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On the relationship between the ideal free
distribution and the evolution of dispersal

Robert D. Holt ahd Michael Barfield

Abstract

The ideal free distribution (IFD), first proposed by Fretwell and Lucas, describeshow a pattern, the

distribution of abundances and fitnesses across habitats, emerges from a process: evolution

moulding the habitat selection strategies of individuals. Key ecological mechanisins ‘assutried in

the IFD include localized density dependence and the freedom of individuals to choose habitats so

as to maximise fitness. The central prediction of the IFD is that fitnesses are equilibrated across
. space. Models for the evolution of dispersal in spatially heterogeneous but temporally constant
- ‘environments also often predict fitness equilibration. Given combined temporal and spatial
heterogeneity, there is no simple characterisation of fitness. Nonetheless, numerical studies suggest
© that the evolution of dispersal can produce a distribution characterised by approximate equili-
. bration of local fitness measures (e.g., geometric means . of local reproductive success, spatial
- reproductive values) among habitats, at least as a useful rule-of-thumb. However, there are clear
- counter-examples, particularly involving the use of sink habitats, or forces such as kin competition.
The concept of fitness equilibration represented by the IFD describes a widespread but by no means
universal outcome of the evolution of dispersal in heterogeneous environments.

" Keywords: ideal free habitat selection, evolution in variable environments, spatial
o reproductive value :

: Introdljction

- Almost three decades ago, Steve Fretwell and Henry Lucas developed a set of models to
predict animal distributions, based upon the premise that organisms select habitats to
maximise fitness (Fretwell and Lucas 1970; Fretwell 1972). Their simplest model led to a
pattern they dubbed the ‘ideal free distribution’ (IFD). Roughly speaking, at an IFD
individuals in different habitats have equal average fitness. Ideal free theory occupies
" a-central position in behavioural ecology (Rosenzweig 1985; Brown 1998; Fryxell and
- Lundberg 1998). But what does it have to do with dispersal? The topic of dispersal

includes (though not exclusively) trans-generational spatial flows among habitats. In
' gontrast, habitat selection theory focuses more closely on within-generation patterns of
habitat utilisation. Our aim is to highlight conceptual linkages between the IFD and the
_evolutionary theory of dispersal. We use numerical studies to suggest that, the-core
- conclusion of ideal free theory, namely that organisms should be distributed such that
“fitnesses are equilibrated across space, at times pertains to the evolution. of dispersal;
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However, in many reasonable circumstances, the evolution of dispersal does not lead to
an IFD.

A summary of ideal free habitat selection theory

It is useful to summarise the basic ideal free model (for reviews of habitat selection
theory see Rosenzweig 1985, 1991; Kacelnik et al. 1992; Tregenza 1995; Motris 1994,
Brown 1998). For simplicity, consider an environment with two habitats. Fretwell (1972)
assumed that habitat ‘suitability’ for an individual would decrease with the abundance of
conspecifics in each habitat. By ‘suitability’, Fretwell meant something closely related to
individual fitness, as suggested by this quote: ‘The suitability of a habitat is a reflection
of the average genetic contribution of resident adults to the next generation and must be
closely related to the average lifetime production of reproducing offspring in the habitat’
(Fretwell 1972, p. 106). ‘ :

Fitness is most easily characterised in species with the simple life history of discrete,
synchronised generations. We assume such a life history and concentrate upon natal
dispersal. As noted by Michod (1999, p. 50), it is crucial to use absolute fitnesses when
concerned with evolution in spatially structured populations. We use ‘local fitness’ to
denote absolute fitness or selective value (combining viability and fecundity into
expected number of gametes produced by a newborn zygote; Roughgarden 1979) of an
individual residing in a given habitat. Let F;(N;) be local fitness in habitat i, given N;
conspecific individuals there, and assume F; declines with N; (see Stamps, chapter 16, for
implications of positive density dependence). Carrying capacity.of habitat i is the local
population size K;> 0 at which F;(K)=1; if no X; exists, the habitat is an intrinsic sink
(Holt 1985; Pulliam 1988), where the population cannot persist without immigration.
Given the behavioural assumptions that individuals are identical, perfectly assess cur-
rent habitat suitability, move without cost, and do not interfere with one another’s
movement, ideal free theory predicts that: (i) as long as Fy > F, individuals in habitat 2
should leave and reside in habitat 1; (ii) if both habitats are occupied, local densities
should thus be adjusted such that F;=F, (Fretwell 1972, pp. 86-87). If the system
reaches demographic equilibrium, at which average fitness equals unity, density in each
habitat must match the carrying capacity of that habitat (Holt 1985). At a demographic
equilibrium, no sink habitats should be occupied in an IFD. The statement that average
local fitnesses are equilibrated across space at an evolutionary equilibrium appears to be
the most general statement of what is meant by an ‘ideal free distribution’. This is to be
distinguished from assuming that organisms show ideal free behaviour, those simplifying
assumptions made by Fretwell and Lucas in their original model (for a list of these
assumptions, see Tregenza 1995, p. 285). If the ideal free assumptions are violated,
populations of course may exhibit distributions for which local fitnesses are not spatially
equilibrated. Stamps (chapter 16) points out many ways in which organisms may be
neither ideal in their habitat selection, nor free in their dispersal.

There is not a one-to-one correspondence between ideal free behaviour and an ideal
free distribution. Individual organisms may not be ideal or free at the level of individual
behavioural traits and decision rules, yet populations may nonetheless converge on an
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FD (Houston and McNamara 1988). Hugie and Grand (1998) note that, even with
mfiequal competitors and non-ideal free movements, the original IFD*model ‘may be
ufficient to approximate the distributions of animals’. Conversely, organisms may not
ave an IFD despite having appropriate behaviours, for instance due to unstable
gsource-consumer interactions (Abrams 1999). Another important complication is that
he local fitness measure used by Fretwell and Lucas may inadequately predict evolution
1 heterogeneous environments. For instance, Brown (1998) shows that, if individuals
llocate time between habitats differing in risk of predation, overall fitness is a non-
mear function of local fitnesses. At the evolutionarily stable state (ESS), the prevailing
-habitat use strategy does not equalise total fitness returns from the two habitats, but
pather marginal fitness returns from each habitat.
«" Comparable themes arise in the evolution of dispersal. As noted elsewhere in this
volume (e.g., Ims and Hjermann, chapter 14), dispersal behaviour may occur uncon-
“ditionally, for example an individual’s dispersal rate may be independent of the local
“environment, but vary by genotype, or instead may vary by habitat type, local density, or
individual condition. An ‘ideal free’ disperser might be defined as an individual that
“fnoves.between habitats only if, by so doing, it increases its realised fitness. We will show
-that, even if dispersers are not ideal free, a population may in some circumstances evolve
'toward a distribution that is approximately ideal free.
i That the evolution of dispersal may have an ‘ideal free’ mterpretatlon has been
touched on in previous literature (Holt 1985). For instance, Levin ez al. (1984) studied a
model for evolution in a parameter D, the fraction of individuals that disperse from natal
~s1tes In summarising their results they ‘conjecture that the [evolutionarily stable value
for D] is determined by the equilibration of long-term expectations from dispersing and
hon-dispersing individuals’. Lemel ez al. (1997) suggest that a unifying rule for the
evolution of dispersal is that ‘the dispersal rates which permit the spatial homogeniza-
tien of fitnesses are ESSs’. In the following pages, we focus on the suggestion that the
gvolution of dispersal tends towards an equilibration of fitnesses among habitats.
Abstractly, dispersal is an ‘assortative parameter’, determining (in part) the numbers of
individuals in different ‘classes’, which in the case of dispersal are local habitats. Slatkin
(1978a) demonstrated that, given density- and frequency-dependent interactions in a
population, natural selection acts on assortative parameters so ‘as to equilibrate the
fitnesses of those classes’ and noted that this generalisation may fail in temporally
Varylng environments.
+ - The concept of ‘fitness equilibration’ should be viewed in the same spirit, we suggest,
as ‘fitness maximisation’ in classical evolutionary genetics. In many circumstances, and
in particular when individual relative fitnesses are density and frequency independent,
the outcome of natural selection can be characterised as hill-climbing in an adaptive
topography, or as the maximisation of a fitness function (Roughgarden 1979). This
characterisation provides a compact description of the outcome of evolutionary
dynamics in a wide variety of situations, and its failure in other situations (e.g., with
frequency-dependent selection) highlights important features of evolution. The chapters
in this volume span diverse evolutionary causes of dispersal (Ronce et al., chapter 24).
We will see that fitness equilibration does characterise some situations. and some:causal
mechanisms for the evolution of dispersal, but in others fitness equilibration is: not
expected. Y ,

v
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i’.[lhe Jﬁe&]; i);eq distrlbutlon and dlspersal evolutlon in temporally constant
envu'onm@nts :

(R E A :

er aﬁrst mturn to Fretwell’s original model and cast it in a form appropriate for studying
dispersal. Genetic variation is clonal and affects only dispersal rules. Dispersal strategies
ane:defined by fixed dispersal rules, independent of population size (a non-‘ideal’
behaviour); however, dispersal rates may be conditional on habitat type. We first assume
that the population settles into a stable equilibrium, and then consider temporal vari-
ation. Different dispersal rules give different realised fitnesses for a genotype, for a given
array of local fitnesses. We consider two distinct movement scenarjos: ‘scalar’ movement
and localised dispersal. ‘

Scalar model

The simplest model is a ‘scalar’ model (terminology after Tuljapurkar and Istock 1993).
Examples of the use of scalar models to study dispersal evolution include Metz et al.
(1983), Levin et al. (1984), and Holt (1997b). Assume that after reproduction all new-
borns in a population of size N enter a general dispersal pool and enter each of two
habitats with a fixed probability. Thus, individuals are non-‘ideal’. Genetic variability in
the propensity to utilise different habitats permits dispersal to evolve. Assume the initial
population uses habitat 1 with probability p. Expected fitness of an individual is
W = pFi(Ny) + (1 — p)F3(Nz), where Ny =pN, and N, = (1 — p)N. We assume the
population is at demographic equilibrium, so W = 1; hence, either F; = F; = 1 (so the
equilibrium population N} = K;), or if, say, F; > 1 then F, <1 (thus, Nf < K; and
Nz* > K»).

A rare invading clone with a different pattern of habitat choice has an overall fitness
of W' = p'Fi(N1)+ (1 — p')F2(N2). (The densities in this case are summed over both
clones in a habitat.) It immediately follows that, if F; > 1 > F3, then, given p’ > p, the.
invading clone increases in frequency, whereas, if p’ < p, the invading clone declines
towards extinction; selection obviously favours increased use of whichever habitat
provides higher fitness. A necessary condition for an evolutionary equilibrium with no
ongoing directional selection on habitat choice is F; = F» = 1. In other words, an
evolutionarily stable state for dispersal requires the population to exhibit an IFD, even
though individuals making up the population do not have ideal free behaviours. Such an
equilibrium could be monomorphic or a mix of different dispersal types, with relative
abundances adjusted such that the IFD holds (McPeek and Holt 1992).

At a joint demographic and evolutionary equilibrium, each habitat is at its respective
carrying capacity. Natal dispersal involves organisms born in one habitat that settle in
the other. For dispersal not to affect local population size, immigrants should equal
emigrants in each habitat. If p is the average propensity of an individual to use habitat 1,
then the number of immigrants into habitat 2 is 7 = K;(1 — p), and the number of
emigrants there is E = K,p. Setting I=FE implies p = K; /(K1 + K;). A pattern of
equalised immigration and emigration has been called ‘balanced dispersal’ (empirical
examples include Doncaster et al. 1997; Diffendorfer 1998). Given balanced dispersal, if
there is an inverse relation between local population size and local dispersal probability,
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- local populations can be at carrying capacity, yet dlspersal can stxll be ongomg (McPeek
- and Holt 1992; Lemel et al. 1997) ‘ «

Partial mixing

The above ‘scalar’ model assumes the population mixes each generation, so that a single
number characterises habitat use, and a single fitness.measure describes the iteration of

~-numbers through time. More generally, one expects populations in different habitats to

~ be partially decoupled. For populations with diserete.;generations occupying multiple
- habitats, stage-structured matrix models.(Tuljapurkar and Caswell 1997) provide a
'~ natural framework for analysing population and. evolutxonary dynamics (Holt 1996).

~ Consider the following stage-structured model (where ‘stage’=‘habitat’) for a single
- species with discrete generations, local density dependence, and:fixed habitat-specific
- dispersal rates, where dispersal (defined simply as movement between habltats) occurs a

© gingle time in an individual’s-lifetime: o cy o bnietn

Ty

[N1<t+1>] ) [a—eum(t)' enky() L]A[:vl;(ij_]' S
Na(t+2) enFi(1)  (1—ex)Fat) || Nao(t), o

- Here N (t) is abundance and Fj(¢) is realised local fitness (surv1v1ng reproductlve off-
~ spring) in habitat i at generation ¢. Dispersal is defined by ey, the per capita rate of
- movement of newborn individuals from habitat i to habitat j. Local fitness may decrease
~ with increasing local density (summed over clones, if there is more than one clone). If

there is no density dependence in habitat j, we assume F; < 1, so habltat J 1s intrinsically

. a sink. We assume no direct cost of dispersal. Dlspersal may be conditional by habitat
- but is not directly responsive to density; individuals are not ‘ideal’, because they may

move from high to low fitness habitats.
To examine the evolution of dispersal, we permit clones that are identical in within-

| patch performance but differ in their propensity to move among habitats to compete

with one another. We assume local densities are sufﬁc1ent1y great that kin competition

- can be ignored (Taylor and Frank 1996; see Lambin ef al., chapter 8). Several authors
~ have used models of this basic form to examine the evolution of dispersal (Hastings 1983;

Holt 1985; McPeek and Holt 1992; Holt and McPeek 1996; Doebeli and Ruxton 1997;

" Lemel et al. 1997). A general (albeit abstract) measure of fitness in populations whose

dynamics are defined by a stage-structured matrix process is the dominant Lyapunov
exponent of that process (Metz et al. 1992). In model (1), if the local fitnesses are fixed
quantities (i.e., we ignore dénsity dependence and temporal variability for a moment)
the transition matrlx has fixed elements, and the dominant Lyapunov exponent is simply

_ the dominant eigenvalue of the transition matrix (Metz et al. 1992). The dominant

elgenvalue for model (1) that provides a ﬁtness measure is:

=3 [0-eF+0-anmtvE] o)
where A

0= [( 1 “‘eIZ)Fl + (1= en)Fo)* —4(1 — ey — ex))FiFs



88 Holt and Barfield

For:a population to be stable, one or both local fitnesses must be density dependent.
We assume this is the case, so the F; values are adjusted such that W= 1; this requires
that either F1 = F,, or if, say, F1 > 1, then F; < 1. A novel clone, when sufficiently rare
relative to the resident clone, experiences density dependence mainly from the resident
clone; its asymptotic growth rate when rare is given by expression (2), with F; being the
same local fitnesses experienced by the resident clone, but e; being different between
clones. With' partial mixing, in contrast to ‘the ‘scalar’ model, fitness in a spatially
heterogeneous environment is a strongly non-linear combination of local fitnesses.
Nonetheless, the evolution of dispersal tends in the same direction, towards an IFD.
Rather than:dwelling on algebraic details, the salient results are as follows:.

() F1 > 1 > F,. If the dispersal parameters are free to vary, then dW/de;; < 0 and
dW/de; > 0; selection favours avoidance of the habitat with lower fitness and move-
ment towards the habitat with higher fitness. If dispersal rates are constrained to be
equal (e) = ez1 = e), then dW/de < 0. With unconditional dispersal, in a spatially
heterogeneous habitat, one expects populations to evolve by selection towards very low
dispersal rates (Hastings 1983; Holt 1985) at which each habitat will be at its respective
carrying capacity, and fitness will converge on unity across space.

(i) F1 = F, =1 (i.e., each habitat is at its respective ¢arrying capacity). If habitats
have unequal carrying capacities, an IFD is compatible with ongoing dispersal, given
‘balanced dispersal’ (Doncaster et al. 1997), i.e., dispersal that is asymmetrical and
inversely related to carrying capacity: K;/K = ey /e12 (see also Lemel et al. 1997).
McPeek and Holt (1992) note this for a special case; a simple demonstration of this
necessary relatlonshlp for an equilibrium comes from adding and subtracting the two
equations in (1), and evaluating them at equlllbnum with each patch at its respective K

Sink habitats and the non-equilibration of local fitnesses

So, in constant environments, the evolution of dispersal rates, given non-ideal indivi-
duals with fixed dispersal propensities, tends toward an IFD for the population as a
whole. But a rich body of theory shows that a principal selective factor favouring dis-
persal is temporal heterogeneity (e.g., Levin et al. 1984; McPeek and Holt 1992). How
does temporal variation affect the ideal free property of the population distribution?
Analysing adaptive evolution in variable environments is a challenging problem
(Haccou and Iwasa 1995), particularly in structured populations, in large measure
because there is no simple characterisation of fitness (Tuljapurkar 1990). To complicate
matters further, given local density dependence, dispersal alters local population size (see
Hanski, chapter 20), in turn modifying fitnesses and thus selection on dispersal; in
models of spatially structured populations in fluctuating environments, one cannot solve
for densities through time and thus cannot analytically characterise temporal variation
in fitness. The feedback between demographic functioning of populations and the
selective pressure on dispersal is at the core of ESS analyses of dispersal, yet analytically
finding this ESS is usually impossible.

For non-dispersing organisms with discrete generations, the appropriate measure of
fitness is the geometric mean of fitness through time (Cohen 1993; Haccou and Iwasa
1995; Yoshimura and Jansen 1996). In the following paragraphs, we report numerical
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studies of evolution of conditional dispersal strategies in the above scalar and matrix
models. We assumed two basic spatial scenarios: a source-sink system, with density
dependence in the source, or two habitats with unequal positive:carrying capacities.
Previous studies along these lines (e.g.,” McPeek and Holt 1992;:Holt 1997b) have
explored the issue of the evolution of dispersal per se. Here; we:complément this earlier
work by interpreting the evolutionary equilibrium in terms of spatial’ equilibration of
two proxies for local fitness: geometric mean Jlocal fitness and spat1a1 repvoductlve value
(see Holt 1996).

Consider first the above ‘scalar’ model, but now assume that ﬁtness ﬂuc’mates among
generations in one or both habitats (due either to temporal variation in parameters or to
unstable dynamics), so that the average fitness in generation ¢ is . W = pFi(Ni(t))+
(1 = p)F(Ny(1)). K.A. Schmidt, J.A. Earnhardt, J.S. Brown and R.D. Holt (unpub-
lished manuscript) show that if both habitats are used, the ESS value for p is: the
solution of: , SRR

qul B _ L
Z[PFl+ 1 —p)F)] 0 ®

where g is the probability that the kth type of generation occurs. If local fitnesses are
constant, we recover the earlier result that, at the ESS, local fitnesses are equilibrated
across space. But if fitnesses vary temporally, this need not hold. Consider the case where
habitat 2 is a sink habitat with constant fitness F» < 1, whereas habitat 1 is a source with
fluctuating fitness. Holt (1997b) and Jansen and Yoshimura (1998) demonstrate that
partial use of the sink is selectively advantageous if the source is sufficiently variable in
fitness, so that in some generations the source has a lower expected fitness than does the
sink; this adaptive use of a sink is a ‘bet-hedging’ strategy (Seger and Brockmann 1987).
A limiting case is for the source to alternate cyclically between good and bad years, with
fitness being zero in bad years and positive (but density dependent) in good years.
Nonetheless, partial dispersal to the sink can permit persistence (Jansen and Yoshimura
1998); by assuming overall geometric fitness is unity (which can be achieved by adjusting
population size, and thus density-dependent fitness, in the source in good years), after
manipulating equation (3), one can show that the ESS for use of the source habitat is the
solution of a quadratic, F? p? + 2(1 — F})p + (F} — 1) = 0. When F, is near 1, p is near 0
(most individuals should avoid the source habitat), whereas when F; is near zero, p con-
verges on 1/2. (If maximal source fitness during good years does not permit overall geo-
metric fitness to be unity, then the population goes extinct.) Geometric mean local fitness
in the source is zero; geometric mean fitness in the sink is a constant between zero and 1.

This example shows that it is certainly not always true that dispersal evolves so as to
equalise local fitnesses (here interpreted as the geometric mean of local fitness) across
space, when one habitat is an intrinsic sink (adding negative density dependence to the
sink does not affect this qualitative conclusion; R.D. Holt, unpublished results). If
utilisation of sink habitats were part of a bet-hedging strategy, one would not expect to
see balanced dispersal, with immigrants equalling emigrants (Doncaster et al 1997
Diffendorfer 1998), or an IFD.

However, if both habitats have positive carrying capacities (1 e., neither is an 1n¢r1ns1c
sink) and do not suffer local extinctions (i.e., all F;(¢) > 0), numerlcal studies suggest
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that at :the ESS. for: dispersal the realised geometric mean-of local fitness is often
approximately equalised between the two habitats. We were surprised at this outcome.
In:oursimulations, we examined a range of assumptions about temporal variation (e:g.,
uniform-vetsus normal distributions) and the functional form of local density depend-
ence: Particular forms for density dependence examined include the exponential logistic
[Ei(t) = exp(ri(£)(1 — Ni(2)/Ki(2)))], the Ricker model [Fi(f) = exp(ri(t) — di(£)Ni(¢))]
and a flexible phenomenological model of density dependence [F;(f) = R;(t)/
(1+ Ni(t)d’(’))], where N(1) is the summed density over all dispersal types within a patch
in generation ¢.. (The quantities R(¢) and exp(r;(¢)) are maximal rates of increase in
generation t; d(¢) measures the strength of density dependence; and K(¢) is the carrying
capacity of habitat i.)

Figure 6.1 shows a representative example. Geometric mean local fitnesses were cal-
culated over 10000 generations.for populations moenomorphic in p (for 101 values of p
uniformly distributed in [0, 1]). The ESS was then determined by clonal competition. In
all cases examined, as long as each habitat patch had a positive carrying capacity in each
generation, we found that the population at the ESS exhibited a distribution that was
close to ideal free, as measured by realised geometric mean local fitnesses. Comparable
results arise in the more general model with localised dispersal (model [1]). Again, there
appears to be a qualitative difference between a system with sink habitats, and one in
which all habitats have positive carrying capacities. For the source-sink system, if the
population persists and is initially restricted entirely to the source, then regardless of the
amount of temporal variation in fitness, very small rates of localised dispersal coupling
the sink and source are disfavoured. This can be readily shown analytically for a cyclical
environment of period 2. However, larger rates of dispersal can be favoured, even if
small rates of dispersal are not. To find the ESS pattern of dispersal, we allowed a large

Ratio of geometric. means
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Figure 6.1. Relative geometric mean fitness, for two habitats coupled with scalar dispersal. In the example
shown, local fitnesses were described by Fy(f) = R;(2)/(1 + Ni(r)*). The density-independent growth parameter
for each habitat was given by a sequence of independent draws from normal distributions, with a mean in
habitat 1 of Ry = 4, a mean in habitat 2 of R, = 6,'nd a standard deviation for both of 0.5. For both habitats,
d=2. (The simulations discarded zero and negative values of R; in our simulations with these parameters this
never. occurred.) : :
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lable 6.1. Source-sink dynamics with unstable source and localised dispersal.
#A.-Winning dispersal rates. Local fitness in the source is given by the Ricker model.
- B. Geometric mean local fitnesses for the evolutionarily stable dispersal rates

Reink 03 04 0.5 ‘ 0.6 0.7

4. Dispersal rates of persisting clone Standard deviation of r

& €12 €21 €12 - ey €12 €21 €12 €21 €12 €21
0.5 0.00 1.00 0:.00 1.00° - 0.02 1.00°  0.08 1.00 = 0.16 1.00
0.6 0.00 1.00 0.00 " 1.00 - .0,08 1.000 0,18  1.00 . 0.26 1.00
0.7 . 0.00 1.00 004 - 1.00 018 100 028 1.00 0.34 1.00
0.8 0.00 1.00 0.16° ~1.60 0.30 ll 00 0.38 1.00 . 0.44 0.88
0.9 0.25 1.00 0.38 100 048 .0.86 0.56 0725 0.62 0.63
B. Geometric mean local fitness of persisting clone ‘in source Standard devzatzon of r

0.5 1.000 1.000 0.997 0.977 : 0.943

0.6 . 1.000 1.000 ~ 0993 0.972" ' 0.941

0.7 1.000 0.999 0.987 0.966 0.934
0.8 1.000 0.993 0979 © 0.956 0.920

0.9 0.999 0.986 0.966 0.936 0.894

number of clones to compete, spanning all feasible values of the two dispersal rates.
Table 6.1 presents a typical example (the table assumes Ricker density dependence in the
source, with mean r; = 1.5, d= 1, and random normal deviates in 7;). At low sink fitness,
and low fitness variance in the source, the evolutionarily stable state of the population is
no dispersal, leaving the sink unoccupied. Dispersal can be favoured, given higher sink
fitness or larger temporal variance in source fitness. Winning clones always disperse at a
higher per capita rate from the sink to the source than in the reverse direction. In the
source, there is often incomplete dispersal for each generation, whereas typically all
individuals born in the sink immediately disperse back into the source.

Table 6.1 also shows the long-term geometric mean local fitnesses of the winning
clones. As in the scalar model, natural selection does not equilibrate geometric mean
fitness among habitats; at the ESS for dispersal, the source typically has a higher realised
geometric mean Jocal fitness than does the sink. In short, evolution of dispersal does not
necessarily lead to an IFD, as measured by local (geometric mean) fitness, when the use
of intrinsic sink habitats is favoured by high temporal variance in fitness in source
habitats.

By contrast, as in the scalar model, if both habitats have positive carrying capacities
and dispersal is localised, numerical studies suggest that the geometric mean of local
fitnesses in the two habitats is typically approximately equalised at the ESS. A char-
acteristic example is shown in Fig. 6.2, which shows a surface describing the ratio of
geometric mean fitnesses for two habitats as a function of dispersal rates. The straight
line defining the intersection of this surface with the plane of equal geometric ' mean
fitnesses gives the set of dispersal rates that equilibrate geometric mean fitness: the dot is
the ESS arising from competitive trials. At the ESS, geometric mean local fitnesses are
very nearly equal across space. It is also clear from Fig. 6.2 that fitness equilibration does
not capture all the important features of dispersal evolution. The line of intersection
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Ratio of geometric mean fitness

Figure 6.2. Relative geometric mean fitnesses in two coupled patches, as a function of dispersal rates for
localised dispersal. These simulations used the expression R;(#)/(1 + Ni(t)d’(’))) for local fitnesses. The values
for R(f) were drawn from a uniform distribution, with a mean of 4 for habitat 1 and a mean of 6 for habitat 2,
with a range in both cases of width 6. Independent uniform deviates between 1 and 2 were used for both the d{?)
values. Thus, the populations experienced very high levels of variation in local growth rate. The ESS was found
from clonal competition trials (including pairwise competition and trials with an initially uniform distribution
of all feasible dispersal clones — increments in dispersal rates of 0.02 separated clonal dispersal values).
Geometric mean fitness was evaluated over 100000 generations, after an initialisation period of 10000
generations, with initial densities at carrying capacity in the two patches. The dot indicates the ESS for dispersal
rates. At the ESS, geometric mean fitness is approximately equalized in the two habitats.

describes an equivalency class of dispersal rates, where each combination leads to fitness
equilibration. When one allows these clones to compete, a unique winner emerges. Thus,
there are evolutionary forces operating that are not encapsulated by this fitness equili-
bration rule; otherwise, these clones would be selectively neutral relative to one another.

We were puzzled by finding that geometric mean local fitness was approximately
equilibrated in these simulations; given dispersal, the fitness measure relevant to pre-
dicting the course of evolution is much more complex than just the realised geometric
mean fitness in each habitat. Moreover, using this measure revealed to us small (but real)
discrepancies from the ESS. Fitness equilibration by this measure provides a fairly
accurate ‘rule-of-thumb’ describing the outcome of dispersal evolution, but it is rea-
sonable to ask whether there are other, more accurate, measures that would reveal true
equilibration (if such exists).

A broad consensus has emerged that the most general definition of fitness for a
structured population with non-linear dynamics in a variable environment is the
dominant Lyapunov exponent of a series of random matrices, where matrix elements
describe transitions' among different classes or subpopulations (Tuljapurkar 1990;
Metz et al. 1992; Ferriére and Gatto 1995). With limited dispersal, localised density
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tlependence, and. fluctuating environments, however, analytical characterisation of this
sheasure of fitness can be very difficult (Tuljapurkar 1997). In the absence of an ana-
lytical expression for this true fitness measure, we.conjectured that evolution might tend
torequalise the realised spatial reproductive values. of each habitat. In stage-structured
medels with fixed coefficients (Caswell 1989), the reproductive value of a given stage is
the relative contribution of an individual in that stage to eventual population size. In a
- spatially heterogeneous environment, ‘habitat’ corresponds to ‘stage’. The spatial
- reproductive value of'each habitat is the relative contribution.of that habitat to the entire
population (Hoit 1996; Rousset 2000c). Given dispersal, an individual in one focal
habitat leaves descendants across a number of habitats. The fitnesses of those descen-
flants must enter into the calculation of the reproductive value-ascribed to the focal
habitat. One can abstractly define a stochastic reproductive.value (Tuljapurkar 1990,
1997), but, in practice, simulation studies are requ1red to assess freproductlve value in
ﬂuctuatmg environments.
~:'We assessed spatial reproductive value using neutral genetic markers Flrst, for any
given parameter set, competitive trials determined ESS dispersal rates.. Then, with just
the dominant clone, the system was run for 100 generations, at which time an additional
‘population was introduced at low density to-each habitat, with dispersal parameters and

0.20

Difference in reproductive values

Figure 6.3. Differences in spatial reproductive value between source and sink, as a function of dispersal rates,
given localised dispersal. The general protocol for evaluating reproductive value is described in the text.
Simulations were carried out with local fitnesses described by the Ricker model in the source and a constant
growth rate <1 in the sink. Rgnx = 0.9. The source #(f) was drawn from a normal distribution, with mean
r=1.5, 0=0.5, and d=1: The winning dispersal strategy is e;» = 0.48, e;; = 0.86 (indicated by dot). At the

ESS, spatial reproductive values are not equalised, and the winning strategy does not minimise the differences
in spatial reproductive values between habitats.
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logal:fitnesses-identical to the resident clone. After 100 further generations, the total
number of descendants from each new population was divided by the initial propagule
sizeitoigive 'the reproductive value for the habitat in which that population was intro-
fuoed:: Because populations are fluctuating, this value can be sensitive to initial condi-
tions:and the exact pattern -of environmental fluctuations; we carried out 100 000 runs
for leach-parameter set and averaged the resulting reproductive values.

‘+:Again, numerical studies revealed a dichotomy between scenarios in which one patch
was a sink and those in which both habitats had positive carrying capacities. In.the
source-sink system, at evolutionary equilibrium, realised reproductive value :of the
source did not usually equal that of the sink; Fig.-6.3 is-a typical example. By contrast,
given positive carrying capacities, reproductive values were approximately equalised
across habitats at the evolutionary equilibrium (not shown). Our studies suggest that this
equilibration among habitats is approximate, rather than exact. What impresses us is
that, even in cases that involve very pronounced temporal variation in local fitnesses,
equilibration of these fitness proxies provides a useful rule-of-thumb for the evolu-
tionary outcome, deviating by less than 1-2% from the actual ESS. Thus, even though
we assume organisms that are not ideal, the population as a whole converges on a near-
IFD at the evolutionary equilibrium for dispersal.

Discussion and conclusions

Given that all habitats have a positive carrying capacity, our numerical studies suggest

that the evolution of dispersal tends to produce an approximate IFD, at which the

quantity equilibrated across space is one of two proxies for fitness: spatial reproductive

value or geometric mean local fitness. It will be an important task in future work to

assess the generality of these conclusions. We are intrigued by the observation that the

geometric mean Jocal fitness is, to a reasonable approximation, equilibrated at the ESS

for dispersal. This has practical implications; it is more likely that one could devise a -
reasonable estimate for local geometric mean fitness in given habitats (for a concrete

example, see Boyce and Perrins 1987) than that one could directly measure spatial

reproductive values — not to mention dominant Lyapunov exponents.

Our results suggest that the equilibration of local fitness measures across space can
often describe the outcome of the evolution of dispersal. They also show, however, that
the evolution of dispersal need not equilibrate fitnesses, even approximately, if some
habitats are sinks. Natural selection favours utilisation of sink habitats if source habitats
have high temporal variance in fitness (Holt 1997b; Jansen and Yoshimura 1998).
Organisms with high variance in fitness in high-quality habitats might be expected not to
exhibit an IFD because they are more likely to include low-quality but stable sink
habitats in their habitat repertoire.

The models we examined have many simplifying assumptions. For instance, we
assumed that each individual has a fixed propensity to disperse, which could vary by
habitat, but in no other way. Several authors in this volume (e.g., Ims and Hjermann,
chapter 14; Stamps, chapter 16; Murren er al., chapter 18) discuss the importance of
factors such as individual plasticity, the dependence of dispersal upon internal condi-
tions, and density-dependent dispersal. It would be useful to assess fitness equilibration
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across habitats, given more realistic assumptions about the proximal causes, conditional
dependence, and costs of dispersal. Two assumptions in our models were that there was
no direct cost of dispersal and that once a disperser moved it would have the same
expected fitness as a non-dispersing resident. Stamps (chapter 16) suggests that evolution
has favoured a wide range of mechanisms to reduce the costs of settling into new
habitats. However, it is unlikely that such mechanisms will completely eliminate dis-
persal costs and/or differences between residents and immigrants. Incorporating these
realistic features of dispersal could alter an expectation of fitness equilibration at
evolutionary equilibrium.

In the models discussed above, dispersal evolved due to spatio-temporal variation in
fitness, in populations large enough to consider abundance to be a continuous variable.
Yet fitness variation is only one of several potential factors ‘important in the evolution of
dispersal (Johnson and Gaines 1990). Fitness equilibration is unhkely to be an evolu-
tionary outcome for many alternative mechanisms. For instance; with hlghly Todalised
density dependence and very few individuals interacting within patches, demographic
stochasticity promotes the evolution of dispersal; clones with zero dlspersal wilk ran-
domly to extinction in patches with low carrying capacities, leaving behind only dis-
persing clones (Travis and Dytham 1998). Moreover, kin competition becomes
important; movement by a single individual alters fitnesses in both natal and recipient
habitats, changing inclusive fitness (Taylor and Frank 1996). These two effects of
individual discreteness favour intermediate dispersal rates, even in constant environ-
ments. Hamilton and May (1977) showed that this mechanism operates even if dispersal
is costly. If some of this cost arises because dispersers land in low-quality sink habitats,
one will observe sustained spatial variation in local fitness. Thus, kin competition (see
Perrin and Goudet, chapter 9; Gandon and Michalakis, chapter 11) is an important
driver of the evolution of dispersal that is not likely to lead to fitness equilibration
among habitats. An absence of equilibration is also likely if parents rather than offspring
govern dispersal (Murren et al., chapter 18). Moreover, observing a non-ideal free dis-
tribution is compatible with a variety of evolutionary causes of dispersal; for example,
such a pattern could arise from ‘bet-hedging’ use of sink habitats, or from kin selection
with localised competition.

Despite these limitations in the scope of fitness equilibration, we believe it fair to
conclude that Fretwell and Lucas’s concept of the IFD provides an insight that proves
surprisingly useful for characterising the population-level outcome of evolution of dis-
persal rates, even among organisms that are not particularly ideal in their individual
habitat selection behaviour. Fitness equilibration appears to be most likely when con-
sidering movement among habitats, none of which are intrinsic sinks, and when the
prime driver of dispersal evolution is spatio-temporal variation in fitness, rather than
factors such as kin competition.
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