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ABSTRACT: Spatial flows of materials and organisms across ecosys-
tem boundaries are ubiquitous. Understanding the consequences of
these flows should be a basic goal of ecosystem science, and yet it
has received scant theoretical treatment to date. Here, using a simple,
open, nutrient-limited ecosystem model with trophic interactions,
we explore theoretically how spatial flows affect the functioning of
local ecosystems, how physical mass-balance constraints interact with
biological demographic constraints in the regulation of this func-
tioning, and how failure to consider these constraints explicitly can
lead to models that are ecologically inconsistent. In particular, we
show that standard prey-dependent models for trophic interactions
may lead to implausible outcomes when embedded in an ecosystem
context with appropriate mass flows and mass-balance constraints.
Our analysis emphasizes the need for integration of population, com-
munity, and ecosystem perspectives in ecology and the critical con-
sequences of assuming closed versus open systems.

Keywords: spatial flows, ecosystems, nutrient cycling, trophic inter-
actions, model.

Historically, there have been two main perspectives in ecol-
ogy (Lotka [1925] 1956): the biologically oriented de-
mographic perspective developed within population and
community ecology, which takes the individual organism
as its basic unit and focuses on the dynamics of population
size and species diversity, and the physically oriented func-
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tional perspective developed within ecosystem ecology that
measures flows of matter and energy and focuses on the
functioning of the overall system composed of biological
organisms and their abiotic environment. These two per-
spectives have been largely separated in the history of mod-
ern ecology, although there is currently a push toward a
new ecological synthesis that spans population, commu-
nity, and ecosystem perspectives (DeAngelis 1992; Jones
and Lawton 1995; Loreau 2000; Kinzig et al. 2001; Loreau
et al. 2002).

One reason that integration of these two perspectives
is necessary is that demographic and mass-balance, or
energy-balance, constraints in ecosystems interact and
cannot be understood in isolation. The implications of
the interaction between demographic and ecosystem con-
straints can be profound, and they seldom have been
addressed theoretically. Early theoretical attempts to un-
derstand mass- and energy-balance constraints in closed
ecosystems (defined as ecosystems that do not exchange
matter with the external world) suggested counterintui-
tive patterns and constraints in food webs (Ulanowicz
1972; May 1973; Hirata and Fukao 1977), but these were
later shown to be due to physically and biologically in-
consistent model formulations (Hirata and Fukao 1977;
Loreau 1994). Articulating these constraints in a consis-
tent way is a feasible but by no means trivial task (Loreau
1994). Another type of model system that has often been
studied, both experimentally and theoretically, is the che-
mostat (Grover 1997), that is, a system that experiences
homogeneous dilution across compartments due to water
flow-through. We shall see, however, that closed ecosys-
tems and chemostats represent a very special class of
systems and that systems that are differentially open to
spatial flows in different compartments can have vastly
different properties.

Ecological stoichiometry is another area in which
mass-balance constraints for different chemical elements
and their interactions with demographic constraints play
an important role (Lotka [1925] 1956). Despite the grow-
ing interest in this area (Sterner and Elser 2002), theory
has been relatively limited, in particular at the whole-



ecosystem level (Andersen 1997; Daufresne and Loreau
2001a, 2001b; Grover 2003), and has not specifically ad-
dressed the role of spatial flows in ecosystem functioning.

Spatial flows of materials and organisms across system
boundaries have been studied theoretically in population
and community ecology within the context of metapop-
ulations (Levins 1969, 1970), source-sink dynamics (Pul-
liam 1988), and metacommunities (Wilson 1992; Mouquet
and Loreau 2002). These studies have mainly focused on
the persistence of populations and the maintenance of
species diversity in sets of populations or communities
connected by dispersal. Similar theoretical treatments are
largely lacking in ecosystem ecology (but see Holt and
Loreau 2001; Loreau et al. 2003; Holt 2004. Yet all eco-
systems up to the biosphere are open in various degrees
to exchanges of materials or organisms (Polis et al. 1997).
Perhaps the only closed natural system is the total Earth
system including the biosphere, the atmosphere, the hy-
drosphere, and the lithosphere, and even this system is
likely to be nonequilibrial and open to some spatial fluxes
(e.g., inputs of trace elements via meteorites) at the very
long timescales typical for major geological processes. Lo-
cal ecosystems receive and lose materials and organisms
through such processes as atmospheric deposition, fixa-
tion, and volatilization of mineral elements, rock weath-
ering, leaching and sedimentation of organic and inorganic
substances, fire, water flows, plant seed dispersal, and an-
imal movements across ecosystem boundaries. Under-
standing the consequences of such fluxes should be a basic
goal of ecosystem science, and such understanding should
be embedded in the fusion of ecosystem approaches with
community and population ecology (Loreau et al. 2003).

Here we explore theoretically, using a simple open eco-
system model, how spatial flows across system boundaries
affect the functioning of local ecosystems, how physical
mass-balance constraints interact with biological demo-
graphic constraints in the regulation of this functioning,
and how failure to consider these constraints explicitly can
lead to models that are ecologically inconsistent. In par-
ticular, we show that standard models for trophic inter-
actions may lead to implausible outcomes when embedded
in an ecosystem context with appropriate mass flows and
mass-balance constraints.

Spatial Flows in a Simple Nutrient-Plant
Model Ecosystem

We start with the simplest possible model of a nutrient-
limited ecosystem (fig. 1). The model comprises only two
explicit compartments, plants (P) and a limiting inorganic
nutrient (N), each of which is measured in units of amount
of nutrient. Plants consume the nutrient, which is recycled
in inorganic form. For the sake of simplicity, we delib-
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Figure 1: Flow diagram of the nutrient-plant model ecosystem with
spatial flows across ecosystem boundaries.

erately ignore the detailed dynamics of organic matter de-
composition and nutrient recycling, which we encapsulate
in a single rate parameter. This is justified by the fact that
we will focus on equilibrium behavior and only the re-
spective proportions of nutrient recycled or lost to the
system matter at equilibrium (de Mazancourt et al. 1998)
unless strong stoichiometric constraints operate (Dauf-
resne and Loreau 2001a). This very simple model shows
most of the typical features of more complex models. The
model reads

N
% =IL,—exN—fo(N)P+ 1B (1a)
dp

E =1, —e;P+ fo(N)P— 1B (1b)

where I and I, are the inputs of inorganic nutrient and
plants, respectively, into the system; ey and e, are the loss
rates of inorganic nutrient and plants, respectively, from
the system; 7, is the rate of nutrient recycling within the
system; and f,(N) is the per capita functional response of
plants to nutrient availability (f,[0] = 0, df,/dN > 0).

Closed Ecosystems and Chemostats as a Special
Class of Systems

Consider first, as a baseline, a classical chemostat subject
to a homogeneous dilution rate e. This case corresponds,
in our model, to setting ey = e, = ¢, Iy = eN, (where
N, is the inflowing amount of nutrient), and I, = 0. At
equilibrium, the time derivatives in equations (1) vanish;
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in other words, inflows balance outflows for each com-
partment. Solving these mass-balance equations provides
the equilibrium nutrient stocks, denoted by an asterisk:

N* fPﬁl(rP + e)’

N, = fi'(p + o),

(2a)

P (2b)

where f,7' is the inverse of function f,. The total stock of
nutrient is N* + P* = N,. Hence, in a classical chemostat
the total concentration of nutrient in the system at equi-
librium just matches the input concentration. Trophic in-
teractions and plant death rates only affect the apportion-
ment of this total concentration between living and
nonliving compartments.

In this configuration, the equilibrium inorganic nutrient
stock is independent of mass-balance constraints and de-
pends only on plant demographic parameters, a classical
feature of systems in which there is no interference at the
consumer level, known as recipient control or top-down
control (DeAngelis 1992). The equilibrium plant nutrient
stock is determined by a combination of mass-balance and
demographic constraints. This equilibrium is qualitatively
stable (app. A, which is available in the online edition of
the American Naturalist).

It is straightforward to check that a closed ecosystem is
only a limiting case of a chemostat in which the dilution
rate tends to 0. Therefore it would seem at first sight that
the popular chemostat can be used as a valid theoretical
and experimental model for systems in which openness
can be varied arbitrarily. This is not so. As we show next,
deviations from the restrictive assumptions of the che-
mostat model, that is, equality of loss rates and inputs only
in inorganic form, lead to ecosystems with qualitatively
different functional and dynamical properties.

Unequal Openness among Ecosystem Compartments

Consider now the full model with unequal inputs and
outputs in the two compartments. Unlike the classical che-
mostat, the total stock of nutrient no longer equilibrates
at the same concentration as in the input but depends on
trophic interactions. Equations (1) cannot be solved for
the equilibrium nutrient stocks, but an isocline analysis
easily reveals the dynamics of the system. The null isoclines
of N and P, respectively, are from equations (1):

_ L~ eN
fo(N) — rp’
I

ey i) o

(3a)

Two cases must be distinguished based on equation (3a),
depending on whether I /ey is greater or smaller than
fo '(r). The ratio I/ey is the equilibrium inorganic nu-
trient stock to which the system tends in the absence of
plants, while f,7'(,) is the level at which a closed plant
population (without any external subsidy or loss) tends
to control it. Thus the first case (I /ey > f, '[rp]) corre-
sponds to a system in which the inorganic nutrient supply
is sufficient to support a closed plant population (fig. 24),
while the second case (I /ey < fy '[rp]) corresponds to a
system in which the inorganic nutrient supply is insuffi-
cient to support a closed plant population (fig. 3a). The
equilibrium point may be either a focus (fig. 2a) or a node
(fig. 3a), but in both cases there is a single feasible equi-
librium point, and it is stable (app. A).

To explore unequal openness among ecosystem com-
partments, we focus on limiting cases in which effectively
only a single compartment is open to inputs and outputs.
First, consider a system that is open only at the top, which
might be thought of as an approximation of a nutrient-
poor ecosystem in which the limiting nutrient experiences
little deposition and leaching, but plants immigrate and
emigrate by intense seed dispersal. In this limiting case,
both I, and e, tend to 0, but we assume that their ratio,
Ii/ey = N,, stays constant. This has the effect of increasing
the curvature of the isocline of N, which eventually merges
with the vertical asymptote N = f, '(r,) and the X-axis
P = 0 (fig. 2b). The equilibrium nutrient stocks then be-
come

N* = 7 (1), (4a)
P — £ . (4b)
€p

Thus the two compartments appear to be controlled by
different constraints at equilibrium: the inorganic nutrient
is top-down controlled as in the classical chemostat,
whereas plants are controlled by the mass-balance con-
straint that inputs must balance outputs for the system as
a whole.

The implications of this decoupling of the two con-
straints are apparent in the second limiting case in which
the system is open only at the bottom. This scenario might
be realistic for isolated ecosystems such as remote islands
in which nutrient deposition and leaching occur but plant
dispersal is absent. Because the effects of letting I, = 0 and
ep, — 0 are very different, we consider these two cases in
turn before discussing their combined effect.

Decreasing I, to 0 has the effect of increasing the cur-
vature of the isocline of P, which eventually merges with
the vertical asymptote N = f, '(r, + e,) and the X-axis
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Figure 2: Isocline analysis of the nutrient-plant model ecosystem in the case when inorganic nutrient supply is sufficient to support a closed plant
population (I/ey > f;'(1p)). a, General case: all compartments have inputs and outputs (I, ey, I, and ¢,>0). b, System open only at the top (I
and ey — 0, I, and ¢,>0). ¢ System with negligible plant immigration (I, = 0, L, ey, and ¢, > 0). d, System with negligible plant loss (e, = 0, I,

ey and I, > 0).

P = 0 (figs. 2¢, 3b). If Iy/ey > fy '(r, + ep), there is still a
stable, feasible equilibrium (fig. 2¢) at

N~ _)fp_l(rp + ep),

I — eNfP_l(rP + ep)
€p ’

(5a)

P* - (5b)

However, if I /ey <f, '(r, + e;), the plant population is
unable to persist for lack of nutrient and disappears from
the system (fig. 3b).

Letting e, = 0 has the effect of shifting the vertical as-
ymptote of the isocline of P, N = f, '(r, + e;), to the left
until it merges with that of the isocline of N, N =
fo '(ry). When L /ey > f, '(r,), this precludes any intersec-
tion of the two isoclines and hence any feasible equilib-
rium. The plant population then grows indefinitely (fig.

2d). When L /ey < f, '(rp), a stable, feasible equilibrium is
possible, provided that I, is small enough, thereby ensuring
sufficient curvature of the isocline of P and making in-
tersection of the two isoclines possible (fig. 3¢). If L, is too
large, however, this intersection is impossible, and the
plant population again grows without bounds (fig. 3d).
The condition ensuring stable coexistence of the two eco-
system compartments (fig. 3¢) is obtained easily by setting
e, — 0 in equations (1) and solving for the equilibrium
nutrient stocks:

(6a)

P e — fP[(IN + IP)/eN]. (6b)
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Figure 3: Isocline analysis of the nutrient-plant model ecosystem in the case when inorganic nutrient supply is insufficient to support a closed
plant population (Iy/ey < f;'(1p)). 4, General case: all compartments have inputs and outputs (I, ey, I, and e, > 0). b, System with negligible plant
immigration (I, =0, I, ey, and € >0). ¢, System with negligible plant loss (e, >0, I, ey, and I,>0) and small nutrient inputs (I + I, <
eufs '(1p)). d, System with negligible plant loss (e, = 0, L, ey, and I, > 0) and large nutrient inputs (Iy + I, > ey f; '(1p)).

This equilibrium is feasible, provided that

I I,
AL e, )

en

which requires that both Iy and I, be small enough, as
derived graphically above.

Combining the effects of I, = 0 and e, = 0, we see that
closure at the top precludes any feasible equilibrium in
the system: either plants go extinct when L/ey < fp '(r)
(similar to fig. 3b) or they grow indefinitely when
Ii/ey > fy '(rp) (similar to fig. 2d).

Why is this the case? The system cannot persist because
the two constraints of top-down control and mass balance
are again decoupled, but they both apply to the same
compartment. To see this, let I, and e, tend to 0 in equa-

tions (1) while keeping their ratio, I,/e, = F,, constant.
Equation (1b) can be rewritten as

L ah-P+VP-RR®

This amounts to a separation of two timescales in the
system’s dynamics: the first term controlled by e, is close
to 0 and only affects plant dynamics on a very slow time-
scale, while the other terms determine the system’s dy-
namics on a fast timescale. Ignoring the first term, this
equation leads to an equilibrium on a fast timescale, such
that

N* = f,'(r). ©)



But equation (la) then also implies that
(10)

Equation (9) expresses the constraint of top-down control
that plants exert on the inorganic nutrient stock, while
equation (10) expresses the mass-balance constraint that
is exerted on the same compartment. Since these two con-
straints are in general incompatible, there is no feasible
equilibrium in such a system. When I /ey > f; '(r;), the
supply of inorganic nutrient constantly exceeds its demand
by the plants, and the latter grow indefinitely. In the op-
posite case, the supply of inorganic nutrient is too low
compared with plant demand, which drives plants to
extinction.

It may be argued that this outcome is ecologically un-
realistic, at least for the scenario depicted in figures 2d
and 3d, because at high plant density, some density de-
pendence or loss from the system must hold the plant
population in check. The above analysis does imply that
losses from the plant compartment stabilize the system,
and it is easy to show that density dependence has the
same stabilizing effect (app. B, which is available in the
online edition of the American Naturalist). Our simple
model, however, is a simple extension of the popular food-
chain models and shows dramatically the limitations of
these models when explicit mass-balance constraints are
taken into account. This supports the view that spatial
processes, nutrient cycling and mass-balance constraints
(DeAngelis 1992; Holt et al. 1994; Loreau 1995; Holt 2004),
and interference (DeAngelis et al. 1975; Beddington 1975)
cannot generally be ignored in the population dynamics
of resource-consumer interactions.

Note that the inconsistency between top-down control
and mass balance does not occur when both compartments
experience roughly equal closure. If I, I, ey, and e, all
tend to 0 simultaneously, then setting I /e, = N, and
I./e, = P, and performing a separation of timescales as
above leads to an equilibrium in which

N* = fy (1), (11a)

PP R+ N~ () (11b)

This equilibrium is feasible because the two compartments
experience the same openness, or closure, and thus both
can be adjusted to meet the overall mass-balance con-
straint exerted on the system as a whole. Note, however,
that this equilibrium is not identical to the one obtained
in a perfectly closed system (eqq. [2] with e = 0) because
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relative differences in loss rates are preserved when closure
is achieved only asymptotically.

The Dual Effect of Immigration at the Top

There is another feature of the simple nutrient-plant model
ecosystem above that is well worth emphasizing. Immi-
gration at the top of the system, here through the plant
input term I, has a dual effect on the resource under top-
down control. When the inorganic nutrient supply is high
enough to support a viable closed plant population
(Iy/ex > f» 'Irp]), increasing plant immigration I, has the
effect of raising plant biomass while depressing the in-
organic nutrient stock (cf. fig. 2a, 2¢). Plant immigration
maintains a positive demographic balance for a level of
inorganic nutrient at which plant growth would stop in
the absence of immigration and hence pushes plant bio-
mass up and inorganic nutrient down. That external sub-
sidies to consumer populations can further depress their
resources has been suggested or documented in a number
of systems (Polis et al. 1997).

Plant immigration, however, can also have the opposite,
counterintuitive effect of increasing the amount of inor-
ganic nutrient and even of supporting the whole resource-
consumer system. This occurs when the inorganic nutrient
supply is too low to support a viable closed plant popu-
lation (L /ey < fy '[rp]). Increasing plant immigration I,
then has the effect of raising both plant biomass and the
inorganic nutrient stock (cf. fig. 3a, 3b). From a demo-
graphic perspective, the ecosystem holds a sink plant pop-
ulation (Pulliam 1988). External subsidy is the factor that
supports the plant population, which generates a net flow
of nutrient to the inorganic nutrient stock at equilibrium
through nutrient recycling (7, — f,[N"] >0 because
N* < f;'[rp]), thereby increasing the inorganic nutrient
stock. When the input of nutrient in inorganic form is
absent altogether (I, — 0), it is plant immigration that
maintains the two ecosystem compartments, leading to a
counterintuitive system in which the top supports the bot-
tom. Polis et al. (1997) discuss a number of examples in
which inputs of nutrients by consumer movement could
be essential for the functioning of an ecosystem.

Generalizing to Multitrophic Systems

Our main findings generalize to food chains with multiple
trophic levels. The following model includes a herbivore
compartment added to the previous nutrient-plant model:
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dN
E =I,—exyN— fo(N)P+ r,P+ r,H, (12a)
dP
I =L — e, P+ fu(N)P—1r,P— f,(P)H, (12b)
dH
I = Iy — eyH+ fy(PH — ryH. (12¢)

In this model, the parameters and functions with an H
subscript apply to the herbivores but have the same mean-
ing as the corresponding parameters and functions for the
plants.

This model is more complex and analytically less trac-
table than the previous one. Not only is it impossible to
obtain a general solution for the equilibrium nutrient
stocks, the three-dimensional nature of the system also
precludes an isocline analysis, and stability of equilibria is
no longer guaranteed. Despite these limitations, a number
of results can be obtained for systems that admit a stable
equilibrium and can be comparable to the system without
herbivores. In particular, it is easy to show that the closed
system is again recovered as the limiting case of a che-
mostat with a zero dilution rate.

To facilitate comparison with the system without her-
bivores, we concentrate our analysis of the effects of un-
equal openness among ecosystem compartments in a sys-
tem that is closed with respect to inorganic nutrient (I
and ey — 0). In such a configuration, herbivores replace
plants as the top trophic level, plants replace the inorganic
nutrient as the next lower trophic level, and closure at the
top trophic level then has exactly the same effects as in
the system without herbivores.

Assume first that herbivore immigration is also negli-
gible (I; = 0). From equations (12), the equilibrium that
the system approaches is then found to be

P f'(ry + e, (13a)
_ —1
H* > I ePfH (ry + ey) ’ (13b)
€y
H*
N* o £ + r*;) - (13¢)

Note that the last equation for N* holds in all the cases
analyzed here (i.e., when I and ey — 0); it implies that
N simply follows changes in H*. This equilibrium is fea-
sible (i.e., H*>0), provided that I./e,> fi;'(ry + ey).
Otherwise, herbivores become extinct and P* — I,/e,.
Thus we obtain not only the same outcomes but also the
same quantitative conditions determining these outcomes
as in the system without herbivores, except that herbivores

now substitute for plants, and plants substitute for the
inorganic nutrient.

Assume next that herbivore loss from the system is neg-
ligible (e; = 0). The equilibrium that the system ap-
proaches is then

(14a)

H* -

= ful(y + L)les]” (14b)

and N~ is as above (eq. [13c]). This equilibrium is feasible
(H* > 0) provided that (I, + I;)/e, < fi; (). Otherwise,
herbivores have a positive demographic balance and grow
indefinitely. Again we obtain the same outcomes and
quantitative conditions as in the system without herbi-
vores.

Finally, assume that both herbivore immigration and
loss are negligible (I; and e; = 0). There is then a conflict
between top-down control of plants by herbivores, which
imposes

P = fi (), (15)
and the mass-balance constraint, which imposes
I
pr—-=, (16)
€p

If I/e, > fi;'(ry), plant supply is greater than plant de-
mand, and the herbivore population grows without
bounds; if I, /e, < fi; '(ry), plant supply is smaller than plant
demand, and herbivores become extinct. Thus, in all cases,
the outcomes of system closure at the top trophic level are
identical in the two- and three-trophic-level systems.
Therefore we are led to the same conclusion that a sys-
tem that is open only at the trophic level below the top
level does not have a feasible equilibrium unless some
additional density dependence limits herbivore growth.
This conclusion can be further generalized by noting that
systems that receive inputs either in inorganic form alone
(Iy > 0; I, and I; = 0) or in both inorganic and plant form
(Iy and I, >0, I, — 0) lead to the same conflict between
top-down control and the mass-balance constraint as long
as nutrient loss occurs only in plants (ey and e; — 0).
Indeed, the source of this conflict lies in the fact that the
system’s output, which has to balance inputs at equilib-
rium, is only a function of plant biomass. This sets one
potential equilibrium value for plant biomass, which con-
flicts with the other potential equilibrium value set by the
top-down control exerted by herbivores when the latter
have no stabilizing density dependence or outputs. This



also implies that other nonlinear functional forms of plant
outputs cannot resolve this conflict. However, nutrient
losses in inorganic form, which almost always occur in
real ecosystems, do remove this conflict by providing an
alternative pathway for restoring the system’s mass
balance.

The effects of immigration at the top of the system are
more complex and difficult to analyze than in the system
without herbivores, but the general trends are similar.
When the nutrient-plant system is able to support an un-
subsidized herbivore population (H* >0 when I; = 0),
herbivore immigration acts to depress plant biomass, just
as plant immigration acted to depress the inorganic nu-
trient stock in the system without herbivores. Indeed, as
herbivore immigration approaches 0, the equilibrium plant
nutrient stock approaches

P* = fi'(ny + ew), 17)
provided that herbivores are able to persist. But when
herbivore immigration is nonzero, the equilibrium her-
bivore nutrient stock is

Iy
e, (18)
Ty + ey — fu(P)
which implies
P < fii'(ry + ep). (19)

Thus plant biomass is reduced by herbivore immigration.

At the other extreme, herbivore immigration in a system
that is entirely supported by the top (I; > 0; L, and I,
0) clearly benefits all ecosystem compartments since these
would disappear in its absence.

To sum up, although trophic complexity provides op-
portunities for other effects of spatial flows that we do not
explore here, the main conclusions obtained using the sim-
ple nutrient-plant model are unchanged after addition of
a herbivore trophic level, and they could be shown to
remain valid upon further addition of carnivorous trophic
levels. The main difference is that the constraints on eco-
system regulation identified in the nutrient-plant model
are shifted one trophic level higher after addition of each
new trophic level to the system.

Discussion

Throughout ecology, there is an increasing interest in going
back to first principles by embedding ecological theories
in fundamental laws and constraints from the physical
sciences, such as the importance of stoichiometric con-
siderations in trophic interactions (Andersen 1997; Sterner
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and Elser 2002) and the role of temperature and body size
as modulators of ecological processes at all levels of eco-
logical organization (Gillooly et al. 2001). Here too, we
have shown that ecosystem processes can provide fun-
damental constraints on the action and consequences of
trophic interactions. In particular, simple Lotka-Volterra
prey-dependent models may lead to impossible outcomes
in some ecosystem contexts. There has been considerable
debate in recent years about the need to refine predator-
prey and consumer-resource models, so as to incorporate
behavioral details such as interference behavior. We suggest
that an additional line of argument in support of such
generalizations comes from a quite different direction,
namely, the fundamental physical constraints within which
trophic interactions must play out in any realistic
landscape.

There is increasing interest in population and com-
munity ecology in the implications of source-sink dynam-
ics in heterogeneous landscapes. Our results reveal a po-
tentially important ecosystem dimension to such systems.
In some cases, a species may locally maintain a demo-
graphic sink and exert top-down control on the compo-
nent beneath (e.g., the herbivore may constrain plant
numbers in classical top-down fashion). In short-term ma-
nipulative experiments, a reduction in (say) herbivore den-
sity by reducing or eliminating immigration will lead to
an upsurge in plant abundance. Thus, from the typical
perspective of population and community ecology, these
two species are locked in a (+, —) interaction. Yet if the
herbivore is the main conduit of nutrients into the local
ecosystem, the herbivore is an indirect mutualist of the
plant population over longer timescales, sustaining the
plants via ecosystem feedbacks. Ecological and evolution-
ary plant-herbivore mutualisms have been shown to be
possible when herbivores are more efficient than plants at
recycling limiting nutrients locally (Loreau 1995; de Ma-
zancourt et al. 1998, 2001). Our analysis further stresses
spatial flows as a critical factor that determines the nature
of species interactions within ecosystems. Ecosystem pro-
cesses imply a rich array of indirect feedbacks in ecological
systems, well beyond the typical density-mediated and
trait-mediated indirect interactions that have been the fo-
cus of so much attention in recent community ecology.

We believe these theoretical results also bear on another
issue of topical interest. As noted above, in recent years
there has been a resurgence of interest in the use of mi-
crocosms to examine basic ecological theories. There has
been considerable debate about the utility of microcosms
to address basic ecological questions (Daehler and Strong
1996). We do feel that chemostats and closed ecosystems
provide useful tools for many purposes. However, the re-
sults presented here suggest that great caution needs to be
applied in extrapolating from such studies to natural sys-
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tems, which are typically open and, moreover, open dif-
ferentially at different trophic levels. Making ecological
systems open versus closed can have qualitative effects on
both the dynamics and statics to be expected. We suggest
that a rich avenue for future experimental work with mi-
crocosms will be to examine impacts of different patterns
of system openness in a laboratory setting. Such experi-
ments will help us understand some of the fundamental
constraints that govern the organization of natural
ecosystems.
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