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This article seeks to determine the extent to which endogenous consumer–resource cycles can contribute

to the coexistence of competing consumer species. It begins with a numerical analysis of a simple model

proposed by Armstrong and McGehee. This model has a single resource and two consumers, one with a

linear functional response and one with a saturating response. Coexistence of the two consumer species

can occur when the species with a saturating response generates population cycles of the resource, and

also has a lower resource requirement for zero population growth. Coexistence can be achieved over a wide

range of relative efficiencies of the two consumers provided that the functional response of the saturating

consumer reaches its half-saturation value when the resource population is a small fraction of its carrying

capacity. In this case, the range of efficiencies allowing coexistence is comparable to that when two

competitors have stable dynamics and a high degree of resource partitioning. A variety of modifications of

this basic model are analyzed to investigate the consequences for coexistence of different resource growth

equations, different functional and numerical response shapes, and other factors. Large differences in

functional response shape appear to be the most important factor in producing robust coexistence via

resource cycles. If the unstable species has a concave numerical response, this greatly expands the

conditions allowing coexistence. If the stable consumer species has a convex (accelerating) functional and/

or numerical response, the range of conditions allowing coexistence is also expanded. We argue that large

between-species differences in functional response form can often be produced by between-consumer

differences in the adaptive adjustments of foraging effort to food density. Consumer–resource cycles can

also expand the conditions allowing coexistence when there is resource partitioning, but do so primarily

when resource partitioning is relatively slight; this makes the ease of coexistence relatively independent of

consumer similarity. & 2002 Elsevier Science (USA)
INTRODUCTION

A substantial body of theoretical literature has shown
that temporal variability can allow the coexistence of
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competing species that would not coexist under constant
conditions (Armstrong and McGehee, 1976a, b, 1980;
Chesson and Warner, 1981; Abrams, 1984; Chesson,
1986, 1994). Recently, attention has focused mainly on
the ‘‘storage effect’’ mechanism identified by Chesson
and Warner (1981). In this mechanism, environmental
variation acting at one life history stage in effect results
in temporal partitioning of resources. Chesson and
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Huntly (1997) have argued that this contributes
significantly to the coexistence of desert plants. By
contrast, a mechanism of coexistence based on endo-
genous rather than exogenous variation, first described
by Armstrong and McGehee (1976a), has received far
less attention. A brief sketch of the Armstrong–
McGehee (A–M) mechanism of coexistence for two
competing species is as follows.
One consumer species (here referred to as the

‘‘unstable’’ consumer) has a saturating functional
response that is sufficient to generate consumer–
resource cycles when alone with the resource. The other
‘‘stable’’ consumer does not induce cycles (or produces
cycles of significantly lower amplitude) but requires a
higher resource density to increase when rare. The
unstable species cannot fully exploit periods of high
resource abundance during the cycles (because of its
saturating responses), whereas the stable species can
make greater use of pulses of resource abundance and so
benefits from the resource cycles generated by the
unstable species. However, the stable species cannot
exclude the unstable species; when the stable species
becomes dominant, its higher resource requirement
leads to higher resource levels, permitting the more
efficient unstable species to increase. In turn, cycles
generated by the unstable consumer result in a time-
averaged resource density that is greater than the
equilibrium density (Armstrong and McGehee, 1980;
Abrams and Roth, 1994); this resource enhancement
allows the stable species to increase when rare. The
difference between equilibrium and time-averaged den-
sities increases as cycle amplitude increases. Thus, the
A–M mechanism is most likely to operate when the
cycles created by the unstable species are of large
amplitude. Under this mechanism one species is superior
at low resource levels, and the other at high levels, and
the dependence of cycle amplitude on the relative
abundances of the consumers ensures periods when
each species enjoys an advantage over the other.
This basic scenario was described independently by

several investigators during the 1970s (Koch, 1974;
Armstrong and McGehee, 1976a, b, 1980; Hsu et al.,
1978). Chesson (1994) refers to the scenario sketched
above as a special case of coexistence due to ‘‘relative
nonlinearity’’. During the past two decades, no empiri-
cal demonstrations of coexistence due to this mechanism
have appeared, and the impact of consumer–resource
cycles on competing consumers is seldom mentioned
(but see Vandermeer, 1993; Chesson, 1994, 2000).
Indeed, the consensus seems to be that deterministic
consumer–resource cycles are a very weak coexistence-
promoting mechanism (e.g., Hsu, 1980; Chesson, 1994;
Anderies and Beisner, 2000). Yet, the demise of this idea
may be premature. It is very difficult to identify the
mechanisms underlying competitive coexistence, and
only recently have efforts been made to quantify the
roles of different mechanisms in the field (Chesson and
Huntly, 1997). Because a degree of resource partitioning
is likely to exist between any pair of species, there is a
tendency to regard partitioning as a sufficient explana-
tion for coexistence, and to neglect the potential role of
unstable dynamics. Consumer–resource cycles may
occur in many natural systems (Ellner and Turchin,
1995; Kendall et al., 1998). For instance, Kendall et al.
(1998) argue that roughly 30% of 694 long-term time-
series of Northern hemisphere animal populations show
cycles. Cycles are conspicuous in some systems with
coexisting consumers (e.g., bank and field voles in
Fennoscandia (Hansson, 1983)), although the cause of
the cycles and their impact on coexistence is unknown.
Coexistence of many insect herbivores in systems where
one or more species have periodic outbreaks (e.g.,
Myers, 1988) provides other potential examples where
unstable dynamics could facilitate coexistence.
The purpose of this article is to argue that endogen-

ously generated consumer–resource cycles may, in fact,
play an important, if under-appreciated, role in resource
competition and coexistence. We begin by showing that
the simplest model of the A–M mechanism is quantita-
tively comparable to resource partitioning in its ability
to produce coexistence. We then show that robust
coexistence of two species is possible in a broad range of
related models with a large-amplitude cycles in resource
density. We argue that the biological prerequisites for
coexistence due to endogenous cycles should be satisfied
frequently, particularly for competition between organ-
isms with dissimilar adaptive responses to changes in
resource density. Elsewhere (Abrams et al., under
review) we explore in more detail the range of
population dynamics produced by this model, and
responses of average abundances to changes in environ-
mental conditions. These differ considerably from the
dynamics and responses of species coexisting via
resource partitioning.

MEASURING THE RANGE OF
CONDITIONS ALLOWING
COEXISTENCE

A robust mechanism of coexistence allows persistence
of two (or more) species over a substantial range of
species’ traits. Exact quantification of the volume of
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parameter space permitting coexistence is often difficult
in models with even a moderate number of parameters.
Our approach here is to determine the range of relative
resource requirements of consumer species consistent
with coexistence. The resource density required for
population growth is likely to vary between species, and
within species across space or through time, because it is
affected by climatic conditions (which determine meta-
bolic demands) and by mortality factors (and thus the
resources required to replenish losses). The resource
requirement also determines the outcome of competition
for a single resource in the absence of cycles (Volterra,
1926; Armstrong and McGehee, 1980). Thus, the
resource requirement for population growth is arguably
the most important composite parameter determining
coexistence in many models of resource competition. If
only a narrow range of resource requirements permits
coexistence, coexistence is unlikely to be observed in
natural systems; environmental variation in resource
requirements is then likely to destroy the delicate
balance needed for coexistence. Our approach of
using the range of parameters allowing coexistence to
gauge the likelihood that species in fact coexist was
employed by MacArthur and Levins (1967), May
(1973), Abrams (1975) and Armstrong (1976) in early
deterministic theories of limiting similarity. Armstrong
(1976) coined the term, ‘‘coexistence bandwidth’’, to
denote ranges of critical parameters permitting coex-
istence. We will demonstrate that coexistence bandwidth
is often relatively broad for systems with the A–M
mechanism.

THE ROBUSTNESS OF COEXISTENCE
IN CONSUMER–RESOURCE SYSTEMS
WITH RESOURCE PARTITIONING AND
A STABLE EQUILIBRIUM

To judge the contribution of the Armstrong–Mc
Gehee mechanism to coexistence, it is necessary to have
a standard of comparison. Here we use MacArthur’s
(1970, 1972) well-known consumer–resource model as a
standard for comparison of coexistence bandwidths.
The model is described in Appendix 1 (see also
MacArthur, 1972; Hsu and Hubbell, 1979; Chesson,
1990; Abrams, 1998). We adopt a symmetric 2-
consumer–2-resource version of the model, in which
the two consumers have consumption rates that are
mirror images, and both resources have identical growth
parameters. In particular, if Cij is the per capita
consumption rate of resource j by consumer i; we
assume that C12 ¼ C21; and C11 ¼ C22 ¼ C: We further
assume the per capita capture rates of a given consumer
sum to one, so overlap in resource use can be
summarized in a single parameter, C: The resource
requirements, denoted as d1 and d2; are scaled relative to
the resource-carrying capacities. These assumptions
mean that the range of di allowing existence in the
absence of the competitor is 05di51: The coexistence
bandwidth is the range of di allowing coexistence with
dj; this bandwidth is automatically scaled relative to the
range of di allowing existence without competition
(i.e., 1).
The conditions for coexistence in MacArthur’s system

(derived in Hsu and Hubbell, l979; Abrams, 1998) were
used to generate Fig. 1. Figure 1A shows the maximum
and minimum values of d2 permitting coexistence, as a
function of similarity in resource capture rates of the
two consumer species; these quantities are shown for
three possible resource requirements, d1; of competitor
1. In Fig. 1B, the range of d2 yielding coexistence is
shown as a function of d1; for two levels of resource
partitioning. Resource partitioning ranges from non-
existent ðC ¼ 0:5Þ to complete (when C ¼ 0). Figure 1
shows that the coexistence bandwidth is greatest when
resource partitioning is greatest; for a given level of
partitioning, bandwidth is greatest for intermediate
resource requirements of the focal species ðd1Þ: These
two features arise in many related models, given
symmetrical differences in resource use. For instance,
numerical results were obtained with the same system,
but with type-2 functional responses (as in Eq. (1a)).
This change narrowed the coexistence bandwidth for
systems with a small amount of partitioning, but did not
change these two basic features: coexistence bandwidth
increased with resource partitioning and, for a given
degree of partitioning, was maximal for intermediate
resource requirements. The latter feature arises because
at high d; existence is precarious even in the absence of
competition, so adding competition can easily push a
species over the edge; at low d; consumers can cause
exclusion of a resource population, reducing the
diversity of available resources.
The above results provide a scale for measuring the

robustness of coexistence under the A–M mechanism.
Given a resource requirement, d; of one species and the
range of d (or Nn) of the other species that allows
coexistence in a model with the A–M mechanism, the
formulas used to generate Fig. 1 yield a value of C (i.e.,
an amount of resource partitioning) that produces the
same range of permissible resource requirements, were
partitioning alone to produce coexistence.



FIG. 1. (A) shows the upper and lower bounds of resource

requirements (measured by d2) needed for coexistence in MacArthur’s
consumer–resource model (Eqs. (A1) and (A2)) as a function of the

degree of similarity in resource use. C ¼ 0 means both consumer
species are complete specialists on different resources, while C ¼ 0:5
means that both consumers are identical generalists. The three line

styles give the upper and lower boundaries of d2 for three different
values of d1; d1 ¼ 0:025 for the short dashed line; d ¼ 0:5 for the solid
line; d ¼ 0:9 for the long dashed line. In each case, in parameter
regions above the top line, species 1 wins, whereas for parameters

below the bottom line, species 2 wins. (B) shows the upper and lower

bounds of d2 as a function of d1 for two levels of resource partitioning.
The dashed line represents a system where C ¼ 0:25 (resulting in a
value of 0.5 for Schoener’s overlap formula), while the solid line

assumes C ¼ 0:33 (overlap of 0.66).
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ROBUSTNESS OF TWO-SPECIES
COEXISTENCE UNDER THE
ARMSTRONG–McGEHEE MODEL

We assume consumer species 2 is the stable species,
with a linear functional response. Consumer species 1
(the unstable species) has a nonlinear (Holling, 1959,
type-2) functional response. The range of conditions
allowing coexistence is found by determining parameters
that permit each species to invade a system in which the
other consumer and resource have reached their limiting
dynamics. Although invasion analyses do not always
guarantee coexistence in models with different structures
(e.g., Armstrong and McGehee, 1980; Abrams and
Shen, 1989; Case, 1995), it does so for Eqs. (1)
(Armstrong and McGehee, 1976, a, b, 1980; McGehee
and Armstrong, 1977). Numerical explorations of the
related models considered in later sections of this article
have not revealed cases where it fails for those models.
If the resource (prey) has logistic growth, the

description above corresponds exactly to the example
in Armstrong and McGehee (1980). The dynamics of the
two consumers (predators), P1 and P2; and the resource
(prey), N ; are given by

dP1
dt

¼ P1
B1C1N
1þ hC1N

� D1

� �
;

dP2
dt

¼ P2ðB2C2N � D2Þ;

dN
dt

¼ rN 1�
N
K

� �
�

C1NP1
1þ hC1N

� C2NP2: ð1a2cÞ

Here Bi is the conversion efficiency of food into
offspring for consumer i; h is the handling time for a
resource item eaten by consumer 1; Di is the resource
intake rate required for population growth; Ci is a
searching consumer’s attack rate; and, r and K are
logistic growth parameters. After scaling to reduce the
number of parameters (substituting t0 ¼ rt; N 0 ¼ N=K;
P 0
1 ¼ P1=ðB1KÞ; and P 0

2 ¼ P2=ðB2KÞ; and then dropping
the primes), the system is

dP1
dt

¼ P1
a1N
1þ bN

� d1

� �
;

dP2
dt

¼ P2ða2N � d2Þ;

dN
dt

¼ N ð1� N Þ �
a1NP1
1þ bN

� a2NP2: ð2a2cÞ

The new parameters are a1 ¼ KB1C1=r; a2 ¼ KB2C2=r;
b ¼ KC1h; d1 ¼ D1=r; d2 ¼ D2=r: The minimal resource
requirement for consumer species i; denoted Nn

i ; is found
by solving ð1=PiÞðdPi=dtÞ ¼ 0; hence, Nn

i ¼ d1=ða1 � bd1Þ;
and Nn

2 ¼ d2=a2:
A necessary condition for coexistence is that con-

sumer species 1 undergoes limit cycles when it interacts
with the resource in the absence of species two. Such
cycles occur if and only if d15a1ðb� 1Þ=ðbðbþ 1ÞÞ:
Given that this requirement is satisfied, coexistence



FIG. 2. Maximum (solid line) and minimum (dotted line) values of

d2 (here equal to Nn
2 ) for coexistence in Eqs. (2) when ai ¼ 1 and when

d1 has the value given on the x-axis. The abrupt drop in the maximum
(at d1 ¼ 0:081818 in panel (A)) occurs when the system becomes stable.
Coexistence is impossible for values of d1 larger than this. (B) shows
the same relationship for b ¼ 5; and (C) shows the same relationship
for b ¼ 2:5:
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occurs if and only if each consumer can invade a system
consisting of the other consumer and resource under-
going their limiting dynamics (McGehee and Arm-
strong, 1977; Armstrong and McGehee, 1980). These
mutual invasion conditions are: (1) for invasion of
species 1 into the stable system consisting of species 2
and the resource, d1=ða1 � bd1Þ5d2=a2; which is equiva-
lent to Nn

15Nn
2 ; and (2) for invasion of species 2 into the

cycling system consisting of species 1 and the resource,
hNi1 > d2=a2; where hNi1 denotes the average resource
density over a limit cycle of consumer 1 and the
resource. This average density must be determined
numerically. Putting the two invasion conditions to-
gether, coexistence requires

Nn

15Nn

25hNi1: ð3Þ

Because we are interested in comparing the range of
conditions that allows coexistence in the A–M model
with the comparable range for the MacArthur model,
we will concentrate on species 2. The linear functional
response of this species makes its interaction with
resources comparable to a consumer in the MacArthur
model. We will use the term ‘‘coexistence bandwidth for
species i’’ to refer to the range of Nn

i that permits species
i to coexist with species j: The bandwidth for species 2
clearly depends on the growth parameters of species 1,
because both Nn

1 and hNi1 depend on those parameters
(d1; a1 and b). Because Nn

2 ¼ d2=a2 in inequality (3), the
coexistence bandwidth for species 2 is directly propor-
tional to the range of the per capita mortality rate, d2
that allows coexistence. In the special case when a2 ¼ 1;
these two ranges are equal. Because carrying capacity
has been scaled to unity in Eqs. (2), the coexistence
bandwidth is also scaled relative to K:
We begin by exploring the dependence of coexistence

bandwidth on the three growth parameters of the
cycling consumer species (species 1). The range of Nn

2

allowing coexistence is shown as a function of d1 for
three values of b in Fig. 2. Because a2 ¼ 1; this figure
also gives the range of d2 that allows coexistence. In each
panel of the figure, the bandwidth is given by the
distance between the solid and dotted line. As in the
MacArthur model, the largest coexistence bandwidths
for the A–M model occur for intermediate levels of
efficiency of the other consumer (measured either by d1
or Nn

1 ). Figure 2 reveals that the largest coexistence
bandwidths occur when b is large (coexistence is
impossible when b51; because this condition guarantees
stability). It is clear that a strongly saturating functional
response (e.g., b ¼ 5 or b ¼ 10) is required for a
moderately large coexistence bandwidth. The remaining
growth parameter that can influence bandwidth is the
maximum per capita resource capture rate of that
species, a1: For a given value of b and Nn

1 ; a change in
a1 implies a proportional change in d1: Proportional
changes in both a1 and d1 do affect hNi1; and therefore
have an effect the coexistence bandwidth for species 2.
In all cases, increases in a1 and d1 decrease the
coexistence bandwidth; decreases in the parameters



TABLE I

Coexistence Bandwidths for Consumer Species 2 (the Linear Consumer)

Based on Eqs. (2)

d1 0:8d1stab 0:5d1stab 0:2d1stab

(A) b ¼ 1:25; d1stab ¼ 0:08888
Range of d2 allowing 0.00391 0.00559 0.00340

coexistence

Equivalent overlap, 2C 0.9674 0.96177 0.9534

(B) b ¼ 2:5; d1stab ¼ 0:17143
Range of d2 allowing 0.06367 0.07734 0.03933

coexistence

Equivalent overlap, 2C 0.8582 0.8280 0.7537

(C) b ¼ 5; d1stab ¼ 0:13333
Range of d2 allowing 0.2324 0.1990 0.09976

coexistence

Equivalent overlap, 2C 0.7005 0.5872 0.4419

(D) b ¼ 10; d1stab ¼ 0:081818
Range of d2 allowing 0.4296 0.3173 0.1346

coexistence

Equivalent overlap, 2C 0.5174 0.3435 0.2493

Note: The range of mortality rates, d2 yielding coexistence is identical
to the range of equilibrium resource densities ðNn

2 Þ producing
coexistence, given our assumption that a2 ¼ 1: Also shown is the
amount of resource overlap (measured by Schoener’s (1970)

formula ¼ 2C) required to produce the same coexistence bandwidth
for the 2-resource MacArthur system given in Appendix 1. Calcula-

tions assume a1 ¼ 1:
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increase bandwidth. A slower predator response in-
creases the amplitude of the prey cycles in a single-
predator–single-prey system. However, this effect tends
to be rather small. The mean density hNi1 is usually
changed by less than 10% by changes of less than an
order of magnitude in the magnitudes of a1 and d1:
Larger changes in hNi1 with a1 and d1 can occur when
Nn
1 is very close to the value at which the system
becomes stable. Proportional changes in a2 and d2 have
no effect on coexistence bandwidth for species 1.
Figure 2 alone does not allow us to say how the

coexistence bandwidths for the A–M model compare
with those for more widely accepted coexistence
mechanisms. Here, we use the coexistence boundaries
for the standardized 2-resource MacArthur model as a
yardstick to compare the efficacy of coexistence by
resource partitioning to that produced by the A–M
mechanism. We ask, what level of resource partitioning
in a ‘‘comparable’’ MacArthur model yields the same
range of d2 (equivalently Nn

2 ) that allows coexistence in
the A–M system? The ‘‘comparable’’ MacArthur model
is one in which the other consumer species is equally
efficient. We therefore select a MacArthur system that is
characterized by the same equilibrium resource intake
requirement that characterizes the cycling consumer
species in the A–M model. The level of resource overlap
in the MacArthur system can be measured by Schoener’s
(1970) formula, here given by 2C: Thus, we seek the
value of 2C that generates the same bandwidth in the
MacArthur system, as does an equally efficient non-
linear consumer species in the A–M system. Table I
shows the range of Nn

2 ð¼ d2Þ that allows coexistence,
given several different efficiencies of the cycling con-
sumer in the A–M system. These ranges are paired with
the measure of resource overlap in the comparable
MacArthur system that is characterized by the same
range of Nn allowing coexistence. For example, in the
lower rightmost cell (b ¼ 10 and d1 ¼ 0:2d1stab), an
overlap of 0.2493 in the comparable MacArthur model
is required to allow species with as broad a range of
efficiencies to coexist as in the A–M model. This overlap
corresponds to a case in which the two species have
different preferred resources, and each consumes its
preferred resource at a per capita rate over seven times
greater than the rate at which it consumes the non-
preferred resource. More generally, Table I and other
numerical results show that, when b is large and
predators are efficient, the A–M mechanism produces
a coexistence bandwidth comparable to a high degree of
partitioning in a system that lacks the A–M mechanism.
The coexistence bandwidth of species 2, measured by the
range of d2 or Nn

2 ; often decreases as d1 decreases, but
the bandwidth in the corresponding MacArthur model
often decreases more rapidly with a decreasing per
capita death rate of the competitor.
The scaled parameter b equals ChK, which is the ratio

of total handling time to total search time for a
consumer individual (of species 1) when the resource is
at carrying capacity. More generally, 1=b may be
interpreted as the fraction of resource carrying capacity
at which the consumer functional response reaches half
saturation. The scarcity of measurements of functional
responses in natural or semi-natural conditions makes it
difficult to assess the biological probabilities of the
different values in Table I. However, there are measure-
ments in natural or semi-natural conditions with an
estimated b of 5 or greater (Abrams et al., 1990; Gross
et al., 1993; Messier, 1994; Eby et al., 1995; Ruesink,
1997). A small half-saturation value can result from
adaptive variation in foraging effort, given costs to
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searching for resources; it need not reflect long times to
subdue and ingest resources, nor imply that consumer
guts are usually full (Abrams, 1990).
The range of either d1 or Nn

1 that allows coexistence
can also be determined when species 2, the linear
consumer, has fixed values of its growth parameters.
These results will not be detailed here, but the same
general patterns emerge. A low half-saturation point of
the functional response of species 1 results in relatively
large coexistence bandwidths. Our general conclusion is
that the A–M mechanism embodied in model (1) permits
coexistence of species with a wide range of efficiencies
of resource use, provided that the consumer species
differ sufficiently in the shapes of their functional
responses.

ROBUSTNESS OF TWO-SPECIES
COEXISTENCE DUE TO RELATIVE
NONLINEARITY

Equations (1) describe a highly specific, simplified
representation of a consumer–resource system. It is
important to confirm that special properties of this
particular model are not responsible for the relatively
wide range of parameter values that permit species to
coexist via the A–M mechanism. This section assesses
the contribution of the A–M mechanism to the
coexistence of two species in a variety of related models.
One concern is that unstable consumer–resource

systems with a logistic resource and a consumer with a
type-2 functional response with a low half-saturation
point (high b) have very high-amplitude oscillations.
Cycle amplitude grows very rapidly as Nn decreases
below the stability threshold, and minimum resource
densities quickly become many orders of magnitude less
than resource carrying capacity. Persistence of species
undergoing such extreme cycles is probably not biolo-
gically reasonable (Gilpin, 1975). It is useful to assess if
our results are substantially altered by factors prevent-
ing low minimum resource densities. Two such factors
are resource immigration or type-3 functional responses.
These modifications of Eqs. (1) or (2) are considered
below.
Even if the cycle amplitude required for the A–M

mechanism is not extreme, other questions about
robustness remain. For instance, does the breadth of
conditions allowing coexistence under the A–M me-
chanism depend strongly on the assumption of exact
linearity of the functional response for the stable species,
or on the exact form of the response of the unstable
consumer species? Because the nature of density
dependence in the resource species has a major impact
on the nature of population cycles, the functional form
of resource density dependence represents another
factor that may affect coexistence. We consider all these
factors below.

I. Type-3 (sigmoid) functional response: First consider
an ‘‘unstable’’ species (species 1) with a type-3 functional
response. A flexible model for this response (Abrams
and Roth, 1994) is: CN2

gþNþChN2: When g is small, this
approaches a type-2 response, while a large g implies
that the response increases at an accelerating rate with N
over a broad range of N : The scaling of variables is
identical to Eqs. (2); this divides the parameter g by K;
yielding a shape parameter denoted Z: Thus, Eqs. (2) are
altered by substituting the following expression for the
functional response of species 1:

aN2

Zþ N þ bN 2
: ð4Þ

The change to a type-3 functional response affects both
equilibrium densities and stability. When Nn is less than
the inflection point of the functional response, the
system is stable, because the equilibrium occurs at a
resource density where the response is accelerating
(Murdoch and Oaten, 1975). However, if Z 	 1=b; the
response is accelerating only at very low resource levels.
Here, the behavior of the model away from very low Nn

is similar to that of the analogous model with a type-2
response, with the exception that minimum resource
densities in cycling systems are much higher than with
pure type-2 response. Generally, minimum resource
densities in the scaled model are on the order of Z:When
Z 
 1=b; instability occurs over at most a narrow range
of parameter values, and the two consumers are
correspondingly unlikely to coexist. When Z � 1=b;
the inflection point of the functional response occurs
near its half saturation point. In this case the range of
parameters yielding cycles is significantly reduced
relative to model (2), but there is still a nontrivial
range of values of the other parameters that yield cycles.
Table II recalculates the results in Table I for the case of
b ¼ 10; given two different values of Z; i.e., Z ¼ 0:01 ð¼
1=ð10bÞÞ; and Z ¼ 0:1 ð¼ 1=bÞ: It is clear that the type-3
response does reduce the coexistence potential of the
A–M mechanism. However, when b is large relative to
one, and Z is significantly less than 1=b; the A–M
mechanism produces a coexistence bandwidth equiva-
lent to a substantial degree of resource partitioning. For
most of the range of possible Nn values of the potentially
unstable consumer species, the range of Nn of its



TABLE II

Coexistence When the Unstable Species in an Armstrong–McGehee System Has a Type-3 Functional Response with a ¼ 1 and b ¼ 10 in Eq. (4)

(A) Results for Z ¼ 0:01

d1 0.025 0.0409 0.05 0.06545 0.07 0.08

Range of d2 ¼ Nn
2 0.06549 0.17568 0.22953 0.29427 0.29797 0.22673

Equivalent 0.65225 0.550892 0.571042 0.635424 0.64391 0.691514

overlap, 2C

(B) Results for Z ¼ 0:1
d1 0.04 0.05 0.05727 0.06545 0.07 0.08

Range of d2 ¼ Nn
2 0 0.07606 0.11224 0.13280 0.12887 0

Equivalent 1.0 0.849422 0.812742 0.788144 0.784326 1.0

overlap, 2C

Note: Calculations assume that the comparable MacArthur model has the same Nn implied by the value of d1:
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competitor allowing coexistence matches that of a
2-resource MacArthur system with overlap values
(Schoener’s (1970) formula) on the order of 0.6, when
Z ¼ 0:01:

2. Immigration of resources: A second way to prevent
extremely low resource densities in cycling consumer–
resource systems is to have a constant, small trickle of
resource into the system. This could reflect actual
immigration, or input from a physical refuge or from
an invulnerable age/size class. This modifies Eqs. (1) or
(2) by the addition of a constant term I to the expression
for dN=dt: This influences dynamics in ways similar to
those produced by the type-3 functional response; high
enough immigration eliminates cycling entirely, while
very low immigration has little effect on dynamics, aside
from bounding the resource away from very low
population densities. We again restrict attention to the
TABLE III

Coexistence with Prey Immigration Added to the Basic Armstrong–McGehe

(A) Results for I ¼ 0:025 ðb ¼ 10; ai ¼ 1Þ

d1 0.03 0.04 0.

Range of d2 ¼ Nn
2 0 0.07421 0.

Equivalent 1.0 0.76444 0.

overlap, 2C

(B) Results for I ¼ 0:0025 ðb ¼ 10; ai ¼ 1Þ
d1 0.02 0.03 0.04

Range of d2 ¼ Nn
2 0.07119 0.13821 0.20252

Equivalent 0.48013 0.44348 0.46110

overlap, 2C
case where the A–M mechanism generates robust
coexistence in Eqs. (2), (i.e., b ¼ 10), and examine two
immigration rates, equal to 10% and 1% of the
maximum resource growth rate (I ¼ 0:025 and 0.0025;
these rates are significant percentages of the equilibrium
resource growth rates for the parameter values analyzed
below). If scenarios equivalent to Table II are recalcu-
lated for this model with immigration, we obtain the
results in Table III. Immigration prevents cycles of
extreme amplitude, and thus reduces the range of
relative efficiencies of the two consumers that allow
coexistence. However, the A–M mechanism may still be
as robust a means of achieving coexistence as is a very
substantial degree of resource partitioning. When b ¼
10; the coexistence bandwidth matches that of resource
overlap values ranging from 0.44 to 0.76 in the examples
given in Table III.
e System (Immigration Rate I Added to Eq. (2c))

05 0.06 0.07 0.08

15481 0.21159 0.24048 0.18581

65819 0.68283 0.69414 0.72258

0.05 0.06 0.07 0.08

0.26267 0.31153 0.33185 0.26343

0.50453 0.57470 0.61326 0.63159



FIG. 3. Coexistence boundaries (maximum and minimum Nn
2 ) for a

range of values of the intake requirement of species 1 ðd1Þ for a model
like that in Fig. 2A, except that the stable species (2) has an

accelerating functional response of the form aN2:
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3. Type-2 functional responses with nonzero resource
handling times for both consumers: In general, if both
species have significant handling times, the range of
other parameters allowing coexistence is considerably
reduced. For example, reconsider the example from
Table IIIB with immigration at I ¼ 0:0025; b1 ¼ 10; a1
¼ a2 ¼ 1; and d1 ¼ 0:05; but assume that consumer 2
has a handling time, yielding, dP2=dt ¼ P2ða2N=ð1þ
b2N Þd2Þ: The range of Nn

2 that allows coexistence
decreases rapidly as b2 increases. The coexistence range
of Nn

2 is approximately 0.26 when b2 ¼ 0; 0.11 when
b2 ¼ 1; 0.05 when b2 ¼ 2; and 0.03 when b2 ¼ 3: Even
this last value of b2 represents a very different functional
response from that of species 1; the handling time differs
by a factor of 3.33, and the capture rate of resource at
carrying capacity by species 2 is 2.75 times larger than
that of species 1. Thus, it appears that very significant
differences in the functional response parameter are
needed to achieve coexistence by the A–M mechanism
over significant ranges of relative efficiencies when both
consumers have type-2 responses. (Hsu et al., 1978,
present additional results for this model.)

4. Accelerating functional responses of the stable
species: If handling time is sufficiently small relative to
resource carrying capacity, a type-3 response can be
approximated by a function that increases at an
accelerating rate over the relevant range of resource
densities. Such responses are predicted by models of
adaptive adjustment of foraging effort (Abrams, 1982,
1991). If the stable species (species 2) has such a
response, it benefits more from cycles than would a
species with a linear functional response, thus widening
the coexistence bandwidth under the A–M mechanism.
We investigated a system with Eqs. (2) modified so that
species 2 had a functional response of a2N2: This
response arises when foraging costs increase quadrati-
cally with time spent foraging, there is adaptive
adjustment of foraging time, and the functional
response while foraging is linear (Abrams, 1982). Figure
3 shows approximate ranges of Nn

2 values allowing
coexistence for a range of values of d1; given that a1 ¼
a2 ¼ 1; and b1 ¼ 10: For a large slice of the possible
range of d1; the bandwidth of Nn

2 giving coexistence
represents 40–50% of the possible range of Nn

2 in the
absence of competition from consumer 1. Because
neither species in this model has dynamics matching
the consumers in MacArthur’s model, detailed compar-
isons with coexistence bandwidths due to resource
partitioning cannot be presented without additional
analyses. However, comparison with Fig. 2 makes it
clear that, when the stable species has an accelerating
functional response, coexistence bandwidths are in-
creased compared to similar systems in which the stable
species has a linear functional response.

5. Other forms of resource density dependence: In the
theta-logistic model (Gilpin and Ayala, 1973), the
resource per capita growth rate is described by dN=dt ¼
rN ð1� ðN=KÞyÞ; where a larger y implies the effects of
density dependence are more concentrated at densities
near carrying capacity. The value of y has a modest
effect on the invasion conditions for the consumer with
a linear functional response, because mean resource
density in a cycling 1-consumer–1-resource model
increases with y: Thus, mutual invasion occurs over a
wider range of parameter values at large y: However,
unless the value of y is extreme, this effect on invasion is
moderate. Conditions for invasion of a resident linear
species by the nonlinear species are not affected by this
parameter. If we consider Eqs. (2) with P2 ¼ 0; theta-
logistic resource growth, and parameters a1 ¼ 1; b ¼
10; d1 ¼ 0:05; mean resource density in a cycling system
increases from 0.4004 when y=0.5 to 0.5194, when y ¼
4: These mean densities also represent the maximal
values of Nn

2 ð¼ d2=a2Þ that allow invasion of species 2.
Thus, the form of resource density dependence has only
a modest effect on the parameter ranges allowing
coexistence in the A–M mechanism.

6. The contribution of the numerical response of the
consumer species to coexistence via the A–M mechanism:
The A–M mechanism rests on the fact that mean
resource density in a system with the unstable consumer
exceeds its equilibrium density. This difference between
mean and equilibrium resource densities is amplified if
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the unstable consumer also has a numerical response
that increases at a decreasing rate with increasing
resource intake rate (Abrams and Roth, 1994). To
assess the impact of this effect, we calculated the
range of Nn

2 that allows coexistence when species
1 has a numerical response with the following form:
B1 � w1=ðf :r:Þ; where f.r. is the functional response, B1 is
the maximum per capita growth rate, and w1 determines
the rate of approach to maximal growth. At equili-
brium, the resource intake rate of species 1 is w1=B1;
equivalent to d1 in the linear numerical response model
illustrated in Fig. 2. Comparing the coexistence band-
widths shown in Fig. 4 with the corresponding ones in
FIG. 4. Coexistence boundaries (maximum and minimum Nn
2 ) for a

range of values of the resource intake requirement of species 1 ðw1=B1Þ
for a model like that illustrated in Fig. 2, except that the unstable

species (2) has a numerical response given by B1 � w1=ðf :r:Þ; where B1
and w1 are constants, and ‘‘f.r.’’ denotes the rate of resource intake.
Here B1 ¼ 1 and the x-axis gives the value of w1 (see text for a more
complete description). (A) assumes h ¼ 10; while (B) assumes h ¼ 2:5:
Fig. 2 shows that the nonlinear numerical response
leads to coexistence over a significantly wider range of
values of Nn

2 : In addition, this model produces a wide
coexistence bandwidth even when there is a moderate
value of the handling time (i.e., a moderate half-
saturation constant); compare Fig. 4B with Fig. 2C.
Nonlinearity in the numerical response of the stable

consumer also affects the coexistence bandwidth. Here,
an accelerating numerical response benefits the stable
species when there are resources cycles. An accelerating
numerical response can arise if the consumer has an
adaptive behavioral tradeoff based on an accelerating
relationship between its efficiency of conversion of
resource intake into offspring and its death rate. For
example, if the parameters B2 and D2 in Eq. (1b) are
functions of a behavioral trait, x; such that B2 ¼ z2x; and
D2 ¼ q02 þ q22x2; then the optimal x is z2C2N=ð2q22Þ:
The per capita growth rate of consumer 2 is then
ðz2C2N Þ2=ð2q22Þ � q02; and Nn

2 is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q22q02

p
=ðz2C2Þ: The

coexistence bandwidths for species 2 are significantly
greater than the comparable values on the bottom row
of Table I, which assumes a linear functional response
for species 2. The three overlap values (2C) on that row
of Table I shrink from 0.5174 to 0.418, when d1 ¼
0:8d1stab; from 0.3453 to 0.2328, when d1 ¼ 0:5d1stab; and
from 0.2493 to 0.1704, when d1 ¼ 0:2d1stab: The corre-
sponding bandwidths of Nn

2 for the accelerating numer-
ical response are 0.5495, 0.5164, and 0.1741. Thus, an
accelerating numerical response of the stable species
greatly expands the coexistence bandwidth.

MULTI-RESOURCE EXTENSIONS OF
THE ARMSTRONG–McGEHEE MODEL
WITH RESOURCE PARTITIONING AND
CYCLES

We have so far considered competition for a single
limiting resource. Resource partitioning and the Arm-
strong–McGehee mechanism are likely to operate
simultaneously in any system with more than one
resource, which includes the vast majority of natural
systems. However, there is no reason to expect that
combining mechanisms has a simple additive effect on
the range of resource requirements that allows coex-
istence. Thus, we briefly explore a model with two
resources and two consumers. The two consumers
potentially differ in their relative capture rates of the
two resources, and in addition, one of the consumer
species has a nonlinear functional response while the
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other has a linear response. The model has the following
form:

dP1
dt

¼ P1
B11C11N1 þ B12C12N2
1þ h11C11N1 þ h12C12N2

� D1

� �
;

dP2
dt

¼ P2ðB21C21N1 þ B22C22N2 � D2Þ;

dN1
dt

¼ I1 þ rN1 1�
N1
K

� �

�
C11N1P1

1þ h1C11N1 þ h12C12N2
� C21N1P2;

dN2
dt

¼ I2 þ rN2 1�
N2
K

� �

�
C12N2P1

1þ h1C11N1 þ h12C12N2
� C22N2P2: ð5a2dÞ

For simplicity, the two resources are assumed to have
identical growth parameters. To avoid cases where a
resource should be avoided under energy maximizing
foraging rules, both resources are given identical
handling times, and energy contents for consumer 1
ðh11 ¼ h12 ¼ h;B11 ¼ B12 ¼ B). Resource immigration
(at rates Ii) is included to prevent unrealistically low
densities. We assess the contribution of the A–M
mechanism to coexistence bandwidth by comparing
the bandwidth for Eqs. (5), given nonzero h; to the same
system with h ¼ 0: In the latter case, Eqs. (5) reduce to
the MacArthur model, and only resource partitioning
contributes to coexistence. This comparison was made
for a range of consumer efficiencies at two different
levels of resource partitioning.
As in the 2-resource MacArthur system, we assume

that, for each consumer species, Ci1 þ Ci2 ¼ 1; that r ¼ 1
and K ¼ 1; and that the two consumers have opposite
resource consumption specializations (i.e., C11 ¼ C22
and C12 ¼ C21). These assumptions make D2 in Eq. (5b)
equivalent to either di in Eqs. (2). For the numerical
results presented here, we assume that the handling time
of prey for consumer 1 is h ¼ 10: This corresponds to
b ¼ 10 in the single-resource model. The stability of the
subsystem that lacks consumer species 2 depends in a
rather complicated manner on the consumer’s resource
requirement and the level of partitioning. In general,
values of C relatively close to (but still significantly
different from) 0 or 1 favor stability. It is also common
for there to be two unconnected ranges of the resource
requirement, D; that produce limit cycles in systems with
a single consumer species. We therefore present results
for cases with relatively low ðC ¼ 0:4Þ and high ðC ¼
0:25Þ levels of resource partitioning. When h ¼ 0;
Eqs. (5) reduce to the two-resource MacArthur model.
The coexistence bandwidths for h ¼ 0 and 10 are shown
in Fig. 5. In each panel, the lower of the two solid lines
gives the upper bound of Nn

2 when h ¼ 0 (i.e., no
contribution from the A–M mechanism); the upper of
the two solid lines gives the upper bound of Nn

2 when
h ¼ 10: The dashed line gives the lower bound of Nn

2 that
allows species 1 to persist; this is independent of h: This
figure suggests that the A–M mechanism contributes
relatively little towards expanding the coexistence
bandwidth when partitioning is high (Fig. 5A), but
does contribute significantly when partitioning is low
and there are cycles (i.e., Fig. 5B for low Nn

1 ).
There are two reasons why the A–M mechanism

makes a more limited contribution to coexistence with
high partitioning. First, the system is stable for a large
fraction of the total range of Nn; precluding operation of
the A–M mechanism. When parameters produce limit
cycles, the difference in the consumption rates of the two
resources greatly reduces the amplitude of the oscilla-
tions produced by the potentially unstable consumer
species. Low consumption rates of alternative resources
have been shown to stabilize predator–prey interactions
in related models (McCann et al., 1998). A second
constraint on the contribution of the A–M mechanism
towards coexistence is that, when the coexistence
bandwidth is large simply due to partitioning, the
maximum potential increase in bandwidth is limited.
With less pronounced partitioning (Fig. 5B), single
consumer systems with consumer 1 are unstable over
much of the possible range of D1: Here, the A–M
mechanism contributes more to the coexistence band-
width than does partitioning, over almost the entire
range of Nn

1 that produce cycles. Because of the
differential contribution of cycling to coexistence
depending on the level of partitioning, coexistence
bandwidth is much less sensitive to the degree of
partitioning than in the 2-resource MacArthur model.

DISCUSSION

The Armstrong–McGehee mechanism represents a
robust scenario for achieving coexistence of pairs of
species, provided: (1) one competitor produces large-
amplitude fluctuations in resources; (2) the functional
and/or numerical responses of the unstable species
saturate rapidly with increasing resources; (3) the
functional and numerical responses of the stable



FIG. 5. The coexistence boundaries (maximum and minimum Nn
2 )

for a range of Nn
1 in models with resource partitioning based on

different relative consumption rates of two resources (Eq. (5)). In (A),

the consumption rates are C11 ¼ C22 ¼ 0:25 and C12 ¼ C21 ¼ 0:75: The
dashed line gives the lowest Nn

2 that allows persistence of consumer

species 1. The two solid lines give the greatest Nn
2 that allows

persistence of consumer 2; the higher of the two (sometimes

overlapping) lines corresponds to a case where consumer 1 has a

handling time of 10; the lower line assumes that consumer 1 has a zero

handling time. In (B), the consumption rates are C11 ¼ C22 ¼ 0:4 and
C12 ¼ C21 ¼ 0:6:
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consumer species are linear or accelerating. Thus, the
key question about the potential importance of this
mechanism is the plausibility of the joint occurrence of
these three requisites. Biologists have disagreed about
the rarity of large-amplitude cycles, but there are now
numerous examples of large-amplitude cycles (Ellner
and Turchin, 1995; Kendall et al., 1998). The half-
saturation point of functional responses has usually
been measured in the laboratory, where parameter
estimates may differ greatly from those in nature. Given
the paucity of field estimates of functional responses, it
is difficult to judge the likelihood of satisfying the
second and third of the above requirements (Abrams
and Ginzburg, 2000). Several studies of functional
responses have measured half-saturation densities
roughly an order of magnitude less than the resource
carrying capacity (e.g. Abrams et al., 1990; Gross et al.,
1993; Messier, 1994; Eby et al., 1995; Ruesink, 1997).
Theory suggests that small differences in the shapes of
functions describing the costs and benefits of foraging
can lead to large differences in functional response
shapes of adaptive consumers (Abrams, 1982, 1993).
Adaptive adjustment of foraging time or effort can lead
to both increasing and decreasing relationships between
effort and food availability, in both models and
experiments (Abrams, 1991). Increasing food–effort
relationships produce accelerating (type-3) responses;
decreasing food–effort relationships imply decelerating
responses. Numerical responses are seldom measured,
but there is no reason to believe they are usually linear,
and Getz (1993) argues for the prevalence of nonlinear
relationships.
Large differences in functional response shape are

also most likely to occur when the two species differ
significantly in feeding morphology or physiology. This
seems most probable when competing species are
taxonomically distant. Competition between distantly
related species has been documented repeatedly (Hoch-
berg and Lawton, 1990), but has received less experi-
mental attention than has competition between closely
related species; even fewer attempts have been made to
develop or parameterize models for competition speci-
fically tailored to such systems.
We suggest that in the light of our results, it is

plausible that the A–M mechanism could operate in a
variety of biological communities. The first steps in
looking for this mechanism are to identify systems with
cycles, to show that consumer–resource interactions are
the cause of the cycles, and to identify potentially
competing species in these cycling systems. It is then
important to determine whether the functional or
numerical responses of the species are such that cycles
confer differential benefits to the species with greater
resource requirements. Suggestive evidence of the
mechanism may be obtained from responses of popula-
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tion densities to environmental parameters, which are
considered in Abrams et al. (under review).
The A–M mechanism requires that the resource cycles

be generated by the most efficient consumer. It is known
that coexistence of two or more consumer species is also
possible in systems with one resource that fluctuates in
density due to external environmental drivers (e.g.,
Stewart and Levin, 1973; Armstrong and McGehee,
1976b; Nisbet et al., 1997). However, the range of
parameters permitting such coexistence appears to be
restrictive even in the two-species case, unless species
have time-dependent (Abrams, 1984), as well as
resource-dependent, functional responses. This is why
it is difficult to achieve coexistence of three or more
species in the models with endogenous cycles considered
here. The cycles are generated by the most efficient
species, whose dynamics are relatively unaffected by the
presence of the other species. Thus, for those species, the
cycles in effect are generated by exogenous environ-
mental factors, and so it is difficult for two or more
subordinate competitors to coexist. Although in theory
any number of species may coexist on a cycling biotic
resource (Zicarelli, 1975), numerical results for the
models considered here suggest that differences in
functional response shape alone are unlikely to allow
coexistence of more than three species.
Nevertheless, the difficulty of achieving coexistence of

three or more species on a single resource need not imply
that the A–M mechanism is a minor influence on species
diversity. We suspect that overlaying the A–M mechan-
ism with other mechanisms reflecting environment
variation (e.g., the storage effect) may at times greatly
facilitate species coexistence. For instance, the environ-
ment may consist of a variety of habitat patches in
which different species pairs coexist. This form of
spatially variable two-species coexistence has been used
by Tilman (1982,1986) and Leibold (1996) to explain
species diversity gradients in multi-species communities.
There are limitations on the ability of such spatial
variation to explain regional coexistence of very high
global diversity (Abrams, 1988, 1995). Nevertheless,
spatial variation in the identity of the dominant
species pairs can certainly increase the role of the
A–M mechanism in maintaining global diversity.
Immigration can maintain significant densities of many
species locally, even when only two would persist in an
isolated population. These points suggest that more
study of the implications of consumer–resource cycles
for species coexistence in metapopulations should be
worthwhile.
If it operates frequently, the A–M mechanism is likely

to influence patterns of species richness as a function of
environmental factors (e.g., along gradients). There is
still uncertainty about how often it does so. The
instability required for the mechanism to work is less
likely to occur if density-independent mortality is high
or resource carrying capacity is low. Thus, if the
mechanism is moderately common, species richness
may be lowered by high chronic mortality or low
resource availability, because these conditions preclude
unstable consumer–resource dynamics. Consumption by
higher-order predators can also, in some circumstances,
prevent unstable consumer–resource dynamics. If such
predators are more likely to occur when underlying
resource carrying capacities are high, or chronic con-
sumer mortality is low, then gradients of diversity with
these factors may have a variety of forms. In any event,
studies of species diversity along gradients may help
provide insights into the operation of the mechanism.
The increasing knowledge of population fluctuations in
a wide range of systems (Inchausti and Halley, 2001)
argues that it is time for ecologists to seriously
reconsider the potential importance of the Armstrong–
McGehee mechanism for the coexistence of competing
consumer species.

APPENDIX 1. MACARTHUR’S
CONSUMER–RESOURCE MODEL

MacArthur’s (1970, 1972) model has the following
form:

dPi
dt

¼ Pi
X
j

BijCijNj � Di

 !
;

dNj

dt
¼ rjNj 1�

Nj

Kj

� �� �
�
X
i

CijPiNj; ðA1a; bÞ

where each consumer species i; with population density
Pi; has a per capita consumption rate Cij of resource
species j; with density Nj: The conversion efficiency of
food into offspring is Bij for consumer i and resource j;
and the per capita resource requirement is Di: The
resources grow logistically with intrinsic growth rates r
and carrying capacity K: Conditions for coexistence in
this model were first discussed by MacArthur (1970),
and a corrected analysis of the 2-consumer–2-resource
version has recently appeared (Abrams, 1998). In the
example considered here, both resources are assumed to
have identical growth parameters, which allows the
resource intrinsic growth rates and carrying capacities, r
and K; to be scaled to one. The resources are assumed to
be equally rewarding to the consumer, which allows all
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Bij to be scaled to 1. It is assumed that the total per
capita consumption rate is the same for both consumers;
i.e., for a given consumer species i;Ci1 þ Ci2 ¼ Cm: The
consumers are assumed to have identical levels of
specialization on a different resource; C11 ¼ C22 ¼ CCm

and C12 ¼ C21 ¼ ð1� CÞCm: This symmetry allows Cm to
be scaled to 1, and leads to the following set of four
equations, that was used to generate Fig. 1:

dP1
dt

¼ P1ðCN1 þ ð1� CÞN2 � d1Þ;

dP2
dt

¼ P2ðð1� CÞN1 þ CN2 � d2Þ;

dN1
dt

¼ N1ð1� N1Þ � CN1P1 � ð1� CÞN1P2;

dN2
dt

¼ N2ð1� N2Þ � CN2P2 � ð1� CÞN2P1: ðA2a2dÞ

Three parameters determine coexistence; the scaled
death rates d1 and d2; and the resource partitioning
parameter C: In terms of the original parameters, di ¼
Di=ðBCmKÞ:
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