyperparasite persists
only if #é > Bidi(1 — e)/d)). So one should tend to
~ observe hyperparasitism only in host populations
with high intrinsic growth rates. However, this
condition becomes irrelevant when the primary
parasite is non-regulatory.

The Lotka—Volterra model (1) for a food chain
requires direct density-dependence in birth or death
rates (e.g. in the basal species) to provide a reasonable
description of systems with bounded dynamics. The
canonical host—parasite model introduces density-
dependence through the back door (via recruitment or
recovery from the infected fraction of the population).
An intriguing difference between host—parasite and
predator-prey dynamics is thus that the former can
exhibit population stability even in the absence of
direct density-dependence on births or deaths of
healthy or infected hosts, so long as infected hosts can
provide recruits (via birth or recovery) to the infected
population. An important potential effect of hyper-
parasitism is that it may modulate the likelihood of
population stability arising solely from parasitism.

Hyperparasitism can have diverse effects upon
population stability. If the primary parasite is unable
to regulate the host, addition of a hyperparasite may
stabilize the system. This requires that the host does
not have too great an intrinsic rate of increase, which
seems - intuitively reasonable. More surprisingly,
stability also requires that the hyperparasite’s rate of
infection not be too great, relative to the primary
parasite. The reason is that as d increases, so does the
" equilibrial density of healthy hosts, without compen-
satory increases in the densities of infected hosts; this
allows the destabilizing effect of the host’s positive

intrinsic growth rate to overwhelm the stablllzlng

effect of the parasites.
Conversely, a hyperparasite can destablhze an

otherwise stable primary parasite-host interaction. If
dyfe; < 1 and the hyperparasite can invade, it is
always - destabilizing. However, unlike the general
model (4) examined in Hochberg & -Holt (1990),
where we assumed the hyperparasite could also
directly infect healthy hosts, it does not appear that
obligatory = hyperparasitism . leads - to . sustained,
bounded fluctuations around an unstable equilibrium
point. :

Scant data exists. to assess these theoretical
suggestions, and to know which (if any) of the above
cases might fit natural systems. It might seem plaus-
ible to assume that in many systems, hyperparasitism
would reduce the impact of the primary parasite upon
the host. If this were the case, then case II might be
less likely than case III. However, it should be noted
that the model form also describes systems in which
a secondary -parasite attacks hosts harboring the
primary parasite, which it then replaces (a form of
parasitism referred to above as ‘“‘kleptoparasitism™).
The realized level of virulence is expected to reflect in
part a within-host competitive struggle between
parasites (Frank, 1996). Competition among parasites
within host individuals can lead to an increase over
evolutionary time scales in virulence. A primary
parasite in a host freshly infected by a hyperparasite,
which will supplant or suppress it, has nothing to gain
by restraining reproduction, and so hosts with -
hyperparasites might well show higher mortality rates
than hosts with just the primary parasite. Thus, we
predict that rich parasite communities- containing
both obligate and facultative hyperparasites should
have the most virulent primary parasites, all else being
equal.

Recognizing the multifarious possible effects of
obligate hyperparasitism, on stability may at times
have important practical consequences. In biological
control the establishment of hyperparasites is
routinely. discouraged (Bennett, 1981). We have
shown (Case I above) that hyperparasites can
sometimes be responsible for the success of biological
control (defined here as.a population regulated at
densities too low to experience direct density-
dependence) in some cases where the primary parasite
(i.e. a biological control agent) might on its own be
unable to regulate the population of the target pest.
In effect, biological control may emerge from a
multispecies “team effort” of the primary parasite and
hyperparasite. We were not able to uncover any field
studies which might match this theoretical possibility.
Furthermore, we certainly would not claim that the
conditions leading to this effect are likely to be
realized with high frequency in biological control
systems, and in any case, control which rests on a
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delicate fabric of multlspemes interactions is not hkely
to be robust.

An important direction for future work will be to
examine the issue of oligatory hyperparasite persist-
ence in a broader range of systems, relaxing the
epidemiological assumptions: of ‘the above models
(e.g. as in. Gubbins & - Gilligan, - 1996), and
incorporating the effects of other regulatory factors.
For instance, permitting hosts to lose hyperparasites,
without also losing the primary parasite, leads to a
model resembling (5) above, but with an additional
term in the middle equation (reflecting recovery of
primary parasites from infection by hyperparasites).
Analysis of this model leads to a set of results
differing in detail, but qualitatively resembling, those
presented above; these results include the requirement
that host r lie within a range of values for stable
equilibrium, and the potential of hyperparasitism to
stabilize certain host—parasite systems, and to
destabilize others (Hochberg & Holt, unpubhshed
results).

For all the above cases in which parasitism was
non-regulatory, in natural populations one would
expect host numbers to increase to a point at which
direct density-dependence becomes relevant, even if it
is insignificant at low densities. As in food chain
models, adding direct-dependence to. the host
population can lead to an additional constraint on
hyperparasite persistence, beyond that provided by
host intrinsic growth rates and transmission - co-
efficients (resembling the effect of K in the food chain
model above). Taylor et al. (1998) have recently
examined from an evolutionary perspective a model of
this form, differing in its details from the obligate
hyperparasitism model discussed here [they include
transmission of the hyperparasite to healthy. hosts
[B: > 0in model (4)], direct density-dependence in host
births, and functionally coupled transmission: -and
mortality rates]; their results suggest that hyperpara-
sites may not persist at very low host K. They make the
very interesting suggestion that in field studies
hyperparasite invasion might be mistaken fot an
evolved reduction in virulence in the primary parasite.

The results presented -here provide additional
examples to a growing list of how indirect interactions
in a multispecies context can be pivotal in modifying
species interactions and - determining community
structure (for further discussion see e.g. Begon: &
Bowers, 1995; Holt, 1996b;: Price et al., 1986;
Wootton, 1994). Hyperparasitism is likely to be an
important modulator of many aspects of community
structure, such as the impact of shared pathogens on
species coexistence (Holt & Pickering, 1985) and: the
likelihood of complex dynamics (Begon et al., 1996).

This class of parasitic interactions warrants much-
more. theoretical attention.
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" APPENDIX

The Jacobian of the model in the main text has the
general form

~ o
n O o
o e

where a=r — BI¥, b=e, c=e — BS*, d= oI,
f=BI¥, and g = —4I. The characteristic equation
is

/l3+a1/12+o¢2/l+oc3=0

where o= —a, 0n= —(dg + ¢f), and o; = adg —
bdg. The Routh-Hurwitz criteria that the dominant
root of the characteristic equation has a negative real
part are that each o > 0, and a0, > as.

At equilibrium, dS/d¢ = 0 implies that ¥ —r =
(el¥ + el¥)/S* > 0. The left side is just a,, so the first
Routh-Hurwitz criterion is satisfied. Similarly, from
the same equation, BiS* —e; = (rS* + eI} > 0,
substitution shows that a, > 0.

The coefficient o; = SB*IF[B.OI* — rd — 1] > 0.
Using the fact that 8I* = d,, we find that this criterion
is satisfied if

Bi(d: — €) > ré A1)

The final Routh—Hurwitz criterion wa; > o3 can be
written as (Bl — r}(f1S* — e)BiIF > —e fIOBTF.
We showed above that the two parenthetical terms on
the left hand side are positive at an equilibrium, hence
this inequality is always satisfied. Thus, the sole
condition for local stability of the host—parasite—hy-
perparasite model is (A.1) above.



