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Abstract. We evaluate the goals of meta-analysis, critique its recent application in
ecology, and highlight an approach that more explicitly links meta-analysis and ecological
theory. One goal of meta-analysis is testing null hypotheses of no response to experimental
manipulations. Many ecologists, however, are more interested in quantitatively measuring
processes and examining their systematic variation across systems and conditions. This
latter goal requires a suite of diverse, ecologically based metrics of cffect size, with each
appropriately matched to an ecological question of interest. By specifying ecological mod-
els, we can develop metrics of effect size that quantify the underlying process or response
of interest and are insensitive to extraneous factors irrelevant to the focal question. A model
will also help to delineate the set of studies that fit the question addressed by the meta-
analysis.

We discuss factors that can give rise to heterogeneity in effect sizes (e.g., due to
differences in experimental protocol, parameter values, or the structure of the models that
describe system dynamics) and illustrate this variation using some simple models of plant
competition. Variation in time scale will be one of the most common factors affecting a
meta-analysis, by introducing heterogeneity in effect sizes. Different metrics will apply to
different time scales, and time-series data will be vital in evaluating the appropriateness
of different metrics to different collections of studies.

We then illustrate the application of ecological models, and associated metrics of effect
size, in meta-analysis by discussing and/or synthesizing data on species interactions, mutual
interference between consumers, and individual physiology. We also examine the use of
metrics when no single, specific model applies to the synthesized studies. These examples
illustrate that the diversity of ecological questions demands a diversity of ecologically
meaningful metrics of effect size, The successful application of meta-analysis in ecology
will benefit by clear and explicit linkages among ecological theory, the questions being
addressed, and the metrics used to summarize the available information,
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INTRODUCTION analysis of field experiments and have used the results

For the past forty years, experiments have been her-  ©f Single studies as cxemplars that deﬁn.e and mold
alded as the most powerful tool in the ecologist’s field ecological theory. Many important ecological hYPOFh‘
kit. Indeed, since the seminal work of Connell (1961),  €5€5 however, cannot be tested using the stapdard sin-
ficld experiments have revealed patterns in the dynam- gle-study approach. Often what is needed is a com-
ics of ecological systems, and the insights from these parative approach that ¢xamines how processes and
studies have provided a foundation for much of pop- SPONSes vary across gcologlgal systems. Literature
ulation and community ecology. As a result, ecologists reviews and the discussions of individual papers often

. oo . attempt to put the results of disparate studies into a
have developed rigorous criteria for the design and .
general ecological context. At present, however, these

Manuscript received |1 November 1997; revised 2 July ~reviews remain largely qualitative and subjective, aAnd
1998; accepted 8 July 1998; final version received 14 Sep-  certainly are not subjected to the same quantitative rig-
tember 1998. For reprints of this Special Feature, see footnote  or ag primary, experimental studies. Meta-analysis
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aims to rectify this shortcoming.

Meta-analysis is the quantitative synthesis, analysis,
and summary of a collection of studies (Hedges and
Olkin 1985). Meta-analysis requires that the results of
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each experiment be summarized with an estimate of
the magnitude of the response to the manipulation (i.e.,
the ‘‘effect size™). In principle this response can be
multivariate, although in practice it is univariate. Effect
size, once extracted from each study, is the response
that is subjected to further analysis. Although many
issues related to meta-analysis have been discussed,
and often hotly debated, in the ecological, medical, and
social sciences (e.g., bias in reporting, the use of var-
jous statistical models, etc.; see Mann 1990, Gurevitch
and Hedges 1993, Cooper and Hedges 1994, Arnquist
and Wooster 1995; see also Journal of Evolutionary
Biology, volume 10), there has been little discussion
of the conceptual basis or implications of different met-
rics of effect size. Yet, defining the focal questions (and
hence the metric of effect size) is the most fundamental
task in conducting a meta-analysis (Osenberg et al.
1997, Osenberg and St. Mary 1998).

Three related but distinct goals underlie most meta-
analyses and should influence the choice of a metric
of effect size: (1) the construction of an aggregated and
more powerful test of a null hypothesis, (2) the esti-
mation of the magnitude of response (which might take
the form of parameter estimation), and (3) the subse-
quent examination of the relationship between these
estimates and various environmental and biological
variables. Many of the earliest meta-analyses were fo-
cused on the first goal, a combined test of a hypothesis
of “no effect.” Aggregate tests are most instructive
when each separate study yields equivocal results be-
cause of low statistical power. In such cases, a com-
bined test provides a more powerful statistical test of
the null hypothesis (e.g., Johnson et al. 1987, Vander-
werf 1992, Hechtel and Juliano 1997). Many investi-
gators, however, have questioned the wisdom of fo-
cusing on tests of hypotheses of ‘“‘no effect” (Jones
and Matloff 1986, Yoccoz 1991, Stewart-Oaten 1996,
Fernandez-Duque 1997). Indeed, it might be argued
that any process studied repeatedly by ecologists prob-
ably has some effect, although the effect might be so
small as to defy statistical detection in most experi-
ments. For example, no one really doubts that com-
petition, predation, or trophic cascades occur in natural
systems. What does engender considerable interest and
debate is the strength and relative importance of these
phenomena across systems or environmental condi-
tions (Quinn and Dunham 1983, Gurevitch et al. 1992,
Sarnelle 1992, Osenberg and Mittelbach 1996, Steele
1997). As a consequence, the quantification of effect
size and exploration of the pattern of variation in effect
size among studies is a far more important goal of meta-
analysis than the construction of powerful tests of null
hypotheses (see also Stewart-Oaten 1996).

To facilitate the synthesis of ecological information
and the exploration of general patterns within a body
of ecological studies, it is critical that we match ques-
tions with appropriate metrics of effect size. Rather
than seek a single or limited number of metrics, we
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believe that each question might demand a conceptu-
ally distinct metric that is explicitly defined by the
question and the ecological process(es) of interest. Im-
portantly, quantifying the strength of a process (or the
value of an ecological parameter) requires approaches
distinct from those used to test null hypotheses. Un-
fortunately, metrics of effect size used in ecological
meta-analyses are often derived from the methods used
to test null hypotheses (see Effect sizes commonly used
in quantitative reviews, below). Use of a narrow set of
statistically motivated metrics potentially constrains
the general inferences that can be drawn about patterns
found across ecological studies (Osenberg et al. 1997,
Osenberg and St. Mary 1998, Petraitis 1998). In this
paper, we present a diversity of questions and suitable
metrics to highlight this point, and illustrate the po-
tential application of different metrics defined by ref-
erence to specific ecological questions and models. It
is our hope that this exercise will greatly expand the
future application of meta-analysis in resolving eco-
logical questions and establish the effectiveness of
meta-analysis in testing and refining ecological models
and theory.

ErrecT S1zés COMMONLY USED IN
QUANTITATIVE REVIEWS

Aggregate tests of a null hypothesis can be derived
from a variety of statistical metrics obtained from each
study, e.g., P values (Fisher 1932), the original test
statistics (e.g., the correlation coefficient, 7, or the ¢
value in a two-sample comparison, Rosenthal 1994),
or the standardized difference between two treatments
(e.g., d in Hedges and Olkin 1985). In contrast, when
the goal is to estimate the magnitude of responses, we
need an alternative approach (Osenberg et al. 1997).
Unfortunately, the preoccupation of many ecologists
with statistically rigorous tests of null hypotheses has
often led to confusion between biological and statistical
significance (Yoccoz 1991, Stewart-Oaten 1996, Fer-
nandez-Duque 1997). For example, some ecologists er-
roneously equate small P values (or large test statistics)
with “large effects,”” and large P values (or small test
statistics) with “‘small effects” or even the absence of
an effect; e.g., P > 0.05 is often interpreted as affirming
the validity of the null hypothesis. This error is well
known, yet persists throughout the ecological literature,
as exemplified by the use of “‘vote counting™ (i.e., the
tallying of significant and nonsignificant results) in
many ecological syntheses (see Gurevitch et al. 1992,
Gurevitch and Hedges 1999).

We illustrate problems with equating P values with
biological significance by using data extracted from
Peckarsky’s (1985) study of the responses of different
prey taxa to manipulations of the density of predatory
stoneflies in streams. For each prey species, we cal-
culated a simple measure of effect size (i.e., the log-
transformed response ratio, In(Ng/Nc), where Ny and N
are the mean prey density with and without predators;
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FiG. 1. Distribution of effects of stonefly predators on
densities of different prey taxa in stream experiments, Results
were classified by prey species that showed statistically sig-
nificant (n = 10) vs. nonsignificant (n = 56) responses to
predator manipulations. The response of each prey species to
the predator manipulation was expressed using the log re-
sponse ratio (In[Ny/N.], where N is the mean number of prey
in the treatment with the predator and N is the mean number
of prey in the treatment without the predator). Negative values
indicate negative effects of the predator on prey density. Zero,
indicated by the vertical dashed line, is the expected value
when predators have no net effect on prey density. Data were
taken from Table 4 in Peckarsky (1985).

Cooper et al. 1990, Peckarsky et al. 1990, Hedges et
al. 1999). All data were taken from Table 4 in Peck-
arsky (1985) and separated into prey species that did
(n = 10) vs. those that did not (n = 56) lead to rejection
of the null hypothesis of “‘no effect” of predators on
prey density (Fig. 1). Contrary to what one might ex-
pect, the distribution of effect sizes for prey that
showed ‘‘nonsignificant” responses was not centered
about zero (Fig. 1). Instead, the effects were predom-
inantly negative. Most importantly, the mean effect of
predators on prey showing “‘nonsignificant” responses
was actually stronger than (although not statistically
distinguishable from) the mean effect on prey showing
“significant” responses (back-transformed means:
39% reduction in prey density [95% confidence inter-
val, C1: 27-49%] vs. 17% reduction in density [CI: 37%
augmentation—50% reduction]). Removing the one sig-
nificant positive effect yielded an average effect (and
confidence interval) for the ‘‘significant’’ responses
that was even more comparable to the ‘““nonsignificant”
responses (mean and 95% c1: 33%, 26—41% reduction).
Thus, the failure to reject the null hypothesis for the
prey in the “nonsignificant” group appears to have
resulted from a lack of power, rather than a reduced
effect of predators on prey density. As this example
illustrates, P values are an inappropriate measure of
the biological magnitude of an effect. Similar argu-
ments have been made against the use of test statistics
(e.g., an F ratio or ¢ value) and other statistically de-
rived metrics (e.g., d, the standardized difference;
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Glass 1976, Cohen 1977) as indices of effect size (Fin-
ney 1995, Osenberg et al. 1997, Petraitis 1998).

CHOOSING A METRIC: THE NEED FOR
BioLOGICAL MODELS

A formal meta-analysis requires an estimate of effect
size, ¢, and its variance, v(e,), from each of the i = 1,
..., k studies that are used. There are no preconditions
on the definition of e, and given the diversity of ques-
tions of interest to ecologists and evolutionary biolo-
gists, there is little reason to limit, a priori, the diversity
of metrics of effect size. The metric that is applied in
any particular meta-analysis, however, must have rel-
evance to the question being addressed. Ecological
models can provide an explicit framework for appro-
priately matching the question with a suitable metric,
especially when the metric is represented as a param-
eter in the model. Models also help clarify the as-
sumptions that underlie the derivation of a metric, and
provide a clear basis for evaluating the contexts in
which a particular metric is applicable (Osenberg et al.
1997, Downing et al. 1999).

Sources of variability among ecological studies

Theoretical investigations can help identify different
kinds of variation, and thus help avoid (or correct)
biases that may inadvertently contaminate particular
metrics and associated analyses. Imagine that, for each
system that has been studied, we have a dynamically
sufficient (and preferably mechanistic) model that can
account for variation in abundances over time, as well
as predict with reasonable accuracy the effects of ex-
perimental perturbations (e.g., species removals). In
such a case, we can envision at least four sources of
variation that might distinguish studies and influence
the choice of a metric of effect size.

Level I: experimental variation.—Ideally all studies
in a meta-analysis would have been conducted in ex-
actly the same way. In reality, experiments differ in
various aspects that will influence the results (e.g., ini-
tial conditions, magnitude of perturbation, or duration
of experimental manipulation). Even if different sys-
tems were described by the same dynamic model, with
identical parameter values, these sources of variation
could lead to systematic biases in parameter or effect-
size estimation. Accounting for such biases will often
require an explicit model of how the system functions
(see The right metric depends on the underlying dy-
namics, below; see Downing et al. {1999]).

Level II: parametric variation.—Systems might be
governed by the same basic dynamical model, yet differ
in the values of model parameters. This can lead to
variation among studies in the magnitude of response
to any given treatment. Explaining such variation will
often be the goal of a synthetic, quantitative review
that uses meta-analysis. Theoretical studies can help
elucidate how to minimize biases in estimating effects,
particularly by removing experimental (Level I) vari-
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ation so that parametric variation can be examined as
a function of system traits (e.g., how the effect of com-
petition varies across productivity gradients; see The
right metric depends on the underlying dynamics, be-
low).

Level 11I: functional variation.—Ecological systems
might be sufficiently distinct that their dynamics cannot
be accounted for only by parametric variation. Instead,
the functions that describe the interactions between
variables might assume different shapes. In many
cases, we may not even know the specific algebraic
functions describing a system’s dynamics, but none-
theless have a qualitative sense of the cause—effect re-
lationships that define the system’s behavior. For ex-
ample, consider a specialized pollinator-plant inter-
action that we are certain is mutually beneficial. In this
case, an increase in the abundance of either species
increases the fitness of the other. We may not be certain,
however, whether the increase in the plant’s fitness, for
example, will be a linear, accelerating, or decelerating
function of pollinator abundance.

Level IV: structural variation.—Finally, systems
may differ in their causal relationships. Ecological the-
ory and experiments have clearly shown that the dy-
namics of systems can be radically affected by the pres-
ence or absence of a single component (Leibold 1989,
Abrams 1993, Holt 1997). For instance, some com-
munities may have a predator influencing competitors,
whereas such a predator might be absent from other
communities. Changes in the abiotic environment may
also change the qualitative nature of species interac-
tions; e.g., benign commensal microorganisms can be-
come lethal pathogens under some conditions. Al-
though, in principle, a sophisticated model might be
able to encompass all such variation by including a
combination of parametric and functional variation, it
is useful to separate variation in the qualitative causal
structure of a system from the other kinds of variation
noted above.

Recognizing these sources of variation helps us de-
fine strategies for conducting meta-analyses. Describ-
ing experimental (Level I) variation is seldom the final
goal of a meta-analysis, but rather represents a prelim-
inary or exploratory step focused on describing pos-
sible confounding influences on the results. Thus, meta-
analyses often should include multiple stages of anal-
ysis, the first dealing specifically with experimental
variation (e.g., resulting from time-scale issues; Os-
enberg et al. [1997], Downing et al. [1999]). Ideally,
this is accomplished by knowing the model that gov-
erns the dynamics of the systems. Of course the correct
model(s) is never known with certainty, so the chal-
lenge is to select the most appropriate model(s) given
the goals of the study and the structure and dynamics
of the focal systems, and to use the model(s) to guide
the selection of a metric, define the conditions under
which the metric is applicable, and delineate the em-
pirical studies that can be synthesized using that metric.
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We next illustrate why assumptions about the under-
lying dynamics are so critical when choosing a metric
of effect size.

The right metric depends on the underlying dynamics

The choice of a metric should be guided by the ques-
tion and process of interest, the structure and dynamics
of the system being studied, and the effects of exper-
imental treatments on the dynamics of the system. We
illustrate the role of biological models in defining a
suitable metric by reference to a simple, heuristic ex-
ample that explores how the intensity of plant com-
petition varies across productivity gradients (e.g.,
Goldberg et al. 1999). In our example, we focus on the
specific problem of summarizing experiments that have
examined the effects of competition from neighboring
plants on the somatic growth of target plants. We as-
sume that each experiment was set up with two treat-
ments: a Control containing the ambient density of
neighbors and a Removal in which all neighbors were
removed. Each replicate had a central target individual
of an initial mass that was similar across replicates and
treatments. After ¢ days the targets were harvested and
their masses measured. Our aim, then, is to quantify
the effect of competition using the mean individual
mass at the start of the experiment (M, presumed equal
between treatments), the mean individual mass at the
end of the experiment in the presence and absence of
competitors (M, ,, M, _, respectively), and the duration
of the experiment (#). Several metrics designed to quan-
tify competitive effects have been suggested in the lit-
erature. These and related metrics include: Competitive
Intensity, CI (=M,_ — M,,; Campbell and Grime
1992), Relative Competitive Intensity, RCI (=[M,_ —
M, 1M, _; e.g., Paine 1992, Wilson and Tilman 1993,
Grace 1995, Goldberg et al. 1999), the Response Ratio,
RR (=M, ./M,_ = 1 — RCI; Sarnelle 1992, Curtis and
Wang 1998, Hedges et al. 1999), and the difference in
per unit growth rates (Ar = In(M, /M, )/t = In(RR)/r;
Osenberg et al. 1997). Below we explore the behavior
of these metrics under different assumptions about the
dynamics of target growth and the effects of compe-
tition (i.e., functional, Level III, variation) to highlight
how different dynamics require the application of dif-
ferent metrics of effect size (because of the way in
which the metrics are affected by experimental varia-
tion).

Assume that growth of the target plant can be mod-
eled as either an exponential or linear function of time
defined by the growth rate, g:

M, = Me* (1)
or
M, =M, + gt 2)

respectively, where g = 0. Note that the meaning (and
units) of g varies between Egs. | and 2. Further assume
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that competition reduces the growth rate, g, in either
an additive or multiplicative fashion, i.e.,

8§ =8 — ¢ 0=c=g 3)

or
g = &lc c=1 )]

where g, is the growth rate without competition, and
¢ is the parameter that quantifies the competitive effect
(larger values of ¢ indicate more intense competition).
The various combinations of these sets of equations
describe four possible scenarios (Table 1). Forexample,
combining Eqs. 1 and 3 produces a model analogous
to the Lotka-Volterra equations for population dynam-
ics. We re-emphasize that our intent here is not to model
real systems, but rather to highlight links among model
assumptions, metrics of effect size, and the inferences
that might be drawn from the application of these met-
rics to systems with different dynamics.

We now ask how various metrics behave under the
four different scenarios with the goal that the best met-
ric isolates ¢, the effect of competition, from other
sources of variation (e.g., experimental duration, and
initial plant size). Thus, we ask how well different met-
rics isolate parametric (Level II) variation from ex-
perimental (Level I) variation, and how their perfor-
mance varies depending upon assumptions about the
system’s dynamics. If all plants grow exponentially
(Eq. 1) and competition affects growth additively (Eq.
3), then the Relative Competitive Intensity index (RCI)
yields an effect size equal to 1 — e (Table 1), i.e.,
RCI increases through time (from 0 to 1) as the size
of target plants diverge in the two treatments. The rate
at which RCI increases through time will be determined
by the strength of competition, ¢. Thus, RCI is a func-
tion of the competitive effect, ¢ (as it should be), as
well as the duration of the study, ¢ As a result, two
experiments, conducted in ‘‘identical” systems but
lasting different durations, would yield different values
of RCI, and thus lead to the erroneous inference that
the intensity of competition varied between the sys-
tems. The response ratio (RR) is also a function of both
the intensity of competition and experimental duration
(Table 1), and Competitive Intensity (CI) is a function
of the intensity of competition as well as experimental
duration, initial plant mass, and plant growth in the
absence of competition (Table 1). Thus, none of these
three metrics exhibits the desirable property of isolat-
ing the competitive effect (¢) from the influence of
extraneous factors that are likely to vary from one study
to another (i.e., due to Level I variation, such as ex-
perimental duration). In the case of exponential growth
and additive competitive effects, only Ar isolates the
direct influence of competition from the other poten-
tially confounding factors (Table 1, although the sign
is reversed given the form of the response ratio).

If the dynamics of the systems are better described
by one of the other models, then we obtain a different
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result. In fact, for the other three scenarios (i.e., if plant
growth is linear, or exponential with multiplicative ef-
fects of competition) none of the listed metrics (in-
cluding Ar) properly isolates ¢ from the other param-
eters contained in the models (Table 1). In these cases,
if commonly used metrics of competitive intensity were
selected, then parametric (Level II) variation would
always be confounded with experimental (Level I vari-
ation. If each system that had been studied could be
described by a common functional model, then the ap-
propriate way to estimate ¢ depends on the form of the
model (i.e., the dynamics of the system; Table 1). Ex-
ponential growth requires a metric based on relative
growth rates, whereas linear growth requires a metric
based on absolute growth rates; additive competitive
effects are estimated as a difference in individual
growth rates (either measured on a per unit or absolute
basis), whereas multiplicative competitive effects re-
quire the calculation of the ratio of growth rates. If
each system is best described by a different model (i.e.,
due to Level III or IV variation), then there is no clear
choice of a metric to use in a meta-analysis using all
of the studies. These insights were not obvious until
the possible metrics were matched to the possible mod-
els. Clearly, a metric should not be pulled randomly
from a long list, or selected for mathematical or sta-
tistical convenience. The choice of metric can have
serious effects on the results of a meta-analysis, and
can clearly affect the interpretation of those results (Os-
enberg et al. 1997). For example, in the cases outlined
above, several possible metrics were functions of in-
dividual plant growth in the absence of competition,
which should vary positively with resource supply. As
a consequence, an ill-chosen measure of competitive
effect might change along an environmental gradient
(e.g., a productivity gradient) for reasons completely
independent of the strength of competition.

Time-scale considerations: removing
Level I variation

One of the most important sources of Level I vari-
ation arises from variation in the length of time an
experiment runs. An appropriate metric should be de-
rived based on this consideration (Table 1). In many
cases, however, the question being addressed (and
hence the application of any given model and associ-
ated metric) may be relevant to only a particular range
of time scales. Consider a population perturbed from
a stable equilibrium. If the question being addressed
concerns the initial effect of the perturbation on per
capita growth rates, then the metric of choice is Ar;
¢.g., if the control’s rate of change is 0, Ar = In[N/
N,l/t, where N, and N, are the population densities im-
mediately after the perturbation and ¢ time units later,
respectively (see Examples . . . - Parameter estimation
... : Interaction strength, below). As t gets larger, feed-
backs (e.g., indirect effects) may drive the system to a
new equilibrium. As a result, Ar becomes smaller with
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TasLi 1. Performance of various metrics in studies of plant competition, where target plants increase in mass according
to different assumptions about the growth function (exponential [Eq. 1] or linear [Eq. 2]) and the effect of competition

(additive [Eq. 3] or multiplicative [Eq. 4]).

Exponential growth (Eq. 1)

Additive effect (Eq. 3)

Multiplicative effect (Eq. 4)

Metrict
CI Mgesor(1 — ¢ <)
RCI I — e
RR e
Ar -c

Estimator of ¢
Interpretation of estimator

In(M, 1M, )4

Difference in per unit growth rates,
dM_IM _dr — dM /M . dt

M“(exn' — eroricy
| — g gari=1ic)
e*g()l(l‘ ey

-8l — /o)
In(M, _IM)/In(M, . IM,)

Ratio of per unit growth rates,
(dM /M _dn)/(dM , IM . db)

Notes: M, is the mean individual mass at the start of the experiment; M, , and M, _ are the mean individual masses at the
end of the experiment in the presence and absence of competitors, respectively; ¢ is the duration of the experiment, c is the
effect of competition, and g, is the growth constant without competition.

T CI = competitive intensity = M,, — M, _; RCI = relative competitive intensity = (M, . — M, ,)}/M, _); RR = response
ratio = M, /M, . = | ~ RCI; Ar = difference in relative growth rates (per gram) = In(M, . /M, )/t = In(RR/1). The choice
of the numerator and denominator of RR and Ar are somewhat arbitrary and can be converted to the alternative form by

taking the reciprocal of RR or changing the sign of Ar.
fe=—Ar

time, asymptotically approaching zero. If studies differ
in the length of time that treatments are applied, ex-
periments that run longer (all else being equal) auto-
matically will have a lower estimate for Ar (see Os-
enberg et al. [1997] and Downing et al. 1999 for em-
pirical examples). In other cases (e.g., Examples . . . :
Beyond parameter estimation . .. : Long-term effects
of grazers on algae, below), alternative metrics (e.g.,
based on changes in equilibrial abundances, such as
the difference in, or ratio of, densities between the two
treatments) may be more appropriate than ones based
on rates of change (e.g., see also Billick and Case 1994
and Osenberg et al. 1997).

Choosing the appropriate time scales for analyses
based upon a particular metric of effect size is not
straightforward. We see two ways to address the prob-
lems posed when the theoretical value of a metric varies
through time. First, if we had a dynamic model for a
particular system or class of systems, we could conduct
numerical simulations to examine how serious these
potential problems might be. Thus, one potential role
of theory, which to our knowledge has rarely been used,
is to delimit the temporal domain within which certain
metrics should be used.

Second, we could take a more empirical approach.
Time-series data from the systems being studied could
be used to determine the time scales at which specific
metrics are time invariant and actually estimate the
process of interest (e.g., Osenberg et al. 1997 and
Downing et al. 1999). Ideally, time-series data would
be available for each study included in a meta-analysis.
Unfortunately, most ecological field experiments are
relatively short in duration, and often report responses
only at the end of the experiment (perhaps with initial
conditions). Without time series, models cannot be de-
veloped and validated, and the meta-analyst will need

to rely on experience and indirect assessments to eval-
uate the appropriateness of a metric and its underlying
model.

In the absence of time series, it might be tempting
to explore the relationship between effect size (e;) and
duration (¢,) across studies ({ = 1, ..., k). We caution,
however, that effect size and experimental duration
might be correlated among studies, but that this cor-
relation does not mean that the metric varies with time
within a study. For example, when investigators antic-
ipate strong (vs. subtle) effects, they might run exper-
iments for shorter (vs. longer) durations, even if the
metric of effect size is time invariant within each study.
Because of the importance of time series for model
validation in both meta-analytic and primary studies,
we advocate increased collection and publication of
time-series responses to experimental manijpulations.

Explicit attention to time-scale considerations is es-
sential to avoid confusion when the same term is used
in different contexts. For example, Paine (1992) and
Osenberg et al. (1997) both purport to measure ‘‘in-
teraction strength’; however, Paine’s metric is based
on the assumption that the systems re-equilibrate fol-
lowing the experimental perturbation (Laska and Woot-
ton 1998), whereas Osenberg et al.’s (1997) metric is
based on the assumption that the systems’ dynamics
are transient and exponential. Extracting estimates of
interaction strength from the literature and combining
them in a meta-analysis would be problematic if both
these definitions of interaction strength were used in
the primary studies, because different types of inter-
action strength estimate different effects (e.g., direct
vs. indirect effects) that operate on different time scales
(e.g., short vs. long).

After Level I heterogeneity (e.g., due to time-scale
effects) has been addressed, then the subsequent and
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TABLE 1. Extended.

Linear growth (Eq. 2)
Additive effect (Eq. 3) Multiplicative effect (Eq. 4)

ct got(1 — 1/c)

ctl(My + goh) got(1 — Ve (My + got)

I = [ct/(My + goD)] (M, + gotlc) (M, + g41)

In(t — [ct/(M, + goDDIt In(IM, + gotlcl My + gotDIt
(Ml - M:,c)/’ (M/.- - Mo)/(Ml,+ - M())
Difference in absolute Ratio of absolute growth rates,

growth rates, (dM _/doy/(dM  /dr)
dM_/dt — dM  /d¢

main analyses may proceed. If a single model can be
specified, then we often will be interested in exploring
systematic variation in the response parameter or met-
ric derived from the model. Examination of patterns in
the variation of the metric can lead to the development
of more-general models (e.g., where parameters now
become functions of specific environmental or organ-
ismal traits), and to the creation of new hypotheses to
be tested by subsequent experiments. If, on the other
hand, a single, common, functional (and structural)
model cannot be applied (e.g., if, in Table 1, some
systems are governed by one set of dynamics, and some
systems by other dynamics), then we might question
whether the studies should be combined into a single
analysis. Resolution of this question will depend on the
extent to which results from systems governed by dif-
ferent dynamics can be interpreted within a common
conceptual framework. We return to this issue of the
implications of Level III and IV variation in the final
section (Beyond parameter estimation: Level Il and
IV variation).

EXAMPLES OF BIOLOGICALLY-RELEVANT
ESTIMATES OF EFFECT SIZE

Parameter estimation: Level Il variation

Meta-analysis may be most useful in estimating pa-
rameters and analyzing patterns of variation in a given
parameter across studies (i.e., exploring Level II vari-
ation while controlling for Level I variation). This goal
has a long tradition in the sciences, dating back to P.
R. Heyl’s attempts in the 1930s to combine estimates
of the gravitational constant (Hedges and Olkin 1985).
Below, we provide five specific examples to highlight
the diversity of potential applications of meta-analysis
in ecology. In the first three examples, which deal with
Level II variation, we estimate parameters and explore
their variation among studies. In the final two exam-
ples, we address Level III and IV variation, where pa-
rameter estimation is not the goal because a single func-
tional model could not be applied to all studies. In these
two cases, conceptual models were still necessary to
frame and answer the questions. In-each of the five
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examples we attempt to highlight a new insight drawn
from the analysis that either clarifies the role of meta-
analysis in synthesizing data and/or points to its pos-
sible limitations.

Interaction strength.—Many ecological studies pur-
port to examine the effect of one species on another.
Although definitions vary (Laska and Wootton 1998),
we define interaction strength (between species j and
i) as the effect of an individual of species j on the per
capita growth rates of species i, holding all other factors
constant, i.e., 3(dN;/N,dt)/oN;, where N; and N; are the
densities of two interacting species. Under certain ex-
perimental conditions (see Osenberg et al. 1997, Laska
and Wootton 1998), interaction strength can be esti-
mated as

a, = 3(dN,/N,dn)/aN; = ArIN;
= In(N;,./N,,_)IN,. )

Estimating average interaction strength (and confi-

dence intervals) among a collection of studies requires
decisions about how to weight each individual estimate
(Gurevitch and Hedges 1999). Typically, each estimate
is weighted by the inverse of its variance (i.e., by its
precision). In mixed- , or random- , effects models, this
variance has two components: (1) within-study vari-
ance (i.e., experimental error), and (2) between-study
variance (i.e., variance among studies in their true ef-
fect sizes; Gurevitch and Hedges 1999, Hedges et al.
1999). Partitioning of the total variance into the within-
and between-study components can be useful in cate-
gorizing studies and developing predictive models.
Osenberg et al. (1997) used Eq. 5 to estimate the
interaction strength (a,) between fish (the predator) and
gastropods (the prey) based on gastropod biomass in
cages and ponds with and without fish. Howevever,
they performed unweighted analyses (i.e., they gave
equal weight to all experiments). This approach pre-
vented them from partitioning the variance compo-
nents, and likely resulted in confidence intervals that
were too large. Therefore, we re-analyzed their data
using a mixed model (Rosenberg et al. 1997) with
weighted meta-analytic procedures (Appendix A). Note
that the estimator for a; (Eq. 6) is equivalent to a log

-response ratio (sensu Hedges et al. 1999) divided by

tN,. Thus, we estimated within-study variance using the
expression in Hedges et al. (1999) for the log response
ratio divided by #2N?. Because within-study replication
and the number of studies were small, we also used
the small-sample correction suggested by Hedges et al.
(1999).

Based on the new, weighted analyses (in which
among-study variances were fit separately for each
group), fishes with a feeding morphology specialized
for crushing snails (i.e., pumpkinseed, redear sunfish,
and tench) had much larger effects on snail dynamics
than did fishes with a generalized feeding morphology
(i.e., bluegill sunfish, largemouth bass, and Eurasian
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FiG. 2. Interaction strength (estimated using Eq. 6) be-
tween snails and six species of fish based on field experiments
that manipulated fish density and recorded the response of
snail biomass density after 43-93 d. Specialists (tench, redear,
and pumpkinseed) have modified pharyngeal structures that
enable the fish to crush snails. Generalists (Eurasian perch,
largemouth bass, and bluegill) are not capable of crushing
snails and therefore typically swallow them whole. Data were
taken from Osenberg et al. (1997) and are provided in Ap-
pendix A. Weighted means and 95% confidence intervals (e-r-
ror bars are symmetrical) were based on a random-effects
model that separately estimated among-study variances for
each species of fish.

perch): ais generatiss = —0.0007 (95% confidence inter-
val, c1: —0.0038-0.0025), n = 9; 4, speciatisrs = —0.079
(cr: —0.108--0.050), n = 13. These weighted esti-
mates actually agree well with the unweighted esti-
mates reported by Osenberg et al. (1997). Importantly,
however, the new analysis allowed us to assess the
degree of heterogeneity in effect sizes among studies
within a morphological class. There was no significant
variation in effect size among studies within the gen-
eralist group (test of within-group homogeneity: Q,, =
3.88, P = 0.87); indeed, variation among studies ac-
counted for 0% of the total variation (among-study plus
mean within-study variance). In contrast, there was sig-
nificant heterogeneity in effect sizes within the spe-
cialist group (Q, = 199.0, P < 0.0001), with the
among-study variance accounting for 75% of the total
variance. We expected that much of the heterogeneity
among studies within the specialist group could be at-
tributed to variation in the effect of different fish spe-
cies on snail density. Therefore, we redid the analysis,
but classified effects by species (rather than morpho-
logical group). This greatly reduced the within-group
heterogeneity, in part because pumpkinseed and redear
had effects on snails that were more than twice as great
as those of tench (Fig. 2). There was no significant
heterogeneity among tench or redear studies (Q, =
0.001, P = 097, and Q, = 499, P = 0.17, respec-
tively). Heterogeneity among pumpkinseed studies,
however, remained significant (Q, = 22.3, P = 0.001).
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The among-study (but within-species) variance aver-
aged only ~30% of the total variance for the three
specialized species.

As more studies accumulate, it might be possible to
explore the residual variation within a single species
and relate this variation to environmental features, such
as macrophyte density (Crowder and Cooper 1982),
water temperature, or predator or prey body size (Os-
enberg and Mittelbach 1989) (see also Goldberg et al.
[1999] and Englund et al. [1999] for other meta-anal-
yses of species interactions). These estimates of inter-
action strength could be used in models of fish—snail
dynamics to quantify the direct effects of an entire fish
assemblage on snail dynamics across systems that dif-
fer in fish species composition, size-structure, and en-
vironmental characteristics.

Mutual interference.—The approach used above to
quantify interaction strength assumes that the effects
of fish on snails are linearly related to fish and snail
densities. In many situations, however, there will be
important nonlinearities in such interactions. These
may arise from nonlinear functional responses pro-
duced by prey handling time, predator satiation, or
predator interference. Mutual interference arises when
predators reduce the instantaneous attack rate of other
predators. Thus, as predator density increases, each
predator has a decreasing effect on per capita prey sur-
vival (i.e., the attack coefficient is a decreasing function
of predator density). Hassell and Varley (1969) pro-
posed that the instantaneous attack rate, a, declined as
a power function of predator density, P (e.g., a(P) =
oP~m), Incorporating this into a Type II functional re-
sponse yields ’

SN, Py = oaNP™™/(1 + at,NP~™) 6)

where N and P are prey and predator density respec-
tively, ¢, is the handling time per prey, « is the instan-
taneous attack rate of a solitary predator, and m mea-
sures the degree of mutual interference among preda-
tors (Arditi and Akgakaya 1990). Eq. 6 reduces to the
standard prey-dependent Type II functional response
when m = 0 (i.e., fis a function of only prey density,
N, not P) and to a pure ratio-dependent functional re-
sponse when m = 1 (i.e., fis a function of the ratio of
prey to predator densities, N/P; Getz 1984, Arditi and
Ginzburg 1989).

Arditi and Akgakaya (1990), noting that predator—
prey dynamics are greatly affected by the value of m,
surveyed the literature for data that could be used to
estimate m and to evaluate if estimates were equal to
0 or 1, thereby distinguishing between prey-dependent
and pure ratio-dependent functional responses. They
found suitable data from 15 studies that reported attack
rates of predators (and parasitoids) under variable den-
sities of both predators and prey. They tested two null
hypotheses with data from each study: that m; (the es-
timate from study i: i = 1, ..., 15) was sampled from
a population with true m = 0 or true m = 1. They found
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that 15 of 15 cases led to rejection of the hypothesis
that m, = 0, but only 3 of 15 cases led to rejection of
m; = 1. Given the general failure to reject the hypoth-
esis that m = 1 but the overwhelming evidence re-
jecting m = 0, they concluded that *‘it may therefore
be acceptable to assume that m = 1 in many of the

systems analyzed here’” and that the results provide

“‘empirical support to the arguments . . . that ratio-de-
pendent functional responses may be common ...”
(Arditi and Akgakaya 1990: 361).

We reanalyzed these data to highlight the application
of meta-analysis in parameter estimation and the ad-
vantages of this approach over null-hypothesis testing.
We took the 15 estimates of m and their variances from
Table 2 in Arditi and Akgakaya (1990), and used a
random-effects model (Rosenberg et al. 1997) to an-
alyze the data (Appendix B). The pooled, weighted
estimate of m, m,, was 0.72 = 0.12 (95% c1). Note
that this confidence limit excludes both 0 and 1, sug-
gesting that these predators do exhibit interference, but
that it is weaker than assumed by pure ratio-dependent
models. The collection of studies, however, was sig-
nificantly heterogeneous (Q,, = 33.4, P = 0.0025), in-
dicating that the studies were not each defined by the
same value of m. Thus, although m, < 1, some of the
individual studies might have had m = 1. The meta-
analytic results enable us to estimate what fraction of
the studies had m = 1, given that we can specify the
underlying distribution of true m’s. We assumed that
the true m’s were normally distributed, with true mean
= 0.72 (i.e., the estimated weighted mean) and true
among-study variance = 0.0263 (i.e., the estimated
among-study variance). Assuming that this distribution
describes the larger population from which the 15 stud-
ies were sampled, then only 4.3% of these systems have
m = 1.

It is important to note that these 15 studies were not
randomly drawn from all possible predator-prey sys-
tems, but probably represent systems in which the orig-
inal investigators suspected interference was occurring
(hence, they manipulated predator density). Thus,
based on this probable bias and the meta-analytic re-
sults, we conclude, in contrast to Arditi and Akgakaya
(1990), that pure ratio-dependent functional responses
are probably not common. Even among the systems
most likely to exhibit ratio dependence, approximately
95% have interference parameters <1. Obviously, na-
ture is not black and white, with all systems falling
into either the “‘prey-dependent’ or “‘ratio-dependent”
schemes. Instead, effects are often continuously dis-
tributed, with many intermediates. Meta-analysis is a
powerful tool to analyze and describe this variation,
although care must be taken in generalizing the ana-
lytical results beyond the studies being summarized.
Given the inherent problems arising from study and
publication bias in meta-analysis, the issue of gener-
alization requires further study (Gurevitch and Hedges
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1999; P. Petraitis and A. Dunham, personal commu-
nication).

Mechanistic, physiologically structured models.—
Individual-based models are often parameterized by
mining the literature for estimates of feeding, respi-
ration, egestion, survival, and reproductive rates (e.g.,
Gurney et al. 1990, McCauley et al. 1990). Typically,
representative estimates are culled, using informal pro-
cedures, from the many estimates of a parameter that
are found in the literature. In contrast, meta-analytic
procedures could be used to formally combine these
estimates (to obtain weighted means, confidence inter-
vals, and among-study variances). Replacing informal
protocols with more explicit meta-analytic techniques
should improve estimation procedures. Importantly, es-
timates of confidence intervals and among-study var-
iances from the meta-analysis could be used to bracket
the range of variation in the parameter (as illustrated
in the section Mutual interference, above) and thus
permit more informed sensitivity analyses that vary the
parameter values. In some cases, the results could also
be used to establish the variation in individual-based
parameters to include within a single model.

Mechanistic approaches (including individual-based
models) also might be useful in furthering the devel-
opment of general ecological models (Dunham and
Beaupre 1998). For example, Kooijman (1993), Miiller
and Nisbet (1997), and E. B. Miiller and R. M. Nisbet
(unpublished manuscript) developed a mechanistic dy-
namic energy-budget model based on rules of energy
acquisition, energy allocation, and the uptake of tox-
icants. Under constant food conditions, this model sim-
plifies to a form of the von Bertalanffy growth equa-
tion:

L =0L,— (L.— Lye™ @)

where
L. = L.o/(1 + c/K)? (8)
Y = Yo(l + ¢/K) €))

and where L, is the length of the organism at time ¢,
Lo is its initial length, L, is the maximum attainable
length, v is the growth constant, L., and vy, are the
values in the absence of toxicants, ¢ is the concentration
of the toxicant, and K is a half-saturation constant that
quantifies the sensitivity of the organism’s growth to
the toxicant. Smaller values of K indicate greater sen-
sitivity to the toxicant. E. B. Miiller and R. M. Nisbet
(unpublished manuscript) estimated K using data for
two species of mussels transplanted to several sites that
varied in exposure to a wastewater discharge that con-
tained elevated concentrations of barium (Higashi et
al. 1992, Osenberg et al. 1992). Barium accumulated
in the mussel shells and served as an index of exposure
to the wastewater. Their analysis yielded K = 186.4 *
54.5 nmol Ba/g shell for Myrilus edulis and K = 82.7
* 7.3 nmol/g for M. californianus. Thus, M. califor-
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nianus was more sensitive than M. edulis to wastewater
exposure. There are vast amounts of data on the growth
of bivalves in polluted and non-polluted environments;
thus, meta-analysis (using K as a measure of effect size)
could provide a useful tool to summarize these data
and evaluate how sensitivity varies across species (as
in this example), different types or mixtures of toxi-
cants, or different environments (e.g., with different
food levels or temperatures). Because the model and
associated measure of sensitivity (i.e., K) are based on
specific allocation and toxicological mechanisms, these
meta-analytic results could improve our knowledge of
the responses of organisms to pollutants.

Beyond parameter estimation:
Level III and IV variation

Often, it may not be possible to specify an appro-
priate model or to point to a particular parameter of
interest in analyzing and interpreting the results of eco-
logical investigations. In such cases, other approaches
can be used, but they still require explicit discussion
of the processes or concepts of interest. We illustrate
these situations with two cases, resource limitation and
grazer—algal interactions, which are examined in detail
elsewhere (Sarnelle 1992, Osenberg and Mittelbach
1996, Downing et al. 1999).

Resource limitation. The magnitude of resource lim-
itation for consumers has implications for population
dynamics, species interactions, the rates of evolution
of feeding traits and energy-allocation strategies, and
ecosystem processes (e.g., Power 1992, Osenberg and
Mittelbach 1996). Examination of resource limitation
has been impeded by the lack of a single, operational
definition. Here, we define “‘resource limitation’’ as the
extent to which the per capita production of a popu-
lation (or aggregated unit, such as trophic level) is re-
duced due to low availability of resources (Osenberg
and Mittelbach 1996). For example, if we consider a
gradient of resource availability, R, over which all other
factors are held constant, we expect per capita popu-
lation growth (dN/Ndt) to increase monotonically to an
asymptote (i.e., as R — %, dN/Ndt — r,, because further
increases are not possible due to physiological limits
or because other resources become limiting). Under
ambient resources, the population grows at a per capita
rate, r. The difference between r and r,, is a measure
of limitation. Limitation can be assessed empirically
by estimating the difference in the per capita growth
rate of the consumer population under ambient and
enriched conditions, assuming that enriched conditions
have saturated resource consumption, that the direct
effects of enrichment dominate the divergence of the
consumer populations under the two treatments (i.e.,
responses are measured before indirect feedbacks
arise), and that the consumer population is of the same
size in the two treatments at the start of the experiment
(see also Downing et al. 1999). In such cases, data must
be restricted to responses measured over short time
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scales, so as not to confound measures of limitation
with feedbacks that dampen the response of consumers
to increased resources (e.g., due to increases in the
consumer’s predators, or decreases in the availability
of other limiting resources).

Notice that this approach does not demand specifi-
cation of the exact form of the relationship between
per capita production and resource availability, but
rather relies only on its qualitative shape (monotonic)
and is thus an example where Level I variation can
exist among the studies. Downing et al. (1999) applied
this approach to examine patterns of nutrient limitation
for marine phytoplankton, and Osenberg and Mittel-
bach (1996) used this approach to quantify the relative
effects of resource and predator limitation in an aquatic
food chain.

Long-term effects of grazers on algae. As a final
example, which deals with Level IV variation, Sarnelle
(1992) used a meta-analytical approach to examine
competing hypotheses (i.e., model structures) offered
to explain the strong increase in phytoplankton biomass
with nutrient enrichment in lakes. He started with two
simple grazer—algae (predator—prey) models. One mod-
el assumed that the algae were a homogeneous set of
species that were equally vulnerable to grazing. The
other assumed that the algae were available in two
forms that differed in their susceptibilities to grazing.
The models diverged in their predictions about how
equilibrial algal biomass would respond to grazer ma-
nipulations across systems that varied in algal carrying
capacity (i.e., as determined by phosphorus levels).
Sarnelle calculated the ratio of algal biomass in low-
grazer vs. high-grazer treatments in field experiments
and examined the relationship between this ratio and
total phosphorus concentration in the water column.
The model with only edible algae predicted a linear
relationship between the response ratio and total phos-
phorus, whereas the model with both edible and in-
edible algae predicted various nonlinear relationships.
The observed linearity of the relationship between the
response ratio and total phosphorus suggested that zoo-
planktivorous fish, rather than the structure of the algal
assemblage, played a major role in driving the increase
in phytoplankton biomass with enrichment, a conclu-
sion with important applied implications (Shapiro and
Wright 1984, Newman 1993) that has since been con-
firmed by a larger survey of non-experimental data
(Mazumder 1994).

Two aspects of Sarnelle’s study provide general les-
sons for meta-analysis. First, because the predictions
of the models and the effect-size metric were based on
equilibrial responses, it was critical to restrict the data
used in the meta-analysis to those experiments that had
lasted long enough to re-equilibrate. This restriction is
exactly opposite to that imposed in the previous re-
source-limitation example, which reinforces our con-
tention that the choice of metric and the selection of
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data should be driven by an explicit formulation of the
question being addressed.

Secondly, Sarnelle (1992) included whole-lake ex-
periments in his synthesis because they are the only
experiments conducted on the exact spatial scale im-
plied by the central question (i.e., why does phyto-
plankton biomass increase with enrichment in lakes?).
Whole-lake experiments are usually unreplicated and
so must be excluded from meta-analyses that require
weighted analyses or that use metrics of effect size
(such as d) that are functions of within-study variance
(e.g., see Wooster 1994, Brett and Goldman 1996, Cur-
tis 1996 for restrictions based on these criteria). Meta-
analyses that exclude whole-system studies (or other
studies that lack estimates of within-study variance)
run the risk of yielding results that are biased by en-
closure artifacts and other problems inherent to exper-
iments conducted on small spatial scales (Cooper et al.
1998). More precise estimates do not always corre-
spond to more accurate ones. On the other hand, the
absence of within-study variances prevented Sarnelle
(1992) from performing weighted analyses and esti-
mating the among-system variance (see Interaction
strength and Mutual interference, above, for examples
of the advantages associated with weighted analyses;
also see Gurevitch and Hedges 1999).

CONCLUSIONS AND CAVEATS

Innovative quantitative synthesis and comparative
analyses are not new to ecology or evolutionary bi-
ology. Comparative biologists and comparative lim-
nologists have been synthesizing large data sets for
decades (e.g., Damuth 1981, Peters 1983, Downing and
Peters 1984, Watson et al. 1992). Often these data sets
are derived from non-experimental studies. Although
we have emphasized the application of meta-analysis
to experimental data, meta-analysis is just as applicable
to non-experimental data. In dealing with experimental
or observational data, the choice of a model and metric
will influence the results of, and hence the inferences
drawn from, a meta-analysis. It is critical, therefore,
that specification of the model be an explicit part of
the meta-analytic protocol as well as an integral part
of the primary studies. This is particularly important
in meta-analyses using experimental data because suit-
able measures of effect size often are not presented in
the primary literature, but must instead be calculated
from the reported data. These derived metrics of effect
often are not presented in primary studies because the
raw data are sufficient to perform null-hypothesis tests,
which are the principal goal of many experimental stud-
ies. This contrasts markedly with comparative biology,
where the question often is focused more on parameter
estimation (e.g., scaling relationships, Peters 1983)
rather than null-hypothesis tests. Because effects are
not explicitly quantified, it is often incumbent upon the
meta-analyst to evaluate the appropriateness of the data
to the questions.
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Despite the theme of our paper, the application of
biological models and the use of ecologically relevant
metrics is not sufficient to guarantee sound inference.
A variety of other issues, primarily statistical, must also
be considered (e.g., Gurevitch and Hedges 1999, Hedg-
es et al. 1999). Two issues deserve particular attention.
First, once the question has been defined and an ap-
propriate metric chosen, statisticians can play a critical
role in developing efficient and unbiased estimators of
these metrics and specifying the statistical circumstanc-
es under which the estimators are best applied (Hedges
et al. 1999). The dynamic interplay between ecological
concepts and the application of statistical tools is crit-
ical to the success of primary investigations as well as
meta-analyses and will be most successful if we re-
member that the answers we obtain from the statistical
analyses are (1) at best approximate (Tukey 1962), and
(2) only as good as the ecological ideas that motivated
the analysis. Rigorous application of well-understood
statistics to vague ecological questions and poor data
will do little to advance the field.

Second, even the most thorough and careful meta-
analysis will contain bias. Systems are not chosen ran-
domly for study, nor are results published without re-
gard to their conclusions. Single papers often contain
multiple experiments, single experiments often yield
multiple comparisons, and single investigators vary tre-
mendously in their productivity, methodology, and pro-
clivity to study particular systems and questions. As a
result, there will always be uncertainty about the pop-
ulation to which inferences apply. Through careful
thought and innovative analyses, however, we can be-
gin to confront these sources of bias (Gurevitch and
Hedges 1999). Synthesis is a critical part of the sci-
entific method, and ecology will benefit by developing
tools (such as meta-analysis) that enhance our synthe-
ses by making them more quantitative, more explicit,
and better integrated with the theoretical issues that we
wish to resolve.

ACKNOWLEDGMENTS

This work was conducted as part of the Meta-analysis
Working Group (“Meta-analysis, interaction strength and ef-
fect size: application of biological models to the synthesis of
experimental data’) supported by the National Center for
Ecological Analysis and Synthesis (NCEAS), a Center funded
by NSF (DEB-94-21535), the University of California—Santa
Barbara, and the State of California. Additional support also
was provided for O. Sarnelle as a NCEAS Postdoctoral As-
sociate, and through grants from the Minerals Management
Service (U.S. Department of Interior, 14-35-0001-30761 to
C. W. Osenberg) and NSF (DEB-9528445 to C. W. Osenberg,
DEB93-08375 and DEB96-29473 to O. Sarnelle, and DEB-
9407591 to S. D. Cooper. Our ideas and presentation have
benefitted immensely from discussions with the entire Work-
ing Group and by the support provided by the staff of NCEAS.
We also thank J. Wilson for assistance with the project, C.
St. Mary, J. Dykes, E. Miiller, and W. Rice for helpful dis-
cussions, and D. Goldberg and two anonymous reviewers for
helpful comments on a previous draft. We also are grateful
to D. Goldberg for her contributions to the entire Special
Feature.

JHNLVIH VIOadS



m
i
=
<
W
L
q
g
O
i
0L
n

116 CRAIG W. OSENBERG ET AL.

LITERATURE CITED

Abrams, P. 1993. Effects of increased productivity on the
abundance of trophic levels. American Naturalist 141:351—
371.

Arditi, R., and H. R. Akgakaya. 1990. Underestimation of
mutual interference of predators. Oecologia 83:358-361.
Arditi, R., and L. R. Ginzburg. 1989. Coupling in predator—
prey dynamics: ratio-dependence. Journal of Theoretical

Biology 139:311-326.

Arngvist, G., and D. Wooster. 1995. Meta-analysis—syn-
thesizing research findings in ecology and evolution.
Trends in Ecology and Evolution 10:236-240.

Billick, 1., and T. J. Case. 1994. Higher order interactions
in ecological communities: what are they and how can they
be detected? Ecology 75:1529-1543.

Brett, M. T,, and C. Goldman. 1996. A meta-analysis of the
freshwater trophic cascade. Proceedings of the National
Academy of Sciences 93:7723-7726.

Campbell, B. D., and J. P. Grime. 1992. An experimental
test of plant strategy theory. Ecology 73:15-29.

Cohen, J. 1977. Statistical power analysis for the behavioral
sciences. Academic Press, New York, New York, USA.
Connell, J. H. 1961. The influence of interspecific compe-
tition and other factors on the distribution of the barnacle,

Chthamalus stellatus. Ecology 42:710-723.

Cooper, H., and L. V. Hedges,editors. 1994. The handbook
of research synthesis. Russell Sage Foundation, New York,
New York, USA.

Cooper, S. D., S. Diehi, K. Kratz, and O. Sarnelle. 1998.
Implications of scale for patterns and processes in stream
ecology. Australian Journal of Ecology 23:27-40.

Cooper, S. D., S. J. Walde, and B. L. Peckarsky. 1990. Prey
exchange rates and the impact of predators on prey pop-
ulations in streams. Ecology 71:1503-1514.

Crowder, L. B., and W. E. Cooper. 1982. Habitat structural
complexity and the interaction between bluegills and their
prey. Ecology 63:1802-1813.

Curtis, P. S. 1996. A meta-analysis of leaf gas exchange and
nitrogen in trees grown under elevated carbon dioxide.
Plant, Cell and Environment 19:127-137.

Curtis, P. S., and X. Wang. 1998. A meta-analysis of elevated
CO, effects on woody plant mass, form, and physiology.
Oecologia 113:299-313.

Damuth, J. 1981. Population density and body size in mam-
mals. Nature 290:699-700.

Downing, J. A., C. W. Osenberg, and O. Sarnelle. 1999.
Meta-analysis of marine nutrient-enrichment experiments:
variation in the magnitude of nutrient limitation. Ecology
80:1157-1167.

Downing, J. A., and R. H. Peters. 1984. Empirical analysis
of zooplankton filtering and feeding rates. Limnology and
Oceanography 29:763-784.

Dunham, A., and S. J. Beaupre. 1998. Ecological experi-
ments: scale, phenomenology, mechanism, and the illusion
of generality. Pages 27-49 in W. J. Resetarits, Jr., and J.
Bernardo, editors. Experimental ecology: issues and per-
spectives. Oxford University Press, New York, New York,
USA.

Englund, G., O. Sarnelle, and S. D. Cooper. 1999. The im-
portance of data-selection criteria: meta-analyses of stream
predation experiments. Ecology 80:1132-1141.

Fernandez-Duque, E. 1997. Comparing and combining data
across studies: alternatives to significance testing. Oikos
79:616-618.

Finney, D. J. 1995. A statistician fooks at meta-analysis.
Journal of Clinical Epidemiology 48:87-103.

Fisher, R. E 1932, Statistical methods for rescarch workers.
Fourth edition. Oliver and Boyd, London, UK.

Getz, W. 1984. Population dynamics: a per capita resource
approach. Journal of Theoretical Biology 108:623-643.

Ecology, Vol. 80, No. 4

Glass, G. V. 1976. Primary, secondary, and meta-analysis of
research. Educational Researcher 5:3-8.

Goldberg, D. E., T. Rajaniemi, J. Gurevitch, and A. Stewart-
Oaten. 1999. Empirical approaches to quantifying inter-
action intensity: competition and facilitation along pro-
ductivity gradients. Ecology 80:1118-1131.

Grace, J. B. 1995. On the measurement of plant competition
intensity. Ecology 76:305-308.

Gurevitch, J., and L. V. Hedges. 1993. Meta-analysis: com-
bining the results of independent experiments. Pages 378—
398 in S. M. Scheiner and J. Gurevitch, editors. Design
and analysis of ecological experiments. Chapman & Hall,
New York, New York, USA.

Gurevitch, J., and L. V. Hedges. 1999. Statistical issues in
ecological meta-analyses. Ecology 80:1142-1149.

Gurevitch, J., L. L. Morrow, A. Wallace, and J. S. Walsh.
1992. A meta-analysis of competition in field experiments.
American Naturalist 140:539-572.

Gurney, W. S. C., E. McCauley, R. M. Nisbet, and W. W.
Murdoch. 1990. The physiological ecology of Daphnia: a
dynamic model of growth and reproduction. Ecology 71:
716-732.

Hassell, M. P, and G. C. Varley. 1969. New inductive pop-
ulation model for insect parasites and its bearing on bio-
logical control. Nature 223:1133-1137.

Hechtel, L. J., and S. A. Juliano. 1997. Effects of a predator
on prey metamorphosis: plastic responses by prey or se-
lective mortality? Ecology 78:838-851.

Hedges, L. V., J. Gurevitch, and P. Curtis. 1999. The meta-
analysis of response ratios in experimental ecology. Ecol-
ogy 80:1150-1156.

Hedges, L. V., and L. Olkin. 1985. Statistical methods for
meta-analysis. Academic Press, Orlando, Florida USA.
Higashi, R. M., G. N. Cherr, C. A. Bergens, and T. W.-M.
Fan. 1992. An approach to toxicant isolation from a pro-
duced water source in the Santa Barbara channel. Pages
223-233inJ. P. Ray and E R. Englehardt, editors. Produced
water: technological/environmental issues and solutions.

Plenum, New York, New York, USA.

Holt, R. D. 1997. Community modules. Pages 333-350 in
A. C. Gange and V. K. Brown, editors. Multitrophic inter-
actions in terrestrial systems. Blackwell Science, Oxford,
UK. :

Kooijman, S. A. L. M. 1993. Dynamic energy budgets in
biological systems. Cambridge University Press, Cam-
bridge, UK.

Johnson, D. M., C. L. Pierce, T. H. Martin, C. N. Watson, R.
E. Bohanan, and P. H. Crowley. 1987. Prey depletion by
odonate larvae: combining evidence from multiple field
experiments. Ecology 68:1459-1465.

Jones, D., and N. Matloff. 1986. Statistical hypothesistesting
in biology: a contradiction in terms. Journal of Economic
Entomology 79:1156-1160.

Laska, M. S., and J. T. Wootton. 1998. Theoretical concepts
and empirical approaches to measuring interaction strength.
Ecology 79:461-476.

Leibold, M. A. 1989. Resource edibility and the effects of
predators and productivity on the outcome of trophic in-
teractions. American Naturalist 134:922-949.

Mann, C. 1990. Meta-analysis in the breech. Science 275:
384-386.

Mazumder, A. 1994. Patterns of algal biomass in dominant
odd- vs. even-link lake ccosystems. Ecology 75:1141-
1149,

McCauley, E., W. W. Murdoch, R. M. Nisbet, and W. S. C.
Gurney. 1990. The physiological ecology of Daphnia: de-
velopment of a model of growth and reproduction. Ecology
71:703-715.

Miiller, E. B., and R. M. Nisbet. 1997. Modeling the effect
of toxicants on the paramecters of dynamic energy budget



June 1999

models. Pages 71-81 in E J. Dwyer, T. R. Doane, and M.
L. Hinman, editors. Environmental toxicology and risk as-
sessment. Volume 6. modeling and risk assessment. Amer-
ican Society for Testing and Materials, Philadelphia, Penn-
sylvania, USA.

Newman, E. I. 1993. Applied ecology. Blackwell, Oxford,
UK.

Osenberg, C. W, and G. G. Mittelbach. 1989. The effects
of body size on the predator—prey interaction between
pumpkinseed sunfish and gastropods. Ecological Mono-
graphs 5§9:405-432.

Osenberg, C. W., and G. G. Mittelbach. 1996. The relative
importance of resource limitation and predator limitation
in food chains. Pages 134-148 in G. A. Polis and K. O.
Winemiller, editors. Food webs: integration of patterns and
dynamics. Chapman & Hall, New York, New York, USA.

Osenberg, C. W., and C. M. St. Mary. 1998. Meta-analysis:
synthesis or statistical subjugation? Integrative Biology:
Issues, News and Views 1:43-48,

Osenberg, C. W., O. Sarnelle, and S. D. Cooper. 1997. Effect
size in ecological experiments: the application of biological
models to meta-analysis. American Naturalist 150:798~
812.

Osenberg, C. W., R. J. Schmitt, S. J. Holbrook, and D. Ca-
nestro. 1992. Spatial scale of ecological effects associated
with an open coast discharge of produced water. Pages 387~
402 in J. P. Ray and E R. Englehardt, editors. Produced
water: technological/environmental issues and solutions.
Plenum, New York, New York, USA.

Paine, R. T. 1992. Food-web analysis through field mea-
surement of per capita interaction strength. Nature 355:73—
75.

Peckarsky, B. L. 1985. Do predaceous stoneflies and siltation
affect the structure of stream insect communities colonizing
enclosures? Canadian Journal of Zoology 63:1519-1530.

Peckarsky, B. L., S. C. Horn, and B. Statzner. 1990. Stonefly
predation along a hydraulic gradient: a field test of the
harsh-benign hypothesis. Freshwater Biology 24:181-191.

Peters, R. H. 1983. The ecological implications of body size.
Cambridge University Press, Cambridge, UK.

Petraitis, P. S. 1998. How can we compare the importance
of ecological processes if we never ask, ‘“‘compared to
what?"’ Pages 183-201 in W. J. Resetarits, Jr., and J. Ber-
nardo, editors. Experimental ecology: issues and perspec-
tives. Oxford University Press, New York, New York, USA.

META-ANALYSIS IN ECOLOGY 1117

Power, M. 1992. Top-down and bottom-up forces in food
webs: do plants have primacy? Ecology 73:733-746.

Quinn, J. F, and A. E. Dunham. 1983. On hypothesis testing
in ecology and evolution. American Naturalist 122:602—
617.

Rosenberg, M. S., D. C. Adams, and J. Gurevitch. 1997,
MetaWin: statistical software for meta-analysis with resam-
pling tests. Version 1.0. Sinauer Associates, Sunderland,
Massachusetts, USA.

Rosenthal, R. 1994, Parametric measures of effect size.
Pages 231-244 in H. Cooper and L. V. Hedges. editors.
The handbook of research synthesis. Russell Sage Foun-
dation, New York, New York, USA.

Sarnelle, O. 1992. Nutrient enrichment and grazer effects on
phytoplankton in lakes. Ecology 74:551-560.

Shapiro, J., and D. I. Wright. 1984, Lake restoration by biom-
anipulation. Round Lake, Minnesota—the first two years.
Freshwater Biology 14:371-383.

Steele, M. A. 1997. The relative importance of processes
affecting recruitment of two temperate reef fishes. Ecology
78:129-145.

Stewart-OQaten, A. 1996. Goals in environmental monitoring.
Pages 17-27 in R. J. Schmitt and C. W. Osenberg, editors.
Detecting ecological impacts: concepts and applications in
coastal habitats. Academic Press, San Diego, California,
USA.

Tukey, J. W. 1962. The future of data analysis. Annals of
Mathematical Statistics 33:1-67.

Vanderwerf, E. 1992. Lack’s clutch size hypothesis: an ex-
amination of the evidence using meta-analysis. Ecology 73:
1699-1705.

Watson, S., E. McCauley, and J. A. Downing. 1992, Sigmoid
relationships between phosphorus, algal biomass, and algal
community structure. Canadian Journal of Fisheries and
Aquatic Sciences 49:2605-2610.

Wilson, S. D., and D. Tilman. 1993. Plant competition and
resource availability in response to disturbance and fertil-
ization. Ecology 74:599-611. )

Wooster, D. 1994, Predator impacts on stream benthic prey.
Oecologia 99:7-15.

Yoccoz, N. G. 1991. Use, overuse, and misuse of significance
tests in evolutionary biology and ecology. Bulletin of the
Ecological Society of America 72:106-111.

APPENDIX A
A table reporting fish effects on snail biomass density is available in ESA’s Electronic Data Archive: Ecological Archives

E080-005-S1.

APPENDIX B
A table reporting mutual interference parameters, modified from Arditi and Akgakaya (1991) is available in ESA’s Electronic

Data Archive: Ecological Archives E080-005-S2.
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