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Abstract

Ecological communities are typically open to the immigration and emigration of individuals, and also variable through time. In
this paper we argue that interesting and potentially important effects arise when one splices together spatial fluxes and temporal
variability. The particular system we examine is a sink habitat, where a species faces deterministic extinction but is rescued by
recurrent immigration. We have shown, using a simple extension of the canonical exponential growth model in a time-varying
environment, that variation “inflates” the average abundance of sink populations. We can analytically quantify the magnitude of
this effect in several special cases (square-wave temporal variation and Gaussian stochastic variation). The inflationary effect can be
large in “intermittent” sinks (where there are periods with positive growth), and when temporal variation is strongly autocorrelated.
The effect appears to be robust to incorporation of demographic stochasticity (due to discrete birth—death—immigration processes),
and to direct density dependence. With discrete generations, however, one can observe a wide range of effects of temporal variation,
including depression as well as inflation. We argue that the inflationary effect of temporal variation in sink habitats can have
important implications for community structure, because it can increase the average abundance (and hence local impacts) of species
that on average are being excluded from a local community. We illustrate the latter effect using a familiar model of exploitative
competition for a single limiting resource. We demonstrate that temporal variation can reverse local competitive dominance, even to
the extent of allowing an inferior competitor maintained by immigration to exclude a competing species that would be locally
superior in a constant environment.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction consequences ramifying through many levels of ecolo-

gical organization. For a single species occupying an

Most experimental and observational studies in
ecology are conducted at relatively modest spatial and
temporal scales (Kareiva and Andersen, 1988). Yet
ecologists are becoming increasingly aware that the
structure and dynamics of local populations and
communities may reflect processes operating at large
spatial scales over long periods of time (e.g. Cornell and
Lawton, 1992; Karlson and Cornell, 2002; Ricklefs and
Schluter, 1993). From a mechanistic perspective, local
communities are coupled to broader landscapes via
fluxes of individuals and materials. In many circum-
stances, such fluxes can be strong and asymmetrical
(Polis et al., 1997; Power and Rainey, 2000), with
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array of heterogeneous patches, flows of individuals
from high-quality habitats can sustain populations in
low-quality habitats, creating a “‘source-sink’ popula-
tion structure (Holt, 1985; Pulliam, 1988; Pulliam and
Danielson, 1991; Brawn and Robinson, 1996; Ritchie,
1997; With and King, 2001). At the community level,
such flows permit species sustained in one habitat to
persist locally in other habitats, despite a trend towards
exclusion from resident species due to negative interac-
tions such as competition and predation. This “mass
effect” can enrich local assemblages in heterogeneous
landscapes (Shmida and Wilson, 1985) or stabilize
complex communities (Huxel and McCann, 1998). At
the level of entire ecosystems, system openness has
profound consequences for ecosystem functioning and
the relationship of biodiversity to ecosystem processes
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(Gonzalez and Chaneton, 2002; Holt and Loreau, 2002;
Polis et al., in press).

These spatial fluxes are not constant through time,
nor do they occur in a world that is otherwise fixed.
Ecologists have long recognized the potential impor-
tance of temporal variation in the maintenance of
species diversity (Chesson and Huntly, 1993). Despite
an appreciation of the significance of spatial hetero-
geneity for species coexistence (e.g., Brown, 2000), there
has been remarkably little attention given to the
consequences of overlaying spatial fluxes and temporal
variability (but see Chesson, 2000). In this paper, we use
several simple models to argue that the impact of spatial
fluxes on local populations and communities can at
times be greatly magnified by temporal variation in the
local environment. As we shall see, temporal variation
can substantially enhance the ‘“mass effect.” This
consequence of temporal variation can in turn constrain
species richness, by making it more difficult for species
specialized to particular habitats to persist in the face of
immigration by other species.

The most important factors of the environment for
many species are often the abundances and activity
levels of other species. Variation in abundance (which is
the norm, not the exception in natural systems (Strong,
1986; Pimm and Redfearn, 1988; Ives, 1995; Inchausti
and Halley, 2001)) can arise from direct forcing of the
physical environment (Andrewartha and Birch, 1954;
Lawton, 1995; Hawkins and Holyoak, 1998; Sagarin
et al., 1999), from intrinsic sources of instability, or from
the interplay of extrinsic forces and nonlinear popula-
tion responses (e.g., Kaitala et al., 1997; Dixon et al.,
1999; Blarer and Doebeli, 1999; Pascual et al., 2000).
In multispecies food webs, temporal variation in
the strength of interaction between any given pair of
species can be generated by fluctuations in the abun-
dances of other community members (Berlow, 1999) or
changes in the magnitude of per capita effects (Witman
and Grange, 1998; Post et al., 1999; Sanford, 1999)
including adaptive responses to a variable environment
(Abrams, 1997) and changes in community composition
(Bengtsson et al., 1997).

One aspect of temporal variation that may be
particularly significant for ecological dynamics is its
autocorrelation structure. Fluctuations of many physi-
cal variables (e.g., rainfall) are positively autocorrelated
(Steele, 1985; Schoener, 1985; Wigley et al., 1998), as are
fluctuations of both natural populations (Arino and
Pimm, 1995; Halley, 1996; Gillman and Dodd, 1998;
Inchausti and Halley, 2001) and populations in labora-
tory microcosms (Petchey, 2000). Although there are
a considerable number of theoretical studies of the
impact of such autocorrelation on different aspects of
population and community dynamics (e.g., Kaitala et al.,
1997; Petchey et al., 1997; Ripa and Lundberg, 1996;
Ripa et al., 1998), little attention has been given to

the consequences of the interplay of autocorrelated
temporal variability and spatial heterogeneity.

We start by examining the dynamics of a sink
population, maintained by recurrent immigration from
a source habitat. After presenting an argument suggest-
ing that temporal variation in local growth rates tends to
increase the average abundance of sink populations, we
examine in detail a special case that permits a closed-
form analytic solution (square-wave variation). We
show that the “inflationary” impact of temporal
variation on abundance in a sink habitat in this special
case is robust to the incorporation of demographic
stochasticity. We then examine a model with stochastic,
autocorrelated variation in growth rates, with and
without density dependence. Density dependence in
the sink reduces, but does not eliminate, the predicted
effect. For populations with discrete generations, we
suggest that a wide range of outcomes is possible,
including depressed as well as elevated average sink
abundances. One potentially important implication of
these effects of temporal variation is on community
structure, if sink populations interact with other species.
We show that temporal variation in an open community
can alter competitive dominance, typically in favor of
immigrant species. The particular model we examine is a
classic model of exploitative competition for a single
limiting resource, occurring within a habitat patch in
which a competitively inferior species is maintained by
immigration from an external source.

2. Sink population dynamics

Consider a population in a sink habitat sustained by
immigration, in the absence of which the population is
expected to go extinct due to deterministic forces. Such
extinction could occur because a species is maladapted
to the local environment, or because of exclusion due to
resident competitors and predators. We assume the
population has continuous, overlapping generations.
We will briefly discuss an analogous discrete generation
system below, which gives different results in some
cases. A general model for the continuous-time popula-
tion is
d

'N
CE =N +1(0) (1)

Here, N is population density, f(¢) the local per capita
growth rate at time ¢, and 7(¢) the immigration rate at
time ¢. In general, the growth rate f(¢) can vary through
time as a function of both abiotic and biotic factors
(e.g., predator abundance). We have elsewhere sketched
an argument (Gonzalez and Holt, 2002) that such
variation can increase the average abundance of a sink
population. After presenting the basic idea, we examine
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in detail the magnitude of the effect for several
illuminating special cases.

Model (1) is an inhomogeneous differential equation,
in which temporal variation is treated as a deterministic
process. Richard Levins (1979) championed the use of
time-averaging to explore the influence of deterministic
patterns of temporal variation on ecological systems.
Over a given time 7 the time-average of a variable X (¢)
is defined to be

<X>:</OTX(Z)dt>/T. (2)

If X(z) is cyclic, we take T to be the period; in an
aperiodic (but bounded) environment, we let 7 be
indefinitely large. Given a positive N bounded away
from zero, and T large, then to a good approximation
{dN/dty =0,and {(dN/dt)/N) = 0. For a species to
be sustained in a community without immigration, when
that species is rare, its time-averaged growth rate should
be positive. A sink environment for a species is thus one
where its long-term average growth rate is negative in
the absence of immigration.

For now, we fix immigration at a constant level, so
temporal variation is expressed solely in local growth
rates. We also assume that there is no direct density
dependence, and let f(r) = r(¢) so that model (1) becomes

ci{_]j =r(t)N+1. (3)
If I =0, model (3) implies N(7') = N(0) exp(<{r>T),
where <{r) is the average rate of population growth. If
{ry<0, then N asymptotically approaches 0. In a
constant environment with 7 >0 and r(¢) = r<0, popula-
tion size equilibrates at N* = I/|r|, where |r| denotes the
absolute value of r. Thus, a sink can harbor an abundant
population of a species, even if that species is being
excluded from that habitat by abiotic conditions or
resident competitors or predators—provided the rate of
exclusion from the local environment is low, and/or
immigration is high (Holt, 1993; Pulliam, 1988).

Now contrast a variable environment with a similar,
but constant, environment with the same average rate
of population decline. Applying time-averaging to
model (3), with both sides divided by N, leads
to ((dN/dt)/N) =0=<r) +I{1/N). This implies
Ny = ({1/NY)' =1/|<{r>| = N*. Here, N* is the
equilibrial density expected in a constant environment
with a growth rate fixed at {r), and N}, is the harmonic
mean abundance of the sink population in the variable
environment (with the same arithmetic mean growth
rate). The harmonic mean population size in the variable
sink thus equals the equilibrium population size N*
expected in a constant environment with the same
average rate of decline. But the arithmetic mean always
exceeds the harmonic mean (for sets of nonidentical
positive numbers), so N*<{N ).

Thus, temporal variation in the environment leading
to variability in local growth rates inflates the mean
abundance of a sink population, compared to the
abundance expected in a constant environment with
the same average rate of population decline. A micro-
cosm experiment with the protozoan Paramecium
tetraurelia (Gonzalez and Holt, 2002) has demonstrated
this predicted effect of temporal variation.

The above argument is qualitative. To quantify the
magnitude of the “inflationary” effect we must make
more detailed assumptions about the temporal pattern
of variation. For example, assume all growth rates are
negative and the rate of change in the environment is
sufficiently slow so that the population to a good
approximation tracks its moving equilibrium, implying
N(t) = I/|r(t)|. Because the rate of population decline is
in the denominator of this expression, in populations
sustained by immigration there is an emergent nonlinear
relationship between realized population size and local
growth rates (even though the growth model (3) is
linear). Hence, by Jensen’s inequality (Hardy et al.,
1952) we can infer that variation in r increases the
average value of N. After Taylor expanding I/|r(¢)| and
dropping all but the first two terms, we find that the
fractional increase in mean abundance due to the
inflationary effect is proportional to 02/<r>2. Thus,
the inflationary effect should be strongest in sink
habitats where the focal species is only weakly excluded
(i.e., where {r) is near zero).

This approximation breaks down if the population
does not track its equilibrium (fast environmental
variation), or if there are times of positive growth.
There are two general, plausible scenarios for temporal
variation in a sink environment. If the average growth
rate is strongly negative, and the range of variation is
moderate, the habitat is always a sink (i.e., the habitat is
a “persistent sink’’). But for the same magnitude of
variation, if the average rate of decline is sufficiently
near zero, there are likely to be periods with a positive
growth rate (i.e., the habitat is an “intermittent sink™).
The quantitative examples explored below show that
these transient periods of positive growth, if sustained,
have a disproportionate effect upon the long-term
average abundance of a sink population.

2.1. Example I: a single-species model with square-wave
temporal variation

In Appendix A, we give the general form for the
solution of Eq.(3). This general solution includes
integrals that cannot in general be given in simple,
closed form. One specific form of temporal variation
which does permit a closed-form solution is to assume
that immigration from the source is constant (I(z) = I),
and that temporal variation in the intrinsic rate of
growth follows a square wave of period 27T, with regular
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shifts in r(z) between two exponential growth rates, r;
and r,, with each phase lasting 7" time units. Because the
habitat is a sink, we assume r,, = (r; +r2)/2<0. We
assume r; >r;.

As shown in Appendix A, the long-term average
population size of a sink population experiencing
square-wave variation in its intrinsic growth rate is
given by

1
_27‘17'2

(ry — r2)2(1 — e T(1 — T

- : )

ryrn T(l — e<’l+’2)T)

—r =

(ND

There are three parameters that define temporal
variation in this sink environment: the growth rate
during good times, the growth rate during bad times,
and the length of the period. Equivalently, the environ-
ment is characterized by the average growth rate over a
complete cycle (r,), the difference between good and
bad years (the wvariability of the environment,
ry — rp = 2Ar), and the period of the cycle (see Fig. 1).
With this pattern of environmental variation, equilibrial
population dynamics in the sink shows a rhythmic

Intermittent sink
r
t |=T7—
0
- t
lav =T~~~ ____1_\______
Ar
@
. Persistent sink
0
- t
r —
(b)
Fig. 1. Plots of square wave r(f) for an intermittent sink and a

persistent sink. The square wave pattern of environmental variation is
defined by average growth rate (r,,), range in growth rate (2Ar) and
period (27).

pattern of growth, followed by exponential decline
(Fig. 2).

Using expression (4), in Figs. 3-5, we portray how
average abundance depends upon the average growth
rate and the magnitude and temporal pattern of
variation in the sink. In the example shown in Fig. 3
(corresponding to the pattern of variation shown in Fig.
1b), the intrinsic growth rate is negative in both good
and bad years. An increase in the period (i.e., the length
of runs of good and bad years) does increase average
population size over the cycle, but only to a modest
extent.

By contrast, consider now the examples shown in
Figs. 4 and 5 (matching the variation in an intermittent
sink shown in Fig. 1la). Here, in each case, the
parameters are chosen such that in a closed environ-
ment, the species goes extinct (i.e., its average growth
rate is negative). But in an open environment, the
species is maintained locally because of immigration,
and during runs of good years it enjoys a positive
growth rate. During runs of bad years, the population
asymptotically approaches an abundance of /|r|. This
defines a “floor” of abundance, from which the
population can then rebound when conditions improve.
The effect of temporal variation is to increase <N ),
sometimes dramatically. The effect increases with
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Fig. 2. Time plots of a sink population with square wave variation in
growth rate and constant immigration. The growth model is dN /dt =
r(6)N + 1, with I =2 and T = 20. For (a), r,y = —0.3 and Ar=10.2
(persistent sink) while for (b), r,, = —0.1 and Ar = 0.2 (intermittent
sink).
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Fig. 3. Average population as a function of half-period T for
persistent sink. Model and parameters as in Fig. 2a.
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Fig. 4. Average population size as a function of half-period T for an

intermittent sink, for different average growth rates (constant Ar = 0.2
and 7 = 2), same model as Fig. 2.
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Fig. 5. Average population size as a function of half-period T for an
intermittent sink, for different ranges of environmental variation Ar
(average growth rate = —0.05 and I = 2), for the system of Fig. 2. The
circles are from a numerical solution for the equivalent discrete
population model with Poisson processes for births, deaths and
immigrants, with birth rate and immigration rate constant and death
rate a square wave. For this discrete model of demographic
stochasticity, the immigration rate is 2, the birth rate is 0.2 and the
death rate has an average of 0.25 and Ad of 0.2, 0.1 and 0.06 from left
to right (see Appendix B).

increasing period, because the population can exponen-
tially spike to higher abundances during long runs of
good years. Moreover, this inflationary effect of
temporal variation in the sink is larger, the milder the
sink is on average (i.e., the closer the average rate of
decline is to zero, see Fig. 4). The reason is that a lower
rate of decline sustains a population at a higher floor,
which in turn permits it to then achieve higher
abundances during good years (a higher r,, also implies
a higher growth rate in good years, for the same Ar).
Finally, for a given average rate of decline, the
inflationary effect is larger when the amplitude of
variation in growth is greater (see Fig. 5), again because
the benefit of exponential growth in good years out-
weighs the cost of exponential decline in bad years.

The model thus illustrates three different aspects of
sink environments which must be considered to under-
stand population dynamics: (1) the “‘severity” of the
sink environment (measured by {(r) =ry), (2) the
“intermittency’” of the sink condition (i.e., are there
periods of positive growth?), and (3) the length of
“runs” of good and bad years (in this case, measured
by 7). The inflationary effect of temporal variation
should be particularly marked in mild, intermittent sinks
with long runs of good years.

2.2. Example II: a single-species model incorporating
demographic stochasticity

Model (3) assumes that population abundance is
sufficiently large to be treated as a continuous variable.
This assumption may not be reasonable in a temporally
varying sink environment, where it is possible for
populations to reach low absolute abundances. We have
carried out numerical studies of a model analogous to (3),
in which discrete individuals give birth, die, and
immigrate, and there is square-wave variation in per
capita death rates. This model is an extension of a classic
individual birth-death-immigration model (Bartlett,
1960; Renshaw, 1991). The details of our simulation
protocol are described in Appendix B. The dots in Fig. 5
describe the long-term average abundance of sink
populations with demographic stochasticity experiencing
square-wave variation in per capita death rates. As can be
seen, the analytic results for model (3) assuming a
continuously varying population and square-wave varia-
tion in r(z) match quite well the outcome of these
individual-based simulations. The prediction of an infla-
tionary effect of temporal variation on sink abundance
thus appears both qualitatively and quantitatively robust
to demographic stochasticity, at least in this example.

2.3. Example III: stochastic variation in r

Square-wave deterministic variation is of course a
rather artificial pattern of temporal variation. As a step
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towards generality, consider now a system in which the
intrinsic growth rate is a normally distributed random
process, with a defined autocorrelation structure (see
Appendix C for details). Fig. 6 shows some typical
population trajectories generated by this process.
Basically, in an autocorrelated sink environment, one
observes a pattern of population fluctuations around a
low level maintained by immigration, punctuated by
sporadic outbreaks to high density. By inspection of the
example in Fig. 6, one can see that the effect of
environmental autocorrelation is to greatly increase the
magnitude of the peaks during runs of good years,
compared to the numerical troughs achieved during runs
of bad years (note that density is shown on a logarithmic
scale).

Fig. 7 shows an example of how average population
size (calculated over 10,000 time units in the simulation)
is inflated by autocorrelated temporal variation in r. In
such simulations, in general the long-term average
population size tends to increase if: (i) the average rate
of population decline is not far below zero, (ii) temporal
variation in r is high, and (iii) autocorrelation in growth
rates is large. Each of these increases the probability of
longer runs of positive growth rate. These results match
those described carlier for deterministic square-wave
variation.

As shown in Appendix C, in this model the average
population size achieves a finite value only if 7+
0’t.<0, where 7 is the mean (negative) growth rate,
o2 is the variance in the growth rate, and 7. is the
autocorrelation time constant. If this inequality is
violated, population outbreaks reach such an extreme
and so frequently that there is no longer a finite expected
value. If this inequality is satisfied, it can be shown that
{N) increases with increasing ¢> and 7. (results not
shown).

2.4. Example IV: a single species sink model with
density dependence

Hence, if variance in r is too large in this model of a
randomly varying sink population, then (N ) tends
towards infinity. Basically, mean abundance is unde-
fined, given the fat “tail” of abundances generated by
the random process. Although of mathematical interest,
in this limit the model surely loses biological plausibility,
basically because we have assumed no feedback between
local population growth rate and local population size.
The assumption of no direct density dependence in local
growth becomes dubious whenever populations can
outbreak to high densities, which is likely in strongly
autocorrelated environments.

Numerical studies show that direct density depen-
dence weakens, but does not eliminate, the inflationary
effect of temporal variation in the sink. Fig. 8 depicts
how average abundance varies with the magnitude

10000

1000
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[
8

=
o

680 690 700 710 720 730
Time, t

Fig. 6. Time plots for a sink population with random (Gaussian)
growth rate and constant immigration, and density dependence.
dN/dt = (r —dN)N + I, with I =1, d =0.0001, mean r = —1, stan-
dard deviation of r = 1.5, and autocorrelation time constant of r as
indicated in figure (see text for details).

Average density

Fig. 7. Average population series as a function of autocorrelation time
constant and growth rate standard deviation, for the system of Fig. 6
with 7 =1, mean r = —1 and d =0 (no density dependence). The
population is averaged over 10,000 time units. For points such that
6%t.>|F| = 1, the variance of the estimated average population was
very large and increased as the period over which the average was
calculated was increased. As shown in Appendix C, the theoretical
average for these points is infinite.

of wvariation and autocorrelation for a stochastic
model similar to the one explored in Appendix C,
except that now we assume the per capita population
growth rate at time ¢ to be f(¢) = r(t) — dN(t), where
r(f) is a time-varying per capita rate of density-
independent growth, and d is a measure of the strength
of direct density dependence in the sink environment.
If density dependence in the sink habitat is weak
(Fig. 8a), the inflationary effect is strong. If density
dependence instead is moderate (Fig. 8b), the infla-
tionary effect is reduced, but can be quite large in
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Fig. 8. Average density, comparable to Fig. 7 except including density
dependence. (a) d = 0.0001 (b) d =0.01 and (¢) d =0.1.

strongly autocorrelated variable environments. The
stronger is density dependence in the sink, the weaker
is the inflationary effect of temporal variation (Fig. 8c).

In general, there seems to be little known empirically
about the nature and magnitude of density dependence
in sink populations. The factor(s) causing exclusion may
or may not be related to the strength of density

dependence during outbreaks. Density dependence
may be strong when the sink habitat is particularly
bad. Or, there may be very weak direct density
dependence in the sink, as has been observed in some
well-studied sink populations, e.g., Keddy (1981, 1982).
In the next section, we examine a biologically plausible
model system in which the mechanism leading to both
sink conditions and density dependence in the sink arises
explicitly from a well-known mechanism—exploitative
competition for a limiting resource. The model illumi-
nates the potential role of the “inflationary” effect of
variation in sink populations as a factor constraining
community structure.

3. Competitive interactions in a sink environment

If temporal variation increases the abundance of a
given immigrant species in a sink environment, this can
enhance the impact of this species upon other, resident
species. Consider a system with two competing species in
a landscape with two distinct habitats. Species 1 is
superior at competing in habitat 1, and species 2 in
habitat 2. If each habitat is closed to movement, the
system should equilibrate in a state in which each species
respectively dominates the habitat in which it is super-
ior. But if movement occurs and is also strongly
asymmetrical (e.g., due to spatial variation in environ-
mental productivity or directional dispersal), a species
may be excluded even from a habitat in which it is
competitively superior, given sufficient inputs of an
inferior competitor.

To our knowledge, the first ecologists to recognize
this effect were Fenchel and Christensen (1977), who
examined a Lotka—Volterra model of direct competition
in a habitat patch in which one species occurred,
without immigration, and a second competing species
was augmented by recurrent immigration from an
external source. Fenchel and Christensen (1977) showed
theoretically that high rates of immigration could lead
to exclusion of the non-immigrating species, and
suggested that this scenario could explain some patterns
in the distribution of two species of marine snails in
Denmark. Recently, one of us (Holt, in press) has
examined the same scenario for a model of indirect,
exploitative competition for a single limiting resource.
Here, we first sketch this general model for exploitative
competition in a constant environment with asymme-
trical inputs by an inferior competitor, and then
demonstrate that temporal variation often increases
the likelihood that the immigrant inferior species
will supplant a locally superior, but non-immigrant,
competitor.

Consider the following model for two species compet-
ing for a single limiting resource, with no direct density
dependence in local growth rates (consumer density
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dependence is mediated via resource consumption):

% = Nl[gl(R) — ml] = N1f1<R)7
% = Nalga(R) — ma] + 1 = Ny fo(R) +1,
62—1;: G — Nig1(R) — N2g2(R). ()

For simplicity, this model assumes that abundances are
measured on scales such that each unit of resource
consumed translates into an equivalent number of
consumers born. The quantity g;(R) is the birth rate of
consumer i (i =1,2), which is a function of R, the
abundance of the limiting resource. Consumer i has a
density-independent rate of mortality (including emigra-
tion) of m;, and the net per capita growth rate of species
i is fi(R) = ¢;(R) —m;. Species 2 has an immigration
rate of I (individuals per unit time), and resource
renewal is given by G. In general, G varies with R. For
instance, G = rR(1 — R/K) describes a biotic resource
(logistic growth, with » and K, respectively, being the
resource intrinsic growth rate and carrying capacity),
and G=J —puR an abiotic resource (J measures
resource renewal, and u gauges resource loss). We use
the latter functional form for resource renewal in the
example of temporal variation presented below.

As is well-known (Tilman, 1982; Grover, 1997), in a
closed environment (viz., I = 0), if the system settles
into an equilibrium, one competitor will eliminate the
other, with the winner being that species which can
persist at the lower level of resource. Let R} denote the
resource level at which consumer species 7 has a birth
rate matching its death rate. The species with lower R}
wins in a closed environment, and the other competing
species should be eliminated. But if the competitively
inferior species (i.e., the one with higher R!) has its
numbers augmented by recurrent immigration, then it
will clearly persist. Moreover, if its immigration rate is
sufficiently high, the superior species can be locally
eliminated. The condition for this to occur is

92(R7)

(see Holt, in press for more details). This expression
implies that reversal of local competitive dominance
may occur given (i) weak competitive exclusion (the
quantity |f2(R})| measures the rate of exclusion of
species 2, when species 1 is at equilibrium with the
resource), (i) an unproductive local environment (i.e.,
low G), and (iii) a high immigration rate for the inferior
competitor. Basically, competitive reversal occurs when
immigration permits the inferior species to be present in
sufficiently high numbers to push resources to a level
below the required R* for the dominant competitor.

What is the effect of temporal variation upon this
reversal of local competitive dominance? A heuristic

argument suggests that variation should enhance the
impact of the immigrating species upon the resident,
superior species, making it more likely the latter will be
depressed in abundance, or even supplanted. In con-
sidering model (3), we saw that temporal variation tends
to increase average population size for a sink popula-
tion. A habitat in which a superior competitor resides,
and an inferior competitor persists only because of
immigration, defines a sink environment for the latter.
Our analyses of model (3) suggest that temporal
variation increases average abundance of a sink
population. Because each individual consumes re-
sources, the net impact of the immigrant species upon
the local resource pool should thus be enhanced in
variable environments. This should imply that less
resource should on average be available for the resident,
superior species, whose numbers should correspondingly
be depressed.

This heuristic argument ignores the effects of density-
dependent feedbacks between inflated abundance and
average growth for the immigrant species (which we
have seen reduces the expected magnitude of inflation,
see Fig. 8), and also does not tell us if the effect is
sufficiently strong to generate competitive reversal. To
explore competitive reversal in more detail, we have
numerically studied a special case of the above model, in
which each parameter is respectively allowed to vary
sinusoidally.

The special case of model (5) we consider is as follows:

% = N] [al(t)R - ml(t)]a
% = Nafas(1)R — ms ()] + 1(2),
% = J(1) — p(OR — [a1 ()N, + ax () N3] R. ()

Here, a; is the attack rate by consumer i upon the
resource, and the other parameters are as defined above.
The two consumers have linear functional and numer-
ical responses to the shared resource, and the resource is
assumed to be abiotic.

The several panels of Fig. 9 show examples of how
time-averaged consumer abundances vary as a function
of the magnitude of variation in each model parameter.
The parameters are chosen such that in the absence of
variation (but with immigration by the inferior species),
there is equal abundance for the two competing species.

Before considering these results, it is useful to
understand the consequences of temporal variation in
the absence of immigration. Without immigration,
temporal variation in most parameters in the model
does not permit coexistence or reverse competitive
dominance. The one exception is variation in a;. If
variation in the attack rate of the superior competitor is
sufficiently large, the inferior species can persist.
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Fig. 9. Average population of the two consumers in system with a resource and two consumers (the inferior of which has immigration), with one
parameter varying sinusoidally. dN;/dt = (a;R — m)Ny, dN»/dt = (xR — ma)N, + I, dR/dt =J — R(aiN\ + axN> + ). ay =a>» =0.1, m; =
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To see why this occurs, consider the following
argument. Assume that species 2 in model (7) is
competitively inferior in a constant environment, which
means it has a higher resource requirement, and that
I = 0. We will use an asterisk (¥) to indicate a parameter
value in a constant environment; for instance, m; will
denote the death rate of species i in a constant
environment. In such an environment, species i has a
required resource level of Rf = m /a’. The species with
lower R} wins (Tilman, 1982; Grover, 1997). Assume for
now that the attack rates are constant, but one or more
of the other parameters are time-varying. If species 1 is
present, then we can time-average its per-capita growth
rate, leading to a time-averaged resource abundance of
{(R>, = % If species 2 now attempts to invade, its
average per capita growth rate is a5{R) — (my),
which is positive only if (R, ><’:§>, or <Z1Tl> ><’(’g>.

But this in turn implies that species 2 is a superior
competitor for the resource, since were it present alone it
would push average resource to <{m ) /a;, which is a
level insufficient for species 1. Hence, if the variable
environment has the same average mortality rate as does
the constant environment, we see that variation in
mortality rates or resource renewal and loss rates (J and
u) does not by itself alter the outcome of exploitation
competition.

By contrast, temporal variation that affects the attack
rates of species 1 can facilitate invasion by species 2.
Assume that species 1 is alone, and that a; varies slowly,
so that to a reasonable approximation, R(f)~-2L. Now

. . a(r)
let species 2 attempt to invade. Its long-term1 average

growth rate is <{ax(t)R(t) —m}) ~ <ZT8 ymi —mj. If
species 2 has a constant attack rate, but species 1 a variable
attack rate, by Jensen’s inequality we see that species 2
enjoys elevated resource levels and so is more likely to
invade. Conversely, given our assumptions, species 1 can
invade when species 2 is present and at equilibrium.

If instead the inferior competitor alone experiences
variable attack rates, this does not permit coexistence or
competitive reversal. In this case, if species 1 is present,

)
_m

the resource equilibrates at a constant level of R} = .
1

The time-varying per capita growth rate of species 2,
when rare, is {a,(t)R} —m; ) = {az ) R} —mj. But this
is negative, because {(a,) = a3, and by assumption
R;>Rj. Finally, if the attack rates vary slowly and
synchronously, so that we can write «;(¢) = d';¢(1),
where g/ is a constant and ¢(z) is a time-varying function
shared by the two species, this variation disappears from
the expression for long-term growth rate; in this model,
shared temporal variation has no impact upon the
average rate of invasion of species 2, or on the reciprocal
ability of species | to invade when it is rare.

In short, without immigration, temporal variation in
most parameters of this model does not prevent

competitive exclusion, and it does not lead at all to
competitive reversals. (As an aside, we are unaware of
prior demonstration that variability in attack rates alone
can permit coexistence of exploitative competitors, if
such variability is differentially experienced by the
superior competitor. The effect arises even with the
simplest, linear functional response.)

By contrast, given immigration, temporal variation in
all of the parameters in the model influences the
competitive interaction, either shifting relative average
abundance or even reversing competitive dominance.
There are moreover qualitative differences in the impact
of temporal variation, depending upon which model
parameter is time-varying. In the example shown in the
various panels of Fig. 9, temporal variation can at times
increase the advantage of the locally superior species,
depressing the abundance of the immigrating inferior
competitor. This characterizes variation expressed via
the consumption rate of the inferior competitor on the
resource (a;) and the immigration rate of the inferior
competitor (/). But in other cases, temporal variation
reduces the abundance of the locally superior species.
This describes variation in the mortality rate of both
competitors (the m;), variation in the attack rate of the
superior competitor (a;), and variation in basal
productivity (either J or p).

Moreover, variation in the death rate of the inferior
competitor, or in basal productivity, can lead to the
exclusion of a superior competitor that would be
expected to persist in a constant environment. Synchro-
nous variation in species attack rates or death rates also
can shift competitive dominance (Fig. 10). None of these
effects arise in a system that is temporally varying but
closed to immigration.

This example illustrates that temporal variation in
open communities can have a variety of effects upon
competitive coexistence, depending upon which facet of
the system varies, and the magnitude of such variation.
The results described in the figure characterize impacts
of temporal variation upon average abundance. An-
other effect of temporal variation is to increase the
frequency of excursions to low densities, which makes it
more likely that a species not able to immigrate from an
external source pool will suffer extinction due to
demographic stochasticity. Fig. 11a shows an example
of trajectories generated with sinusoidal variation in
mortality of the inferior competitor, and Fig. 11b
describes how the average and minimal abundances of
the superior competitor shift with increased variation in
the mortality of the inferior competitor. Given that local
extinctions are likely to occur due to demographic
stochasticity when populations drop to very low levels,
even modest amounts of variation in mortality for the
immigrant, inferior species can tilt the competitive
interaction in its favor, permitting it to supplant a
locally superior but non-immigrating species.
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Fig. 11. Population trajectory for the model of Fig. 9, with a; =
1, a2 =0.5, m =1, my(average) =1,/ =05, J=2and p=1 and
f =0.01. (a) Time plots of the three species for an amplitude of m,
variation of 0.5. (b) Average and minimum values of the superior
competitor as a function of amplitude of variation of the death rate of
the inferior competitor.

4. Conclusions

There is growing evidence from a diverse range of
ecological systems that local population, community,
and ecosystem dynamics are profoundly altered by flows
of organisms and materials in space (Holt, 1993; Polis
et al., 1997; in press). Because of asymmetries in local
productivity or dispersal, such flows can lead to sink
populations, where species are maintained by immigra-
tion in habitats from which they tend to be excluded
(e.g., due to intolerance of abiotic conditions, or
competing species). Most environments are also variable
on various time-scales, due both to extrinsic forcing and
endogenous sources of instability. In this paper, we have
argued that temporal variation often enhances the time-
averaged abundance of sink populations—a phenomen-
on we have dubbed the “inflationary” effect of varia-
tion. Using time-averaging, a simple argument shows
that inflation is a generic feature of temporal variation
in sink habitats described by continuous-time models
without density dependence. To illustrate the effect
and explore it in greater detail, we have examined
several more specific models, both analytically and
numerically. These studies show that the inflationary
effect is particularly strong if sinks are (i) weak, so
that the average rate of decline is not far below zero,
(ii) intermittent, with some periods of positive growth,
and (iii) autocorrelated, leading to runs of good years.

This effect may be particularly relevant when one
considers that set of species in a regional species pool
which on average are excluded from local communities
by interspecific interactions such as competition and
predation. The strength of interspecific interactions by
residents upon an invading species typically scales with
the population sizes of resident species. Population
abundances are typically both variable and autocorre-
lated, and so the rate of exclusion should itself be
variable and autocorrelated. In general, species which
are weakly excluded from a local community may
nonetheless on average be common there, if they enjoy
recurrent immigration from an external source pool and
transient phases of positive growth due to environ-
mental fluctuations (with concomitant variation in the
abundances of resident community members).

Such species in turn can exert strong effects upon the
resident community. In this paper, we illustrated this
possibility with a model in which a species that is
inferior at competing for a shared resource is maintained
by immigration in a habitat patch containing a resident,
superior competitor. Generally (though not always),
temporal variation increases the abundance of the
inferior competitor, and decreases the abundance of
the superior competitor. The effect can be so pro-
nounced that the superior species is even driven to
extinction in the variable environment. In effect,
temporal variation magnifies the impact of regional
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processes, mediated via immigration, as determinants of
local community structure in guilds of competing
species.

With a one-population, discrete-generation model
analogous to model (3), positively autocorrelated
temporal variation in the growth rate generally leads
to inflation of the average abundance of N, as it did for
the continuous-time model. However, if the growth rate
is an uncorrelated random process, its variation has no
effect on the average population size. If successive values
of the growth rate are negatively correlated, the average
value of N can be depressed. To see these effects,
consider the discrete generation model N(f+1)=
N(f)R(¢) + I(¢). Taking expectations on both sides and
solving for the expected population size, we have
E(N)=[E(I) +cov(N,R)]/[l — E(R)], where E de-
notes expected value, and cov(N, R) is the covariance
of N and R. If N and R are statistically uncorrelated,
then the expected value of N is unchanged by temporal
variation in the sink. The sign of the covariance term
can in general be either positive or negative. Even in the
absence of density dependence, autocorrelation in R will
lead to a non-zero covariance term. A two-point cycle in
R, for instance, leads to a negative covariance between
N and R, and so lowers average population size. Density
dependence (which can be represented by expressing R
as a function jointly of density and a time-varying
environmental factor) can also influence the sign and
magnitude of the covariance term. For instance, if there
is positive density dependence in the sink habitat (e.g.,
an Allee effect at low densities), then even uncorrelated
temporal variation in environmental factors influencing
R can lead to a positive covariance term. We plan to
discuss discrete-time systems in more detail in a future
publication.

Over evolutionary time-scales, temporal variation is
believed to be a primary driver of the evolution of
elevated dispersal rates, compared to constant environ-
ments. This in turn increases the magnitude of spatial
fluxes, creating the potential for strong, asymmetrical
fluxes between habitats varying in population size and
productivity. An important challenge for ecologists is to
assess the interplay of temporal variation and spatial
heterogeneity in determining species’ abundances and
constraints on species coexistence in local communities.
We suggest that our results highlight some of the
surprising things that can happen when one overlays
temporal variation upon spatially heterogeneous land-
scapes.
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Appendix A. A sink population with square-wave
variation in growth rates

The system consisting of one species with time-
varying growth rate and immigration can be described
by the following inhomogeneous differential equation:
dN
dr
The solution to (A.1) is

r()N(1) + 1(2). (A.1)

! r(t) d ! — [ d
N(t) = eda™® I[N(to)—f—/ He 0@ ). (a2
to
We will assume that I is constant and r(¢) is a square
wave and thus is constant over intervals (half the period)
of length T. Over one of these intervals, (A.2) can be

solved assuming constant / and r, giving:
Il I

N(t) _ er(t—fo) |:N(t0) -+ _:| ——. (A3)
r r

Let the first interval start at = 0 and have growth rate
ri. Then, using (A.3):

N(T)=eT [N(O) + ﬂ - % (A.4)

The second interval starts at 1 = T and has growth rate
2, so we can use (A.3) and (A.4) to solve for N(27) in
terms of N(0).

NQT) =7 [N(T) N i] 1

r2 r2
. I 1 17 I
=T [e"T{N(O) + —} —— +—] ——
r rr. n r2
=N(0). (A.5)

If N(¢) is periodic (with the same period as r), then
N(2T) must equal N(0), which allows us to solve for
N(0):

(ri4+r)T 1 1 1
N(O)Zl[e +(———>e’2T——}/
" ra r L)

[1 — eln*m2)T], (A.6)

We can also solve for N(T) using (A.4) and (A.6):

(r14+r)T 1 1 ) 1
N(T)Zl[e +(———)e"T——]/
r o n r

[1 — elr+2)T], (A7)

With these values and (A.3) above, we have an
expression for N(¢) over an entire period, from which



R.D. Holt et al. | Theoretical Population Biology 64 (2003) 315-330 327

we can calculate the average value:

2T

1
(N> =57 N(¢t) dt

0
[ v )

I r 1 I
— —dl+/ e’z("T){N(T)Jr—} ——dt],

r T r2 r2

leading to the expression given in the text,

(N = ! l—rl—rz

C2rir

(ri—r )2(1 —enT)(1 —eT)
B : V]izT(l — e(l‘|+r2)T) ] ’ (Ag)

Appendix B. A sink population with demographic
stochasticity

A classic birth—-death-immigration process model of
demographic stochasticity in a constant sink environ-
ment without density dependence was studied by
Bartlett (1960, see Renshaw, 1991, pp. 41-44). Assume
that in a short time-interval (¢,z+#h), bh is the
probability of a birth to an individual in a population
of size N, dh is the probability of an individual’s death,
and [h is the probability an immigrant arrives. In a
constant environment, these parameters are constants;
in a sink, d>b. Given these assumptions, equilibrial
mean population size is N*=1/(d —b). Note this
closely matches the expression for equilibrial abundance
for the deterministic model (3), N* = I/|r|.

We explored the implications of demographic sto-
chasticity for inflation in a sink by introducing temporal
variation in individual death probabilities. A Fortran
program was written to simulate a population with a
square-wave death rate, constant birth rate and immi-
gration rate, and to calculate the average population.
Events were assumed to be Poisson processes. In the
program, individual events (births, deaths, immigrants)
were simulated, and the time index and total population
adjusted at each event. The total event rate was E =
I+ (b+ d)N, where [ is the immigration rate, b is the
birth rate and d is the death rate, and N 1is the
population size. Since these are Poisson processes, we
can add the rates together, and the time to the next event
is exponentially distributed with mean 1/E. This is
simulated using —In(ran)/E, where ran is a uniform
random deviate. After the time to the next event is
calculated, it is assigned to immigration, death or birth
by using another uniform random deviate and the
relative probabilities of the three events (I/E, bN/E
and dN/E, respectively). So if this random deviate is

<I/E, the event is an immigration; if it is between I/E
and I/E + bN/E, it is a birth; otherwise, it is a death.

A potential problem occurs if the calculated time to
the next event exceeds the time remaining in the current
half-period. Since the death rate will have changed, this
value cannot be used, so it is thrown out and the time
advanced to the start of the next half-cycle, and then
another time to the next event calculated (using the new
death rate, of course). This should yield the correct
results, since Poisson processes are memoryless—the
distribution of the time to the next event is independent
of the time since the last event. So given that an event
does not occur during the rest of the current half-cycle,
the time from the start of the next half-cycle to the next
event is exponentially distributed with mean 1/E.
Numerous simulations were run to ensure that all events
occurred at the proper rate during each half-cycle with
this method.

Two parameters were varied—the difference in the
two death rates (2Ad) and the period (27'). The birth
rate b was 1.3 for the set of simulations used to generate
the results compiled in Fig. 12. The mean value of the
death rate was 1.5 and Ad was varied from 0 to 0.5 in
increments of 0.1 (so for Ad =0, 0.1 and 0.2, the birth
rate never exceeds the death rate, while for Ad>0.2, it
does half the time). For each value of Ad, the half-period
was varied from 0.0625 to 16 (by successive doubling).
The immigration rate I was set at 0.1, 1 and 10 for three
different sets of simulations, which gave very similar
results (differing only in the scale for { N ). Another set
of simulations was run with / =2, average d = 0.25,
b =0.2 and Ad t0 0.06, 0.1 and 0.2, to compare with the
analytic results derived for the continuous differential
equation model with square-wave variation in r(¢). As
shown in Fig. 5, except for some very minor randomness
in the discrete simulations, the results agree quite
closely. The inflationary effect of variation in a sink
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Fig. 12. Sink population dynamics with demographic stochasticity.
Average population is computed for the discrete single population
model with Poisson birth, death and immigration. The birth rate is 1.3
and immigration rate is 1, while the death rate is a square wave which
alternates between the values 1.5+ Ad every T time units, with 7" and
Ad given in the figure.
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appears robust to the incorporation of demographic
stochasticity.

Appendix C. A sink population with stochastic variation
in growth rates

We consider again a system consisting of a single
species with time-varying growth rate and immigration
described by Eq. (A.1). We assume that [ is constant
and r(¢) is an Ornstein—Uhlenbeck process—a normally
distributed random process with mean 7, variance o’
and normalized autocorrelation function

R(t) = e/, (C.1)

where R(7) is the correlation coefficient between values
of r separated by time 7, and ¢, is the time required for
this correlation to decrease by a factor of e.

We will also assume that N is initially 0, so that using
Eq. (A.2)

13 1
N =1 / e gy, (C.2)
0

Therefore,

E{N(1)} E{I/Otefu[r(” d du}

:I/OZE{efu"'(’) "T} du. (C.3)

Since r(f) is a normal random process, its integral is
a normal random variable. If x is normal, then e*
is lognormal, and has a mean of e“to:/2. Letting
X = f; r(z) dr,

w=e{ [reac} = [ By

= /ulfdrf(t—u), (C4)

7 E{(/() dr—ux)z}
E{ (-1 d)}
Bf [ = dn [e) - s
—&{ [ [0~ bten) - Rz n |

:/,/ E{[V(’L’])—7][V(’Cz)—7]}d‘[2d‘[1
PP E{r(ny) = A[r(t) = F
B RS S AP

The integrand in the last expression is the autocorrela-
tion function e "~/ (see (C.1)). Because of the

symmetry of this expression and the area of integration,
the integral can be done over the region in which 7, > 1,
and the result doubled. Therefore,

t T
ot = 20’2/ e/t / e”/" dr, dr,
u u

t
20" [(ein(ulen - ) dr
u

t
=20, / (1 — et/ g,

= 2621t —u — 1,(1 — e 17W/1)) (C.6)
Hence,
t
E{N(t)} :1/ exp{F(t — u) + o,
0

X [t —u—t.(1 — e 01N} du
t
=l / exp{(F + ¢*t.)(t — u)
0

+ g? e /Y du, (C.7)

The expected value of N is an increasing function of the
e~ =1/t term. Since this term is always between 0 and 1,
setting it equal to these values gives bounds on E{N(¢)}:

t
187026/ e(i_'“rﬂzt(»)(t*u) du
0

t
<E{N(1)}<Ie™"" / o)+ gy (C.8)
0
Therefore,
— T[] — e /(7 + 621,

<E{N()}< —I[l — ™71 /(F + 6%1,). (C.9)

The average value of N from 0 to T is (N) =
fé N(2)dt/T. The expected value of this average is the
average of the expected values. The bounds above (C.9)
will give bounds on the average abundance.

T
IR+ T) [ 1=
0

<E{{N>}< = 1/[(F+0*)T)

T
X / 1 — el gy (C.10)
0
or
_ | — eFo?)T
— fe ll_m /(7+02fc)<E{<N>}
c
1= elrer] /-
it ey e

We can now take the limit as 7" goes to infinity to get the
long-term average. This limit will only exist if 7+
0’t. <0, in which case

—Ie ") (F4 0’ 1) <E{(NY}< = I/(F+0’t). (C.12)
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Fig. 13. Comparison of theoretical and realized bounds on average
population size, given environmental stochasticity. The figure uses the
system of Fig. 7. It shows a plot of the average density as a function of
standard deviation of growth rate, for an autocorrelation time
constant of 0.125 (dashed line) along with the upper and lower bounds
as derived in the text (solid lines), and the numerical solution of the
equation for E{N(#)} as ¢ approaches infinity (circles).

Numerical studies show that these bounds accurately
describe the long-term behavior of the system, which is
also described by numerically solving (C.7) for E{N(¢)}
as t goes to infinity (see Fig. 13).
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