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A common observation about life is that species have

geographical distributions that are more or less spatially

confined. Biogeography attempts to make sense of these

distributional patterns by studying both present day

environmental and ecological factors determining fitness

and populational persistence, and the historical origins

and subsequent movements of individuals. One obvious

feature that prevents species from spreading uniformly

over space is the existence of physical barriers to

dispersal. The association between broad scale biogeo-

graphic provinces and major barriers to dispersal, (e.g.

oceans for terrestrial forms, or strong cross currents for

ocean forms with pelagic larval dispersal, Gaylord and

Gaines 2000) is a persistent reminder of the role of

barriers in determining community composition. The

fact that South Africa has a fauna that is different from,

say, Argentina, depends on the important role of barriers

in preventing colonization of species. The common

observation that introduced species can sometimes thrive

in foreign terrain, once transported there, indicates that

present day distributions are not determined solely by

environmental conditions, but that barriers to dispersal,

both past and present, are responsible for some degree of

the regional and global patterning of the biota.

Over time, however, even hard barriers to dispersal

may be breached. Oceanic volcanic islands (e.g. Hawaii,

the Galapagos, or the Canary Islands) that have never

been connected to another region are eventually colo-

nized by a wide range of terrestrial species. Furthermore,

given the ability of populations to adapt to local
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conditions by natural selection, it is not immediately

obvious why some hard barriers to dispersal could not

eventually be breached. A mountain range may form a

barrier to dispersal for a lowland species. However,

populations at elevations at the base of the mountain

may adapt to survive there. What prevents a sequence of

such episodes of local adaptation from eventually

allowing the populations to march across the mountain?

One explanation is that there may not be sufficient

genetic variation in the population for natural selection,

given the intensity of selection. As shown by Holt and

Gomulkiewicz (1997), adaptation in marginal popula-

tions requires the availability of genetic variation simply

for population persistence in the absence of immigration.

Sometimes such variation will be absent (Bradshaw

1991). It is hard to imagine that sufficient genetic

variation exists to allow a mouse to evolve to both live

in the ocean and then to colonize the next continent on

the other side. A barrier to dispersal is one that must be

defined in terms of the existing genetic variability of the

focal species, the severity of the selection gradient over

space, and the time scale in question.

Another reason that local adaptation may fail to

advance the spatial spread of a population is because it is

opposed by net gene flow from a more populous

distributional center where different genotypes may be

favored. Theoretical studies suggest that this antagonism

between local adaptation and the detrimental effects of

gene flow can produce a stable limited geographic range

even in the absence of any barriers to dispersal (Kirkpa-

trick and Barton 1997, Case and Taper 2000, Antonovics

et al. 2001, but see Barton 2001 and Gomulkiewicz et al.

1999 for analyses of the countervailing positive effect of

gene flow upon local adaptation via the infusion of

genetic variation). If the environment varies smoothly

and gradually over space, and dispersal coefficients are

not too high (which would cause high gene flow), and

given adequate genetic variation, these models predict

that a species range could eventually expand across

space. As we discuss further below, however, the capacity

for unlimited spread is greatly diminished in the presence

of interspecific interactions.

In this paper, we review and synthesize the ways that

biotic interactions may produce stable range limits. We

focus on situations where the species boundary is stable

or quasi-stable but not associated with obvious barriers

to dispersal. This restriction on ‘‘stable’’ is important

because the geographic ranges of species with low

movement rates and slow population growth may not

yet be at equilibrium with respect to past climate change

and continuing habitat alteration. Fossil records over the

late Pleistocene and Holocene for tree and mammal

species show slow spatial dynamics as they respond to

glacial cycles (Davis 1986, Graham 1986, Woods and

Davis 1989, Gear and Huntley 1991, Martin and Fair-

banks 1999). Recent human modifications to the land-

scape and the transport of organisms allows unique

mixing of faunas that may not have existed even just a

century ago. For instance, Nowak (1971) cataloged 28

examples of recent range expansions of plants and

animals primarily in Europe. In a majority of cases,

the range expansion could be attributed to some human-

caused alteration of the landscape creating new habitat

or avenues for dispersal. Finally, habitat loss through

human alteration has caused many species’ ranges to

retract to selected corners of their former range where

human impacts have been less (Lomolino and Channell

1995). A study of these present day ranges, in the absence

of historical information about their former extents

would provide a misleading and biased impression of

the role of climate, interspecific interactions, and evolu-

tionary dynamics in determining range limits.

Nonevolutionary models

Two competitors

Range limits with an environmental gradient

Interspecific competition has the capacity to produce

abrupt range limits in either homogeneous or hetero-

geneous space, although by different scenarios. Rough-

garden (1979) was one of the first to model range limits

in the context of the Lotka�/Volterra competition

equations. The carrying capacity of the two competitors

was assumed to vary inversely over one-dimensional

space x; competitor A’s carrying capacity KA(x) mono-

tonically declines going from left to right, while compe-

titor B’s carrying capacity monotonically increases over

the same range. In the absence of the other competitor,

each species’ equilibrium density over space would

follow its K curve. Movements were not explicitly

considered and interspecific competition coefficients (a)

were assumed to be constants independent of spatial

position or population density. Even if interspecific

competition is less than intraspecific competition, one

species can competitively exclude its competitor in some

portion of space where it has a sufficiently higher

carrying capacity, giving rise to more or less sharp range

limits depending on the magnitude of the interspecific

effects and the steepness of the K gradients.

As a simple example, assume that two Lotka�/Volterra

competitors have equal competition coefficients and that

their carrying capacities vary in opposite directions

along a gradient. Coexistence at any point along the

gradient requires that 1/a�/K1(x)/ K2(x)�/a, where a is

the competition coefficient, and Ki(x) is the carrying

capacity of competitor i at gradient position x.

For illustrative purposes, assume that a5/1, and that

the two competitors are specialized to opposite ends

of the gradient, with linear but opposite relations

of spatial position to carrying capacity, as follows:
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K1(x)�/K?�/gx, and K2(x)�/gx, for 05/x5/K?/g. The

gradient has length K?/g, and in the absence of

competition each species can occupy the entire gradient.

If both species are present, competition can restrict each

species’ range size, with a zone of overlap in the middle

of the gradient. After substitution into the expression

for coexistence, the width W of the overlap zone is

W�/(K?/g) (1�/a)/(1�/a). Competition shrinks the range

edge of, say, species 1, from K?/g to K?/(g(1�/a)).

Competition coefficients near unity imply a narrow

overlap zone, and a range limit for species 1 that is

strongly displaced from the limit observed in the absence

of competition.

More mechanistic models of exploitative competition

explicitly include the dynamics of resources. In stable

environments and without interference, for a single

limiting resource, the single winning competitor is the

one that can persist at the lowest level of the shared

resource, denoted R* (Tilman 1982). This measure of

competitive dominance integrates many different aspects

of a species’ biology. Given two competing species, along

a gradient there can be abrupt shifts in dominance

leading to sharply defined parapatric distributions for

several distinct mechanistic reasons. For instance, the

two species’ relative rankings with respect to their

abilities to acquire the resource may change along the

gradient. Or, alternatively, their relative capacities for

converting acquired resource into offspring could shift.

Finally, their relative abilities to escape density-indepen-

dent mortality factors in the environment (e.g. severe

abiotic conditions or generalist predators) may vary

along the gradient. To show that competition produces a

species border does provide a useful explanation at one

level �/ we know that removing the competitor would

permit a range expansion for the remaining species �/ but

does not fully explain the border, because there can be a

wealth of underlying mechanistic explanations for the

shift in dominance along the gradient.

None of the models sketched above explicitly included

movements across space and how they might affect the

ranges and zones of overlap. Within the context of

continuous time and space, interactions and random-

walk type movements can be combined in a reaction-

diffusion model.

1Ni(x; t)

1t
�Di

12Ni(x; t)

1x2
�f i(x; Ni; . . .; Nn) (1)

The first term on the right governs movement, and the

second term gives the local population dynamics.

Extension to an additional spatial dimension y is

accomplished by adding a term: Di12Ni/1y2. An example

based on two-species Lotka�/Volterra competition is

1Ni(x; t)

1t
�Di

12Ni(x; t)

1x2
�

riNi(x; t)

Ki(x)

� [Ki(x)�Ni(x; t)�aijNj(x; t)]� diNi(x; t)

(2)

Here, Di is the diffusion coefficient and di is density-

independent mortality. Compared to nonspatial models,

one effect of movements here is to increase the zone of

sympatry between the species, because marginal sink

populations that would otherwise become extinct if

closed to movements, are sustained by immigration

from adjacent populations with higher growth rates.

Another feature of Eq. 1, which is general for any

function f(x, Ni, Nj), is that we can solve for the spatial

steady state equilibrium by setting the left-hand side

equal to zero and then solving the resulting second-order

differential equation, with attention to the initial condi-

tions and the boundary conditions specifying the move-

ment behavior at spatial edges. While the solution of this

problem can be difficult, we can gain some insights

immediately upon inspection. Imagine we have a spatial

equilibrium Ni*(x), then it must fulfill the following

condition,

Di

12Ni�(x; t)

1x2
�� f i(x; Ni�; . . .; Nn�) (3)

Hence, places where the equilibrium density curve over

space are concave upward (i.e. the term on the left is

positive), are also areas that are net demographic

‘‘sinks’’ at equilibrium (i.e. have a negative local growth

rate fi(x, Ni*,. . .,Nn*). Similarly, population ‘‘sources’’

exist where the density curve over space is convex

downward at equilibrium (Lande et al. 1989), which

must be balanced by a positive growth rate. However, we

caution that in the context of a density-dependent

demographic model, ‘‘source’’ and ‘‘sink’’ are relative

terms. A sink area is not necessarily one that is incapable

of supporting a viable population, rather it is one where

for realized equilibrium population densities, the local

growth rate is negative. This equilibrium includes

density-dependence; the net effect of dispersal for these

places is to push population size above local carrying

capacity, so that local growth rates are negative. Wat-

kinson and Sutherland (1995) call such sites ‘‘pseudo-

sinks’’. At lower densities, these pseudosinks could

become sources. However, note that this simple relation-

ship between curvature and demography may be lost for

more complicated movement behavior.

Now we explore the specific behavior of Eq. 2 under

different assumptions on the parameters. If two species

are similar enough ecologically to experience strong

interspecific competition, one might also expect them

to respond similarly to the abiotic environment, and thus

their K?s should positively covary across space (not

negatively covary as assumed in the Roughgarden

30 OIKOS 108:1 (2005)



model). Figure 1 shows such an example. Range limits

can still be rather abrupt if one species’ K increases

across space at a faster rate than the other. MacLean and

Holt (1979) describe one plausible example of this

pattern for geckos on St. Croix.

The replacement of species B by species A along the

spatial gradient depends on an interaction between the

environmental gradient and competition. Both species

benefit from left to right along space, but A is favored

more than B and thus eventually outcompetes it. This

general pattern has long been recognized by biologists

(Tansley 1917). For example, Darwin (1859), speaking

from a northern hemisphere perspective, wrote:

‘‘When we travel southward and see a species decreasing in
numbers, we may feel sure that the cause lies quite as much
in other species being favored, as in this one being hurt. So it
is when we travel northward, but in a somewhat lesser
degree, for the number of species of all kinds, and therefore
of competitors, decreases northwards; hence in going north-
ward, or in ascending a mountain, we far oftener meet with
stunted forms, due to the directly injurious action of climate,
than we do in proceeding southwards. . .’’

In Darwin’s view, stable range limits were the ultimate

evolutionary response to an interaction between biotic

and abiotic factors (Repasky 1991) and the relative

importance of each varied latitudinally, with biotic

factors being more important at lower latitudes. This

conjecture of Darwin’s has been more recently invoked

by Dobzhansky (1950) and MacArthur (1972), although

there are actually few studies that quantify the causes of

northern and southern range limits and thus allow one

to tally the results (but see Kaufman 1998). Loehle

(1998) concluded that most boreal trees can grow in

more moderate climates beyond their southern range

limits. He also noted that within tree species, there was a

trade-off between high growth rates and freezing toler-

ance. He speculated that the trees’ southern limits were

set by competitors with higher growth rates, but that the

evolution of higher growth rates in boreal trees which

would make them more competitive, was restrained

because of this fitness trade-off. Gross and Price (2000)

studied the winter range limits of the yellow-browed leaf

warbler (Phylloscopus humei ), a small insectivorous bird

of broadleaf forests in India. They found that the

northern limit coincided with the disappearance of

arthropod food due to leaf loss associated with cold

temperatures. The southern limit was associated with

high food levels but increasing numbers of a competitor,

P. trochiloides, which was 40% heavier in body mass and

occupied the same habitats and foraging sites. Other

potential competitors are present in the north, but they

segregate into different habitats.

Range limits over homogeneous space

Another way that range limits may emerge in competi-

tion is when space is homogeneous, i.e. all of the model’s

parameters are invariant over space, but interspecific

effects are stronger than intraspecific effects, i.e. a�/1.

For the non-spatial version of Eq. 2 there are two

domains of attraction: species A at its single species

equilibrium density (and no species B); or species B at its

single species equilibrium density (and no species A).

The interior equilibrium, if it exists, is unstable; which of

the two domains is reached depends upon initial

conditions. For the spatial model, however, other out-

comes are possible. Figure 2 is again based on Eq. 2

(both species have the same r’s, K?s, and D’s). Species A

begins in one corner of space and species B begins in the

opposite corner. The two species’ populations grow and

expand across space until they contact somewhere in the

middle and then settle into a stable parapatric distribu-

tion with sharp range borders. For diffusion coefficients

sufficiently low (as for the case shown), this equilibrium

is stable, as Levin (1974) has shown for a two-patch

model and Yodzis (1978) for continuous space. If

diffusion coefficients are too high, or if one species has

too large a numerical headstart, the system collapses to a

homogeneous equilibrium with only one species. When

both species coexist, the location of the range transition

is sensitive to initial conditions. If one species begins

with a larger population size than the other, or if one

Fig. 1. Two Lotka-Volterra competitors competing over two-
dimensional space. Interspecific competition aAB�/aBA�/0.7.
The top panel shows their K?s over space and the bottom panel
shows the resulting equilibrium population sizes. Movements
are governed by a diffusion process, as in Eq. 2 with DA�/DB�/

0.03. rA�/rB�/0.5, d�/0.
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species begins closer to the center of space than the

other, then that species will have a larger range at

equilibrium. The strength of the ecological interaction

needed to maintain a parapatric boundary is reduced if

the boundary coincides with a region of lower carrying

capacity (Bull and Possingham 1995) because reduced

numbers lead to less total movement across that zone.

Also the width of the overlap zone declines (all else being

equal) with increasing a.

Such an explanation for range limits has been invoked

to explain the elevational ranges of chipmunks in the

southwestern US (Heller and Gates 1971). There are two

other possible outcomes dependent upon parameters

and initial conditions. One or the other species may

entirely swallow the other; or, there can be a complicated

patchwork over space where species A and B form a

mosaic. For homogeneous space, the latter situation only

arises for initial conditions that also form such a

patchwork. Strong competitive interactions may produce

alternative community states for multi-species pools

(Gilpin and Case 1976, Gilpin 1994). Over homogeneous

space, if D is sufficiently low, these alternative multi-

species domains can replace each other as discrete and

sharp blocks in a manner like that envisioned by

Clements (1936). The importance of biotic interactions

in creating a ‘‘coevolved’’ biogeographic province that

repels invaders has been much debated. This notion

appears in the writings of early biogeographers (Wallace

1876); it also crops up in the paleontological literature

(Boucot 1978, Benton 1987, Vermeij 1991, Jablonski and

Sepkoski 1996) and has been a perennial element of

community ecology and invasion biology (Case 1990,

Levine and D’Antonio 1999). As an example, consider

Wallace’s line, which separates those Indonesian islands

formerly connected with the Malay peninsula during the

last glacial maxima, from those formerly connected with

the Australian/New Guinea region. Not too surprisingly

the terrestrial mammals on either side of the line, which

runs between Bali and Lombok, show strong affinities to

Asia on the west and Australia on the east. Since land

mammals are relatively poor overwater dispersers, these

alternative communities may simply reflect insufficient

time for the missing species to colonize. However, when

we look at land birds, where dispersal powers are greater,

the difference between Bali and Lombok is also notable

(Mayr 1944), particularly when relative abundance of

species is taken into account. On the other hand, for

terrestrial reptiles Wallace’s line is practically non-

existent in terms of separating alternative community

compositions, and one sees more of a gradual mingling

of faunas across the Indonesian region (Darlington

1957). Does this mean that the two types of bird

communities are alternative stable states, each repelling

colonization of forms from the other fauna? If so, why

isn’t this happening with reptiles and other taxa?

Answers to these questions are lacking.

The anoles of the Greater Antilles provide a striking

example where nearby islands have drastically different

faunas at the species level but the communities are very

similar in their ecological and morphological patterns.

The remarkable feature of this radiation is that only

particular combinations of body size, perch type, and

climate-space are realized, and these same ‘‘ecomorphs’’

are filled by unrelated forms on the different islands

(Williams 1983, Losos et al. 1998). Using phylogenetic

reconstructions based on DNA, Losos et al. (1998)

found that the sequence of evolution of the various

ecomorphs was probably different between islands,

which makes the similarity of their end states even

more remarkable. Interspecific competition is intense

between island anoles (Losos 1994) and may drive these

adaptive radiations. Presumably, the ancestors of these

species dispersed among islands. The current commu-

nities are thus likely resisting occasional bouts of

colonization and so may represent alternative stable

states structured under a common motif.

Allee effects

If the local growth function fi(Ni; . . . ; Nn) is negative at

low population sizes Ni, and only becomes positive at

still higher levels, say at Ni�/C, the population experi-

ences an Allee effect. A cubic form for f(N) could have

this feature. It can be shown that for continuous time

reaction-diffusion equations over homogeneous space

the presence of such an Allee effect is that the population

will advance with a constant asymptotic velocity if CB/a

critical threshold (which is K/2 for the cubic) and

contract at constant asymptotic speed at higher C (Fife

1979, Lewis and Kareiva 1993, Keitt et al. 2001). By

simply discretizing space into spatial cells Dx, even for

small Dx, a new behavior can happen. For species i and

Fig. 2. The equilibrium spatial distribution (given the initial
conditions) for two competitors competing over two-dimen-
sional homogeneous space. Interspecific competition aAB�/

aBA�/1.5. Movements over space are governed by a diffusion
process, as in Eq. 2 but for two spatial dimensions with DA�/

DB�/0.03. rA�/rB�/0.5, d�/0). The species began in the shaded
corners of space.

32 OIKOS 108:1 (2005)



spatial cell x, Eq. 1 becomes

dNi;x

dt
�mi(Ni;x�Dx�2Ni;x�Ni;x�Dx)�f i(Ni;x; . . .; Nn; x)

(4)

where m is the discrete analog of the diffusion coeffi-

cient. As Dx goes to zero, Eq. 4 approaches Eq. 1. (A

biological rationale for discretizing space is that it

provides one way to represent environmental patchiness;

the assumption is that each patch is separated from its

neighbors by a region of unsuitable habitat avoided

entirely by the species during migration, e.g. rivers

bisecting the habitat). For discrete space, a population

following Eq. 4 may neither advance nor retreat but

remain stationary. Spread (or retreat) can be renewed,

however, by increasing (or decreasing) r, m, or K by a

sufficient amount. If there is a decreasing productivity

gradient affecting K(x), a species introduced into the

high K region might be able to initially advance but the

speed of advance will slow as it invades lower K areas

and eventually spread may stop altogether giving a stable

species border (Keitt et al. 2001). The example shown in

Fig. 3 for Dx�/1 and a spatial gradient of length 40

illustrates how abrupt such a range limit can be by this

process. If Dx is decreased, say to 0.5, in this example,

this population would be able to spread over the entire

space.

If a species with a limited range set by Allee effects is

also a dominant competitor, then its own range limit

may enforce a stable range limit on competitors that lack

Allee effects. The range limits in this case would have

different causes among subordinate and dominant

competitors. Subordinates would be restricted from

expansion by competitive exclusion, while the dominant

species will be restricted by its own Allee effect. More-

over, Allee effects in general should greatly enhance the

likelihood of parapatric boundaries in the model of

competitive gradients discussed above. Sexual reproduc-

tion can often lead to Allee effects because mate location

is made increasingly difficult at lower population den-

sities and low frequencies if similar potentially cross-

mating species are involved.

Interspecific hybridization and parapatric boundaries

Reproductive interference is an oft neglected interspe-

cific interaction, which implicitly involves an Allee effect.

Gorman et al (1971) and Gorman and Boos (1972)

studied the patchy distribution of two introduced anole

species on Trinidad and observed the rapid displacement

of one species (Anolis aeneus ) by another (A. trinitatis )

in some enclaves. The two species freely hybridized and

the hybrids were sterile. When modeled this situation

produces a strong priority effect. For example, if a

confined area contained 90% species A and 10% species

B, and assuming random mating and equivalent birth

and survival rates in each species, the next generation

would contain 81% A, 18% hybrids and 1% B. If all

hybrids were sterile, then in each succeeding generation,

species B, which was initially rarer, would grow progres-

sively rarer still. These arguments can be expanded to

include explicit spatial movements by a slight modifica-

tion of Eq. 2. Set a�/1 so that intraspecific and

interspecific competition are identical. Next, to include

the effects of reproductive interference from interspecific

hybridization make the intrinsic growth rate ri(Ni, Nj),

decline as the frequency of the other species j increases in

the local population. This can be modeled as

ri(Ni;Nj)�rmaxi

�
1�

�
Nj(x; t)

Ni(x; t) � Nj(x; t)

�p�
(5)

The maximum growth rate for each species, rmaxi, is

assumed here to be constant over space. The shape of the

decline in ri is controlled by a single parameter, p. If p is

1, then ri declines linearly with increases in the frequency

of species j. This would be the case if mating was at

random between the two forms and all hybrid zygotes

were inviable. Higher values of p describe greater degrees

of premating isolation. For example if p�/2, and with

both species equally common, the proportion of inter-

specific matings by species i would be 0.25 instead of 0.5.

Except for the density dependence here, this model is

similar to a models of Bazykin (1969) for the spatial

evolution of chromosomal polymorphisms that have

heterozygote underdominance.

In the nonspatial version of this model only one

species prevails. The winner is determined in a compli-

cated way by the magnitude of any initial frequency

Fig. 3. An example of a species range set by Allee effects in
discrete space with a linear gradient in K. The model is Eq. 4
(the discrete space analog to Eq. 1. Dx�/1; local population
growth is described by the cubic equation f(N)�/((N�/3)/10)
(1.5) N(1�/N/K(x)), and K(x)�/3�/0.1x. The initial abundance
is shown by the dashed curve. The final curve of N(x) on the left
is the steady state distribution. If Dx is decreased, say from 1 to
0.5, in this example, this population would begin to spread and
eventually cover the entire space. D�/0.1.
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advantage and the relative rmax’s of the two species.

Figure 4 shows an example of the zero-isoclines for this

highly frequency dependent system when both species

have the same D, K, and d, but slightly different rmax.

As for standard Lotka�/Volterra competition, the inter-

ior equilibrium point is unstable and the two boundary

single-species equilibria are each locally stable.

Consider the spatial model with diffusive movements

(using Eq. 2 and expression 5 as the function f) if the two

species are initially allopatric and then spread to meet

somewhere in the middle, they can reach a stable

parapatric distribution, if the movement constant D is

sufficiently low, even if one species has a numerical

headstart and/or a higher rmax. This is reminiscent of

the situation when a�/1. The maximum values of D that

will still allow this parapatric result and prevent the

advantaged species from completely overrunning the

other depends on the degree of the advantage. Fig. 5

(top) shows an example of the expansion of two species

from opposite sides of one-dimensional space.

The final positions shown are at steady state where the

two species form a very narrow stable zone of spatial

overlap. Since the local population growth term also

includes some density-independent mortality d, species

A in allopatry reaches a higher equilibrium population

size than does species B. As for the a�/0 case, in the

Lotka-Volterra model, the position of the range borders

depends on the initial conditions and the other para-

meters. In this example, if the diffusion coefficient D is

increased sufficiently, then species 1 with the higher

rmax will ultimately drive out species 2 everywhere.

While this example was based on p�/1, a similar result

occurs for much higher values of p. The bottom panel

shows the range pattern emerging from a patchy set of

initial abundances, as might be expected for a pair of

introduced species with multiple introduction foci, like

the two anoles in Trinidad studied by Gorman et al

(1971). These initial conditions give rise to a stable and

patchy distribution of the two species. Again, however, if

D is increased for both species, species A will close in on

the enclaves of species B and displace it everywhere.

Two competitors in a metapopulation

Many natural environments are patchy and experience

varying degrees of disturbance. In such landscapes,

colonization may permit a species to persist despite

recurrent episodes of local extinction (Hanski 1998). The

companion paper by Holt et al. (this issue; Lennon et al.

1997, Holt and Keitt 2000) argues that metapopulation

dynamics can generate range limits via three distinct

causal mechanisms along environmental gradients: a

decline in habitat availability, an increase in extinction

rates, and a decrease in colonization rates. Since

competition between species can influence colonization

and extinction probabilities, it can provide a causal basis

for range limits.

Metapopulation dynamics are often at rather local

scales, whereas geographical ranges are often circum-

scribed at much larger scales, along gradients which

vastly exceed the spatial scale of individual dispersal. As

in the models for direct competition along gradients

sketched above (Roughgarden 1979), it is useful to make

the parameters of metapopulation models into functions

of spatial position, and then characterize patterns of

zonation (e.g. zones of dominance by a single species, or

coexistence) and species borders along gradients. Con-

sider for instance the metapopulation competition model

of Nee et al. (1997). This model describes an interaction

between a dominant competitor (which occupies a

fraction p of landscape patches), and an inferior

competitor (occupying a fraction q of patches). Since

by assumption no patches are jointly occupied, the

dynamics of occupied patches can be described by the

equation pair

dp=dt�cA p (h�p)�eA p (dominant species) (6)

dq=dt�cB q(h�q�p)�eB q�cA p q

(subordinate species): (7)

The first equation is a standard metapopulation model

(Hanski 1998) and assumes that a fraction h of the

landscape is suitable for either species, and that the

dominant species is not affected at all by the inferior

species. The second equation incorporates two distinct

effects the dominant has on the inferior species: patches

occupied by the superior species cannot be colonized by

the inferior species (reducing its colonization rate) and

patches with the inferior species can be invaded by the

Fig. 4. The zero-isoclines for a non-spatial situation where two
ecologically similar species have mutual reproductive interfer-
ence through interspecific hybridization. This is Eq. 2 without
the diffusion term and with r’s given by Eq. 5 as rmax1�/1,
rmax2�/1.2, K1�/K2�/1, d1�/d2�/0.1, a12�/a21�/1, p�/1. The
interior equilibrium point is unstable. The dashed line shows the
separatrix. If initial densities fall to the right of the separatrix,
then species 1 displaces species 2 but if initial densities fall to the
left, the reverse happens.

34 OIKOS 108:1 (2005)



superior species, which then supplants the inferior

species (in effect, increasing its extinction rate). The

model assumes that the time-scale of replacement is

short relative to other dynamical processes in the system,

so we can ignore transient phases when patches are

occupied by each species.

The equilibrium occupancy of the dominant compe-

titor is p*�/h�/eA/cA, and of the subordinate species is

q*�/eA(cA�/cB)/ (cA cB)�/(eB/cB)�/(h cA/cB) (Nee et al.

1997). For the inferior species to coexist with the

superior competitor, it is necessary that the former

have either a higher colonization rate, or a lower basic

extinction rate. Coexistence occurs (if it does) because

one species is superior at competing within-patches, and

the other is superior at occupying and holding empty

space. We assume this necessary condition for coexis-

tence holds.

Any of the parameters in this model could in principle

vary as a function of position along a large scale

environmental gradient. After substitution into the

expressions for equilibrial occupancy we can find the

position of a given species’ border by setting its

occupancy to zero. Manipulating the resulting expres-

sions leads to several intuitive conclusions:

i) Nee et al. (1997) note that habitat destruction can

increase the abundance of an inferior competitor.

In like manner, if the availability of the habitat

required by both species diminishes along a spatial

gradient, only the superior competitor may be

present when habitat is frequent; with declining h,

the frequency of the dominant competitor declines,

until at some h, the inferior competitor appears

(this defines its border); as h continues to decline,

the dominant species declines further, and the

inferior species increases in occupancy until, at

some low h, the dominant competitor disappears

entirely. Still further decreases in h depress the

occupancy of the subordinate species. Competitors

inferior at directly competing for space may thus

have geographical ranges restricted to regions

where their preferred habitat is relatively sparse.

ii) Similar patterns of zonation can occur with a

gradient of increasing extinction rates, which is

Fig. 5. Interspecific
hybridization can produce stable
parapatric boundaries with
diffusive movements. Two
outcomes of the model of Eq. 2
and Eq. 5. Both top and bottom
panels are identical except for
initial conditions. Space is one-
dimensional and the initial
densities of the two species are
shown as dashed curves. The
final steady state distributions
are shown as solid lines.
Parameters are: p�/1, K(x)�/

12.83, rmax1�/0.6, rmax2�/0.5,
d�/0.0034, Di�/Dj�/0.0003,
aij�/aji�/1. In this example, if D
for both species is increased to
0.03, then species 1 with the
higher rmax will ultimately drive
out species 2 everywhere for the
same initial conditions.
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uniformly experienced by both species (e.g. loca-

lized catastrophic disturbances). The subordinate

competitor suffers directly from increased extinc-

tion rates, but indirectly benefits because of re-

duced occupancy of patches by the superior

competitor (recall that the subordinate has a higher

colonization rate into empty patches). Along a

gradient in increasing extinction, the inferior com-

petitor occupies a zone of higher overall extinction

rates because the indirect positive effect of extinc-

tion freeing up space from the dominant species

exceeds the negative direct interspecific effect.

iii) Likewise, if we assume that both species have

equal colonization rates, and the inferior compe-

titor enjoys a lower extinction rate, then along a

gradient in declining colonization rates (for both

species) a species border for the inferior competitor

will arise when the colonization rate is sufficiently

reduced.

In all cases, the direct response of both species to the

environmental gradient may be the same, but as for the

reaction�/diffusion systems considered earlier, the com-

petitive interaction reverses the impact of the spatially-

varying factor upon the range limit of the inferior

species.

Specialist predator�/prey and host�/parasite systems

The theme of indirect versus direct effects in determining

causes of range limits along gradients is broadly applic-

able. Consider for example the factors which define the

range limit of a specialist predator dependent upon a

single prey species (or in like manner, a parasite

specialized to a single host species). It is clear that if

dispersal is limited, the distribution of the specialist

predator will be nested within the distribution of its

required prey (Holt et al. 1999), but a more refined

understanding of the range position requires a dynami-

cal model. We assume again that dynamics at the scale of

local landscapes adequately match the assumption of

metapopulation models. The model we consider is

adapted from Holt (1997). Patches can be in one of

four states: unsuitable (with a frequency 1�/h), state 0

(empty), state 1 (prey present alone); state 2 (prey

present with the predator). For simplicity, we assume

that the predator in a patch only goes extinct when the

prey there goes extinct, and that predators can only

colonize patches already occupied by prey. Moreover, we

assume that prey colonization only occurs from patches

with the prey alone. This assumption is reasonable if the

predator greatly reduces local prey abundance, causing a

dramatic reduction in prey numbers in patches with the

predator. With these assumptions, the two-species me-

tapopulation model is as follows:

dp1

dt
�c01p1(h�p1�p2)�c12p1p2�e10p1 (8)

dp2

dt
�c12p1p2�e20p2 (9)

where h is the fraction of patches suitable for coloniza-

tion by the prey species (and hence the predator), pi is

the fraction of patches in state i, cij is the rate of

colonization from state i to state j, and eij is the rate of

extinction from state i to state j. Now make all these

parameters and variables functions of position along a

gradient, x. The predator will be present at points along

the gradient within the prey distribution where:

h(x)�
e10(x)

c01(x)
�

e20(x)

c12(x)
(10)

(Holt 1997). The condition for the prey to be present is

h(x)�/e10(x)/c01(x). Thus, this inequality reveals that the

predator has more stringent requirements for persistence

than does its prey, and so will have a nested distribution

along the gradient, contained within the range of its

prey. The inequality makes explicit the importance of

dynamic processes affecting prey occupancy (other than

predation) which indirectly constrain the predator’s

distribution.

The predator’s distributional range limit will occur

when the above expression is an equality. A species’

border for a specialist predator species can arise because

of the predator’s own direct response in colonization and

extinction rates along the gradient. Alternatively, the

predator may have spatially invariant colonization and

extinction rates, but indirectly have its range limited

because there is a gradient in availability of habitats

suitable for its prey, or in the colonization rate of its prey,

or in the extinction rate of its prey (in the absence of the

predator). A comprehensive explanation of a specialist

predator species’ border needs to consider both direct

and indirect effects of position along the gradient.

In the above model, the prey species has range limits

set by its own autecological requirements, rather than by

the predator. If dispersal rates are very low, it would

appear to be difficult for a monophagous predator to

generate a stable species border in its solitary species of

prey. The reason for this is simply that if a monophagous

predator causes a range limit in its prey, then by

assumption the prey is excluded by predation just

beyond the range limit, but if so, the predator itself

should starve and go locally extinct. Later-arriving prey

could then freely invade, and hence the range limit would

not be stable! More generally, prey limits can be set by

predation, via two distinct mechanisms: 1) specialist

predator ‘spillover’ effects, and 2) generalist predators

sustained by alternative prey (apparent competition).

If one explicitly accounts for dispersal along the

gradient by the predator, spillover effects can lead to a

limited range for the prey, maintained by the specialist
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predator. Holt (1979) suggested that a specialist natural

enemy could enforce a range limit in its prey, if predator

dispersal rates were high, and if the prey had sharp

spatial gradients in production. Hochberg and Ives

(1999) extended this idea using a host�/parasitoid model,

and demonstrated that a specialist parasitoid could

enforce a geographical range limit in its prey (and hence

in itself). The conditions that favored this outcome were

as follows: i) the parasitoid must have high attacks rates,

permitting moderate parasitoid numbers to limit the

host to well below local carrying capacity; ii) there must

be gradients in host production, indirectly producing

‘‘hot spots’’ of parasitoid production; iii) the parasitoid

must have high dispersal rates, permitting these hot spots

to indirectly sustain parasitoid populations at sites where

the host is nearly or entirely eliminated.

One interesting effect revealed by their model (and

conjectured in Holt 1979) is that a parasitoid can lead to

the absence of a host in regions where host populations

would be most abundant in the absence of the para-

sitoid. The reason is that high host productivity tends to

induce strongly unstable population dynamics in host-

parasitoid systems, tending to eliminate both hosts and

parasitoids (an example of the ‘‘paradox of enrich-

ment’’). Because of these instabilities, the species border

in regions of high productivity is rather unstable, with

eruptions of both species from more stable, persistent

regions. The species borders for both host and parasitoid

in the productive region are fluctuating bands of

unstable populations at sites that are colonized by hosts,

which then grow and thrive until the parasitoids arrive

and set up locally highly unstable dynamics, leading to

extinction for both species. Hassell (2000, chapter 7)

reviews such models and shows sample illustrations of

some the resulting intricate spatial patterns.

As Hochberg and Ives (1999) note, these results

depend upon substantial parasitoid dispersal, and the

spatial scales over which such dispersal is likely to occur

would seem to be more likely to pertain to patterns of

local habitat patchiness (Hastings et al. 1997) than to the

determination of geographical range limits. However, if

there are sharp spatial gradients in environmental

conditions, parasitoid or predator dispersal could

further sharpen the species border of a host or prey

species.

Generalist predators and prey range limits

Polyphagous predators can of course stably eliminate

particular prey species from local communities, and are

quite likely to generate stable range limits in prey species,

particularly when different species are differentially

productive or vulnerable to predation across a gradient.

The likelihood of this occurring depends upon the

availability of alternative prey, which are sufficiently

productive to sustain the predator, and hence the

existence of apparent competition between alternative

prey (Holt 1977, Holt and Lawton 1994). A simple

model with this feature is to assume logistic prey growth

for each of two prey species, and a predator with a

standard linear functional and numerical response to

each prey, as follows (Holt 1984):

dRi=dt�riRi(1�Ri=Ki)�aiRiP for i�1; 2 (11)

dP=dt�P(a1b1R1�a2b2R2�d); (12)

where ai is the predator attack rate upon prey i, and bi

measures the benefit enjoyed by the predator from those

attacks. The quantity d is predator density independent

mortality. For simplicity, assume that the prey feeds

in an even-handed manner such that both attack

rates equal a, and both prey benefits are b. Define

D�/1�/d/abK. The quantity D measures the fractional

reduction of prey at equilibrium below carrying capacity

due to the predator (Holt 1984). For the two prey species

to coexist, the prey with lower intrinsic growth rate (say

prey 2) must satisfy the inequality r2/r1�/D.

As an illustrative example, assume that prey 1 has a

linear decline in its intrinsic growth rate along the

gradient, given by r1�/r?�/gx, and prey species 2 has

an opposite pattern, with r2�/gx (for 0B/xB/r?/g). The

length of the gradient is r?/g, and this is the range of each

prey species when it is alone with the predator. Given

that both prey species are present, the width of the

overlap zone between the two prey is

w�
r’

g

(1 � D)

(1 � D)
(13)

an expression that parallels the one we found for directly

competing species (with D substituting for a). One

immediately sees that the more effective the predator is

at limiting prey well below carrying capacity (i.e. D near

one), the narrower the zone of overlap between the prey.

Strong shared predation can thus readily generate

distributional boundaries for alternative prey along

gradients. Presumably, the inclusion of diffusive move-

ment terms to this model would simply smear out these

zones.

Settle and Wilson (1990) describe an example of a

range limit that has seemingly emerged in leafhoppers in

southern California due to shared parasitism. In this and

other examples, there is often a strong asymmetry in the

indirect interaction (Chaneton and Bonsall 2000). In a

geographical context, such asymmetries can lead to one

species having a range limit set by a natural enemy,

without there being a reciprocal effect on the other

species. Parasites are often relatively benign in their

impact upon one host species, and severely debilitating

in others. For instance, the parasitic worm Pneumos-

trongylus is carried by the white-tailed deer, with little

demographic impact, but is fatal to caribou. Because

caribou herds wander widely during foraging, they are
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likely to encounter browse with the intermediate host (a

gastropod), and thus become infected, if white-tailed

deer are present anywhere in a broad region. Embree

(1979) argues that this indirect interaction via shared

parasitism may explain the southern geographical limit

of caribou in eastern Canada, where they are roughly

parapatric with white-tailed deer.

The small shrub, Happlopappus squarrosus, increases

in abundance from coast to mountains in southern

California. While still in the flowers, its seeds suffer

substantial predation by insects, both generalists and

specialists. The abundance of adult shrubs tracks geo-

graphic variation in the impact of these predators and

experimental removals of these predators leads to

substantial recruitment, particularly in the low-abun-

dance coastal sites (Louda 1982).

Mutualism

Obligate mutualisms or commensalisms could readily

give rise to sharp species borders. Rather than present

another model, we sketch an example that shows the

effect, albeit at a local scale. Old beaver ponds in boreal

regions take a very long time to revert to forest.

Terwilliger and Pastor (1999) suggest that this reflects

a complex web of interspecific interactions, including

mutualisms. The dominant tree at their study site is

black spruce (Picea mariana ), which is an ecomycor-

rhizal species requiring specific fungi in its root system

to grow effectively. These fungi cannot withstand long-

term submergence and so are likely to be absent when

the beaver pond is abandoned and begins to revert to a

meadow. Terwilliger and Pastor experimentally demon-

strate that spruce seedlings do poorly in beaver meadow

soils. So, at this local spatial scale, the distribution of

spruce is constrained because of the absence of an

obligate mutualist. But the plot thickens: why is the

mutualist absent? The long lag in succession makes it

improbable that wind dispersal is responsible for estab-

lishment of ecomycchorizal fungi on meadows. Terwilli-

ger and Pastor suggest that instead a mammal, the red-

backed vole (Clethrionomys gupperi ) carries the spores,

picking them up by eating mushrooms, and depositing

them in its feces. Inoculating beaver meadow soil with

fecal material from the vole did introduce the ecomyco-

rrhizal fungi and facilitated spruce survival and growth.

The red-backed vole in turn does not wander onto the

meadows because of competitive interactions with

another rodent, the meadow vole (Microtus penn-

sylvanicus), which in turn does not enter the forest. At

a local scale, a short-term distributional limit in the tree

thus arises from cascading mutualisms, in the context of

a competitive interaction.

Similar effects must surely arise whenever species are

obligate mutualists. For instance, a given species of

yucca requires a given species of yucca moth for

successful reproduction. It is likely that a climate

envelope describes the range of abiotic conditions that

the moth can successfully tolerate. Even if the yucca can

survive as individuals at sites with conditions outside

that climate envelope, self-sustaining populations cannot

persist in the absence of the moth. Abiotic constraints on

the distribution of the moth should automatically

generate a range limit in the yucca. Although this

scenario seems very plausible, we are unaware of any

detailed study of the phenomenon.

Comparable patterns may arise in the very numerous

mutualisms which are not so species-specific. For

instance, many plant species require mammals for

dispersal, either via fruit ingestion, or by adhesion to

skin or fur, but the dependence is not tightly specific to a

particular species of dispersal agent. In a metapopula-

tion context, any factor that reduces the efficacy of

colonization can generate a range limit (Holt and Keitt

2000). Gradients in mammal abundance due to, e.g. food

availability, could thus indirectly lead to range limits for

these plant species in regions where overall mammal

abundance is reduced.

Models that include coevolution and gene flow

Competition

Why doesn’t local adaptation in populations at the range

boundary allow the continual expansion of the range

over evolutionary time? One explanation is that these

marginal populations lack the requisite genetic varia-

bility to improve fitness. Usually this does not appear to

be the case. For example, Jenkins and Hoffmann (1999)

found that the southern limit of Drosophila serrata was

determined in eastern Australia by the fly’s ability to

withstand cold stress but southern populations had

heritable variation in this character. The interesting

observation that when species experience decline, many

persist in the periphery of their historical geographic

range, but not the core (Brooks 2000, Channell and

Lomolino 2000), suggests these populations may retain

adaptive potential. Haldane (1956) suggested that con-

tinued local adaptation at the margin would be coun-

tered by detrimental effects of gene flow from the

population’s more populous interior, with the result

that a stable range limit could evolve even in the absence

of any physical barriers to dispersal. Kirkpatrick and

Barton (1997) modeled this situation using a quantita-

tive character subject to stabilizing selection for an

optimum temperature that varied geographically. They

found stable limited ranges as one of several possible

results. The addition of interacting species can enhance

this effect (Case and Taper 2000). The effect of gene flow

upon local adaptation can at times be positive, because

migration permits an infusion of genetic variation,
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thereby facilitating selection (Gomulkiewicz et al. 1999,

Barton 2001). There is still much that can be done in this

framework to explore the coevolution of quantitative

traits in different species and its effect on range limits;

hence we review the structure of the model explored in

Case and Taper (2000) and present some new results.

The local growth rate of a population of species i with

mean phenotype at spatial position x is

dNi(x; t)

dt
�Ni(x; t)w̄i(z̄i; x; t) (14)

where w̄i(z̄i; x; t) denotes the intrinsic growth rate of

species i’s population averaged over all its phenotypes

(see expression 16 below; for simplicity, the dependence

upon the mean is shown, though in general the average

growth rate depends upon the full phenotypic distribu-

tion). Each phenotype z in species i at position x has an

intrinsic rate of growth wi(z, x, t) from selection that

depends upon population density Ni and phenotypic

frequency distribution p(z) in all species. A quantitative

phenotypic character, z, influences the strength of

competition between phenotypes intra- and interspecifi-

cally through a function a(z, z?). Additionally, the

physical environment selects for some optimum pheno-

type u(x) at spatial position x. For the case of two

competing species i and j, the Malthusian fitness of

phenotype z in species i at time t is

wi(z; x; t)�r(x)�
r(x)Ni(x; t)

K(x) g
�

��

a(z; z?)pi(z?; x; t)dz?

�
r(x)Nj(x; t)

K(x) g
�

��

a(z; z?)pj(z?; x; t)dz?

�
(u(x) � z(x; t))2

2Vs

(15)

The first integral, which is the convolution of species i’s

phenotypic distribution with the competition function

a(z, z?), gives the total amount of intraspecific competi-

tion on phenotype z (once multiplied by the current

population density of species i at time t, Ni). The second

integral gives the total amount of interspecific competi-

tion from all phenotypes within species j on phenotype z

in species i. The competition function a, provides a force

for diversifying selection. It is modeled as a Gaussian

function of phenotypic separation, z�/z? with variance

Va. Finally, the last term represents the stabilizing

selection on z around the optimum phenotype u at

position x, as a quadratic function with variance Vs.

Note that this final term provides a density-independent

source of selection. This term represents a fitness penalty

for deviation from the optimum phenotype for the

local physical environment. Thus a homogeneous popu-

lation at position x, comprised solely of the optimum

phenotype u(x), would have carrying capacity K(x), but

other phenotypes would have equilibrium densities less

than K(x). The smaller Vs, the more severely nonoptimal

phenotypes are penalized as they depart from u(x). Also

note that r(x) and K(x) are thought to be independent of

phenotype but potentially varying across space.

To track the changes in population size of species i

using Eq. 14 requires an expression for mean fitness at

point x, which is

w̄i(x; t)� g
�

��

wi(z; x; t)pi(z; x; t)dz (16)

The effects of local selection on mean phenotype is

dz̄i(t)

dt
(local)�h2

�
g
�

��

zpi(z; t)wi(z; t)�w̄i(t)z̄i(t)dz

�
(17)

The heritability h2 is assumed to be constant, which can

result under weak selection, if a mutation-selection

balance occurs, and the phenotypic distribution remains

approximately Gaussian with constant variance Vp

(Lande 1976). Because the model also includes frequency

dependence generated by competition in this model, an

equilibrium phenotypic variance is also expected due to

a balance between diversifying selection (from competi-

tion) and balancing selection (Bulmer 1980, chapter 10).

A more tenuous assumption is that Vp is constant over

space despite strong differences in population size and

gene flow. By linking Eq. 2, Eq. 16 and Eq. 17, Case and

Taper (2000) were able to evaluate the resulting double

integrals and provide closed-form expressions for dNi/dt

and dz̄i=dt:
Movements and gene flow were handled by a diffusion

process. For continuous space and time, the change in

numbers of species i at point x, in one-dimensional

space, due to movement and local population growth is

then:

1Ni(x; t)

1t
�D

12Ni(x; t)

1x2
�Niw̄i(x; f i(z̄i; x; t)) (18)

where D is the diffusion parameter (or dispersal

coefficient). D is assumed to be equal for both species

and spatially and density-independent. Individual move-

ments also change the mean phenotype at position x due

to gene flow, so the total change in mean phenotype is

the sum of changes from diffusive mixing and local

evolution, as follows

1z̄i(x; t)

1t
�D

12z̄i(x; t)

1x2
�2D

1ln(Ni(x; t))

1x

1z̄i(x; t)

1x

�
1z̄i(x; t)

1t
(local) (19)

The coupled partial differential Eq. 18 and 19 provide

the model. (Extensions to two-dimensional space are
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simple.) In Eq. 19, the third term describes local

selection, in the absence of movement and gene flow

(i.e. Eq. 17); the first term describes the impact of simple

movement; and, the second term describes how spatial

variation in local abundance alters the expected effect of

movement upon phenoypic values. The net change in

phenotype at a given locality thus reflects the interplay

of local selection and gene flow (Kirkpatrick and Barton

1997, Case and Taper 2000).

The retarding effect of gene flow on local adaptation,

thus potentially causing a range limit, is influenced by

the product of the diffusion coefficient D and the

steepness of the environmental gradient through the

slope of u(x). If this product is sufficiently high and

heritability sufficiently low, even a single species can have

a stable range limit. Naturally, if parameters are such

that either species alone has a limited range, then for two

competing species, each will have a limited range in

allopatry. What is more interesting is how the two species

populations behave in situations where either alone

would have an unlimited range. Case and Taper (2000)

found that stable range limits were produced for lower

values of this product when species also potentially

compete. Empirical estimates for r, h2, D, and the slope

of the environmental gradient did not usually seem

consistent with an evolutionarily stable limited range for

the single-species case, although interspecific interac-

tions (and presumably other biotic interactions as well)

considerably relax the requirements on these parameters.

In two-competitor models, the mutual range limits are

associated with character displacement (generalizing in a

spatial context prior studies of local character displace-

ment, such as Slatkin 1980 and Taper and Case 1985,

1992). The co-occurrence of the two species in sympatry

induces a character displacement in z, which in turn,

initially allows local coexistence. As spatial overlap

between the two species increases so does the departure

of each species, induced by the character displacement,

from the optimum phenotype u(x). This, in turn, leads to

a reduction in population density in part from inter-

specific competition and in part from the departure of

each species from u(x) from character displacement. In

this way, the local evolution of character displacement

interacts with asymmetric gene flow caused by reduced

abundance in sympatry to produce a stable range

boundary in each species. At the evolutionary equili-

brium, a portion of each species’ range is allopatric and a

portion is in sympatry (examples are shown in Case and

Taper 2000).

If the physical environment has particularly rapid

changes over some parts of space, nearby positions will

have very different optimum phenotypes. The same

amount of gene flow becomes more disruptive to local

adaptation because immigrants from nearby populations

have phenotypes less suitable to the local optima. This

slows down and may even stop range expansion leading

to stable borders. An example is shown in the top panel

of Fig. 6 for a single species case. This species was

initialized in the center of space and evolves mean

phenotypes to match the regions of space where the

u(x) has a shallow slope. However, for the parameters

here, the sharp ecotone on the left can not be

surmounted by local adaptation. Note the severe depar-

ture of mean phenotype in this region from the optimum

curve, due to gene flow from populations with smaller z

to the right. In the bottom panel, the K(x) curve, which

was uniformly flat in the top panel, is modified to

provide a biogeographic filter (by reduced numbers) at

position x�/25 to the right of the u(x) kink in u(x). The

consequence of this is a partial relaxation of the

retarding effect of gene flow for populations to the left

of x�/25, and the consequent evolutionary ability to

now expand to the left.

What at first glance would seem like an impediment to

range expansion, a zone of sharply lower carrying

capacity K, actually facilitates a ultimate range expan-

sion as we saw in Fig. 6 and does not lead to coincident

range termini in this model. Figure 7 shows an optimum

curve with two regions that have particularly rapid

slopes: one on the left and another on the right. This

leads to two alternative coevolutionary outcomes, and

in both the range termini are fixed onto the zone of

rapid transition in u(x), either the left zone or the right

zone.

The range boundaries for two species, like those

shown in Fig. 7, arise from the interaction of inter-

specific competition with the environmental gradient. If

species 2, for example, is removed, then for these

parameters, species 1 is capable of evolving a mean

phenotype that allows it to evolve to cover the entire

spatial gradient, ultimately ‘‘hugging’’ the optima over

its entire spatial range (similarly for species 2, if species 1

is removed). If the kinks in the environmental gradient

u(x) are smoothed out, both species will also be able to

expand their regions of sympatry with an accompanying

character-displacement.

The predication that range boundaries will be asso-

ciated with sharp abiotic environmental gradients

(but not necessarily with decreases in productivity)

provides a sharp distinction for future testing. Boone

and Krohn (2000) analyzed the range limits of bird

species in Maine and found that for forest specialists

their borders were spatially coincident with rapid transi-

tions in vegetation.

Future directions with spatial coevolution

A somewhat paradoxical conclusion from this model

is that the ultimate geographic spread of an invading

species may be inversely related to its dispersal rate. This

result only arises if continued spread of an invader over
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new terrain requires continuing adaptation to local

environments. Many invaders, on the other hand, may

be able to spread by avoiding local adaptation and

instead finding human-modified habitats to which they

are pre-adapted, such as urban/suburban settings or

particular agricultural crops. In these cases, rapid spread

is achieved by long-distance dispersal, which allows

individuals to ‘‘hop’’ over less suitable habitats that

would require local adaptation. An interesting example

is provided by Niemel and Spence (1991, 1999), who

describe the invasion dynamics of a carabid beetle

(Pterostichus melanarius ) in Canada. The beetle does

Fig. 6. Top. The equilibrium
distribution of population size
(left) and the evolved mean
phenotype z (right) over space x
in a one-species case where the
optimal phenotype u(x) based
on stabilizing selection (dashed
curve) varies in a nonlinear way.
The initial conditions for N(x)
were Gaussian and initial mean
phenotype for these populations
began at u(x). In the top pair of
figures, the carrying capacity
curve is flat across space at
K(x)�/10. In the bottom pair of
subfigures K(x) has a sharp drop
to 20% of its former level at
spatial position 25. VS�/36,
h2�/0.2, D�/0.1, Va�/36, Vp�/

2, r(x)�/1.

Fig. 7. The effect of nonlinear
u(x) on the coevolution of
character displacement and
geographic ranges for two
species. There are two zones of
rapid transition in u(x), shown
by the dashed line, one on the
left and one on the extreme
right. Each species’ density (left
panels) was initialized with
Gaussian distributions
(maximum density of 1) at the
spatial positions shown. The
top and bottom panel pairs are
identical except for the initial
conditions. Density curves (on
the top-left) are drawn every 40
time units. The right-hand
figure shows the resulting
equilibrium mean phenotype
for both species over space. The
two different initializations
reach two different spatial
equilibria, but in each the
transition zone between the two
species coincides roughly with
the center of the u(x) kink. Each
species if alone would evolve to
cover the entire space. Other
parameters: Vs�/36, h2�/0.2,
D�/0.1, Va�/3, Vp�/2, r(x)�/

0.2, K(x)�/10.
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very well in urban areas, and spreads among spatially

distant urban environments largely via long-winged

individuals who are capable of dispersing over large

distances. Such movement patterns are not adequately

described by a pure diffusion process (Holmes et al.

1994). To predict possible consequences of invaders in a

fragmented landscape, and to model more realistically

the effect of climate change on range shifts and local

evolution, and extinction along continuous environmen-

tal gradients, the above model must be generalized to

include a wider array of dispersal behavior and a biased

directionality to movement to produce habitat selection.

It would also be important to consider stochasticity.

Demographic stochasticity is likely to lead to local

extinctions, genetic drift, and loss of genetic variation,

which should impede adaptive evolution at range

margins. Environmental stochasticity can have a variety

of effects. Holt et al. (2004) have recently shown that

temporal correlated variation that is moderate in mag-

nitude can actually facilitate adaptive variation in

marginal populations, by providing ‘windows of oppor-

tunity’ for selection to enhance local adaptation.

The consideration of the effects of individual move-

ments on gene flow is also grossly incomplete in the

present models. As individuals move, the genetic and

phenotypic variances may also change. Dispersal alone

should increase the local genetic variation, but it is not

so clear how genetic variances are simultaneously

affected by drift and effective population size, dispersal,

stabilizing selection, and diversifying selection. If per-

ipheral populations tend to be small and isolated, and if

this leads to reduced genetic variance, then local

adaptation at the range boundary will be reduced if

migration is not too strong (Gomulkiewicz et al. 1999).

This could reduce the capability of peripheral popula-

tions to respond adaptively to selection, compared to

those in the interior.

Most organisms will probably not choose movement

directions at random, but rather be guided by habitat

selection that provides a better match between pheno-

type and spatial position. A framework for modeling

habitat choice in continuous time is provided by

Shigesada et al (1979), Pease et al. (1989) and Holmes

et al. (1994). If individuals have a movement bias that

tends to bring them into areas to which they are already

preadapted, then the disruptive effects of gene flow will

be mitigated to some extent. The same level of dispersal

will not be as damaging to local adaptation compared to

random movements. Similarly, phenotypic plasticity that

allows the same phenotype to adjust to local environ-

mental conditions in an adaptive manner will tend to

mitigate the disruptive effect of gene flow.

The spatial coevolution models discussed above cre-

ated a framework for exploring the interaction between

gene flow, local adaptation through stabilizing selection

to the physical environment, and local adaptation

through diversifying selection to the biotic environment

created by competition. Several authors (Hochberg and

Ives 1999, Hochberg and Holt 2002, Nuismer and

Kirkpatrick 2003) have explored similar issues in pre-

dator�/prey and host�/pathogen interactions. One issue

which complicates matters in interesting ways in host-

parasite and predator�/prey coevolution is that at times,

dispersal can have a strong positive effect on local

genetic variation (Gomulkiewicz et al. 1999, Barton

2001), which can substantially reverse the expected

negative effect of gene flow upon local adaptation. In

predator�/prey and host�/pathogen systems, this can

permit the species which disperses at the greater rate to

develop local adaptation more effectively (Gandon et al.

1996, Hochberg and van Baalen 1998).

Range limits in the context of entire
communities

In most of this paper, we have been concerned with

interspecific interactions among very small numbers of

strongly interacting species (2 to 3). We conclude by

discussing some issues that arise when considering range

limits in the context of entire communities, including

many weakly interacting species.

Studies of distributional patterns of assemblages along

environmental gradients suggest that range limits in

many species do not obviously arise from pairwise

interactions (Whittaker and Niering 1965, Terborgh

1971, Whittaker 1975). The importance of individualistic

determinants of range limits is also suggested by

paleoecological studies of historical shifts in ranges

and community composition, which reveal that species

ranges often respond idiosyncratically to climate change

(Davis 1986, Graham 1986, Coope 1987). However,

experimental studies of local populations and commu-

nities usually demonstrate the existence and importance

of strong interspecific interactions such as predation and

competition in determining local community member-

ship, and relative abundances of community members.

Moreover, some paleoecological studies do suggest

patterns of concordant responses by entire communities

to climate change (Boucot 1978). Concordant responses

imply that entire suites of range limits shift roughly

synchronously, over some spatial scale. How does one

reconcile the presence of strong local interactions, with

individualistic responses by species to environmental

gradients over broader spatial scales? When might one

expect to observe concordant versus individualistic

responses in range limits?

First, consider a community in which species in a

given trophic level are to a reasonable approximation

non-interactive. The geographical ranges of a given

species should in this case just reflect the fundamental

niche of that species (its basic abiotic and resource
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requirements), mapped onto the array of available

environmental states, and constrained further by barriers

to dispersal. Concordant changes in species’ range limits

following an environmental change requires that the

following hold: 1) the edges of species’ fundamental

niches in abstract niche space must cluster; 2) species

niches must remain relatively constant in the face of

environmental change (i.e. ‘‘niche conservatism’’, Holt

and Gaines 1992); 3) barriers to dispersal must be

experienced similarly by most species. It seems unlikely

in general that all of these will hold. This may help

explain the general pattern of individualistic responses

by species, while leaving room for some clear cases of

concordant range responses.

In a multispecies context, interspecific interactions will

often lead to a great deal of indeterminacy (Bender et al.

1984, Yodzis 1988) in the net effect of any change upon

species’ abundances. Close analyses of local communities

usually reveal that most species are locked into a

complex web of interactions, including both a few strong

and numerous weak interactions. However, interaction

strengths among co-occurring species within a commu-

nity often do not reflect the importance of a particular

key species in preventing the invasion of missing species

into the system. The abundances of species among local

assemblages where a key species does and does not occur

are influenced by a complicated web of interactions

involving both direct and indirect effects of species

interactions both within and between assemblages

(McPeek 1990a, Werner and McPeek 1994). For exam-

ple, some fish species are key species in aquatic systems

because predation by them is strong enough to drive

some prey locally extinct, but these same key fish species

have only weak direct effects on prey that coexist with

them (McPeek 1990a, 1998, Werner and McPeek 1994).

Moreover, fish can have an indirect positive effect on the

prey with which they coexist, because some of the other

prey species they exclude are also voracious predators of

the fishes’ coexisting prey (i.e. many invertebrate pre-

dators) (Werner and McPeek 1994). These invertebrate

predators excluded by fish predation are relegated to

fishless waters and coexist with (and feed upon) these

prey species that are excluded from fish lakes. In each of

these communities (water bodies with fish or inverte-

brates respectively as the top predators) the top predator

(1) imparts strong negative direct effects on species in the

other community that results in the exclusion of those

species, (2) imparts weak negative direct effects on prey

that can coexist with that top predator, and (3) imparts

strong positive indirect effects on these same coexisting

prey because it is excluding species via the direct effects

in 1.

Just as changes in species composition will result from

adding or losing a key species in a local community, the

borders of prey species ranges may be strongly influ-

enced by the changes in community structure that are

caused by crossing the border of a key species’ range. The

borders of species that depend on the presence of a key

species for their persistence in a community should be

nearly coincident with the borders of that same key

species. We know of no experimentally verified examples

where species ranges are terminated because of the loss

of a key species. However, one of the systems studied by

one of us provides much circumstantial evidence that

suggests this as the cause for range limits in a number of

species. In eastern North America, species of Enallagma

damselflies (Odonata: Coenagrionidae) segregate be-

tween water bodies that have fish as the top predators

and large dragonflies as top predators (Johnson and

Crowley 1980, Pierce et al. 1985, McPeek 1990a, 1998).

The large dragonflies are also themselves relegated to

fishless waters by fish predation (Crowder and Cooper

1982, Werner and McPeek 1994). Each Enallagma

species coexists with only one of these two predators

because each is differentially vulnerable to fish and

dragonfly predators; those that are more active and use

swimming to evade attacking predators coexist with the

large dragonflies, and those that are less active and

remain motionless when predators are near coexist with

fish (Pierce et al. 1985, McPeek 1990b).

The possible effects of key species on prey distribu-

tional limits are evident in the distributions of those

Enallagma species that coexist with fish. The 38 North

American Enallagma species fall into two primary clades

(McPeek and Brown 2000). One clade with 18 species

has its center of diversity in New England (hereafter the

‘‘northern’’ clade), but three of these species are found

only in the western half of the continent, and six species

have distributions that stretch across the continent

(Westfall and May 1996). In contrast, the other clade

with 20 species has its center of diversity in the south-

eastern USA, and the ranges of all but one species are

restricted to the eastern half of the continent (i.e. the

area from the Gulf of Mexico north to southern Canada,

and Texas to the Dakotas). (The one species in this clade

that is now found outside this area, E. basidens, has

greatly expanded its range outside of this area only since

the 1930’s (Westfall and May 1996).) The area of the

continent covered by this second ‘‘southern’’ clade

(excluding the current range of E. basidens ) is very

similar to the area inhabited by the sunfishes in the genus

Lepomis, and the Lepomis are typically the most

abundant littoral feeding fishes (in biomass and num-

bers) in lakes in this area of North America (Hayne and

Ball 1956, Werner and Hall 1988).

Two lines of evidence suggest that the range bound-

aries of these southern-clade Enallagma species may be

set by facilitation by their key species, the Lepomis. First,

clade-level differences exist in phenotypic traits that

make species better at avoiding dragonfly predation.

Species in the southern clade are very poor swimmers,

whereas species in the other clade are strong swimmers,
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although they rarely swim when attacked by predators

(McPeek 2000). Second, the species that are found

coexisting only with large dragonflies in eastern North

America are common in lakes with fish in western North

America (R. Garrison, D. Paulson, L. Ramsay, pers.

comm.). Perhaps the fish species in western North

America are less effective littoral predators and thus

reduce the abundances of large, active dragonfly pre-

dators (and the Enallagma species that are found only in

fishless waters in the east) to a much lesser degree than

Lepomis are capable of doing in eastern North American

waters. Consequently, the ranges of the species that are

less able to cope with dragonfly predation (i.e. the

southern clade species) are limited in their geographic

distributions to only areas of the continent where

Lepomis species occur. Clearly, these are only conjec-

tures that must be experimentally tested. However, this

proposed mechanism does illustrate how direct and

indirect effects emanating from a few key species can

limit the distributions of species in complex food webs.

Replacement or loss of the key species may diminish or

remove the strong, positive indirect effect of the key

species on its coexisting prey, and thus limit the ranges of

many of those prey.

Conclusions

The geographical range of a species should often reflect

both the abiotic environment, the ensemble of species

with which it interacts, and its own capacity to respond

via natural selection to those interactions. When a

species interacts with a complex ensemble of other

species (competitors, predators, mutualists, etc.), varia-

tion in the abundance or traits of any of those species

could conceivably lead to a range limit. One might

expect that suites of interlocked demographic and

evolutionary responses, rich in potential for nonlinear

feedbacks, could generate a great deal of indeterminacy

in the spatial responses of single species and entire

communities to abiotic environmental gradients. Indeed,

the microcosm experiments of Davis et al. (1999) reveal

that interactions can indeed lead to sharp deviations in

range limits from those expected from individual cli-

matic tolerances alone.

Given the potential complexity of multispecies inter-

actions and evolutionary responses, it is surprising that

range limits are predictable at all. Yet empirical studies

(Parmesan et al., this issue) reveal a substantial amount

of predictability in studies of range limits. This makes

sense, if the life of a species is governed principally by

interactions with the physical environment, and/or a few

key species (e.g. congeneric competitors, as in Gross and

Price 2000). The theoretical studies we have explored

here help sharpen our expectations about how strong

interspecific interactions can mold range limits over both

ecological and evolutionary time scales. The degree to

which insights from these simple pairwise models pertain

to species’ ranges emerging in complex multispecies

communities is an open and challenging question.
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