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Abstract

For a virus population within its host, two important levels of structure can be considered: multiple cell types which can be

infected, and tissue types or body compartments which may be coupled via movement. We develop a model with both types of

structure. Migration between compartments can create ‘‘sources’’ and ‘‘sinks’’ within the virus population, where realized viral

growth rate and abundance is lowered in some compartments compared to what would be observed in isolation. Using both

analytical and numerical methods, we investigate how this within-host spatial structure affects the conditions for persistent viral

infection. We find that migration between compartments makes the establishment of infection more difficult than it would be in the

absence of migration, implying that within-host spatial structure combined with viral movement decreases the likelihood of viral

establishment. If migration is symmetrical and compartments are heterogeneous, an increase in migration rates between

compartments generally makes establishment less likely. This may help to explain the tissue specificity observed for many viruses.

There are, however, important exceptions to this result. These include circumstances where the virus initially invades a compartment

that is unfavorable to population growth and migration is necessary to infect other parts of the host body. Stochastic aspects of viral

establishment may also favor increased migration as it tends to dampen the amplitude of fluctuations in population size during the

initial transient phase of establishment.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For an infecting virus, the vertebrate host represents a
large, complex, spatially structured landscape, with
different cell types and tissue types potentially acting
as different ‘‘habitats’’ that are connected via dispersal.
There are strong empirical grounds for examining the
consequences of this internal structure for pathogen
dynamics. For instance, work on HIV has found
substantial genetic differentiation among virus popula-
tions in different organs (Delassus et al., 1992; Epstein
e front matter r 2004 Elsevier Ltd. All rights reserved.
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et al., 1991; Pang et al., 1991; Wang et al., 2001). This
differentiation may be due to sampling error caused by
small numbers of virions initially invading any parti-
cular body compartment (genetic drift), or by compart-
ment-specific selection on viral variants. But in any case,
it is unlikely that such genetic differences will persist
without substantial among-organ compartmentalization
of viral dynamics.
Evidence for within-host spatial structure in viral

populations is intriguing in light of the growing
appreciation in ecology (Tilman and Kareiva, 1997),
evolutionary biology (Hanski and Gilpin, 1997; Wade
and Goodnight, 1998), and epidemiology (Andreasen
and Christiansen, 1989; May and Anderson, 1990;
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Dobson and Foufopoulos, 2001; May et al., 2001;
Fulford et al., 2002) of the critical importance of spatial
structuring for explaining species persistence and the
direction of evolutionary change. Space can affect
persistence in several ways. For instance, in homoge-
neous but spatially distributed environments, locally
unstable interactions (e.g., predator–prey) may persist
because of spatial separation, which permits different
areas to be in different dynamical phases (Hassell et al.,
1994; Tilman, 1994). Moreover, there is often spatial
variability in local factors affecting population growth.
For example, in ecology, spatial refuges often appear
essential for explaining persistence of strong predator-
prey or host-parasitoid interactions (e.g., Holt and
Hassell, 1993). The interaction between virus and cells
of the immune system shares many features with
predator-prey systems (Nowak and May, 2000). Holt
(2000) outlines numerous conceptual parallels between
contemporary spatial ecology and within-host infection
processes. Several models of the effects of spatial
heterogeneity on the spread of disease (Andreasen and
Christiansen, 1989; May and Anderson, 1990; May et al.,
2001) show that, for a host population partitioned
into subpopulations, with some proportion of contacts
between hosts (and thus transmission of the parasite
or pathogen) occurring within a subpopulation and
some between populations, disease persistence can
occur via two avenues. Either the basic reproductive
rate of the parasite or pathogen within the subgroup
may be sufficiently high, or disease transmission
between subgroups may be sufficiently high for the
disease to persist via spread between subgroups. How-
ever, Andreasen and Christiansen (1989) found that, if
the disease cannot exist in any of the subpopulations
alone (R0io1 for all subpopulations i) increasing the
inter-population contact probability (migration rate)
alone, without increasing the within-population contact
probability (transmission rate) could not make the
disease persist.
In recent years, a rich literature has arisen developing

a quantitative theory of the within-host population
dynamics of infections (e.g., McLean and Nowak, 1992;
Antia et al., 1994; Bonhoeffer et al., 1997; Essunger and
Perelson, 1994; Herz et al., 1996; Perelson, 1989;
Perelson et al., 1993; Perelson et al., 1996; Tuckwell
and Le Corfec, 1998; Kirschner et al., 1998; Lipsitch and
Levin, 1997, 1998; Kepler and Perelson, 1998; Solé et al.,
1999; Hlavacek et al., 2000; Nelson et al., 2000;
Kirschner, 2001; Nelson and Perelson, 2002; Ribeiro et
al., 2002; Verotta and Schaedeli, 2002). Our approach
differs from these by focusing explicitly on within-host
spatial and cell structure and the effects of such
structure on viral population and evolutionary dy-
namics. Our models consider multiple cell-type and free
virus populations, as well as spatial heterogeneity
imposed by the existence of within-host compartments
coupled by viral and cell movement via fluid flow.
Parameters determining the relationships among various
within-host populations, defined by the pattern and
rates of coupling between compartments, are explicitly
included. These ingredients are all necessary to examine
the consequences of internal host spatial structure for
viral dynamics.
There are two complementary aspects of population

structure that in principle can be incorporated into
within-host models. First, within any given tissue
compartment, there may be multiple cell types which
can be infected, as well as free virus. A ‘‘minimal’’ model
would include uninfected cells, infected cells, and free
virus. Such models can be made more elaborate; for
example, for HIV infection, an expanded model might
include additional cell states (e.g., latency) or cell types
(e.g., macrophages). For instance, Perelson et al. (1997)
show that the temporal dynamics of viral load after
initiation of drug treatment involve multiple phases of
decay, reflecting different cell types with differing loss
rates (see also Kelly, 1996). Second, as noted above, a
host individual in effect is comprised of a suite of local
‘‘habitats’’ coupled by fluid flow and cell movement.
Several authors have begun to examine the implications
of within-host spatial structure for infection dynamics.
For instance, Kirschner et al. (1998) develop a model in
which the thymus is coupled with the blood. The model
includes the transport of cells and virus between the
blood and a lymphoid compartment. They showed that
this coupling could lead to an augmentation of overall
viral load. Kepler and Perelson (1998) explored a model
in which drugs have different concentrations in different
spatial compartments, and analyse the evolution of
resistance. They conclude that spatial heterogeneity may
significantly increase the likelihood of evolved resis-
tance. Stekel (1997) studied a model of lymphocyte
circulation, highlighting the importance of movement
among compartments. Callaway and Perelson (2002), in
a paper examining the ability of different mathematical
models to explain sustained low viral loads of HIV-1
during highly active antiretroviral therapy (HAART),
considered a model with two physiologically distinct
compartments, one of which acted as a ‘‘drug sanctu-
ary.’’ If the source of virus during therapy was the drug
sanctuary, they found that viral load rapidly reached
steady state, but oscillated in the process. They
hypothesized that these oscillations might provide a
possible explanation for intermittent episodes of detect-
able viremia observed in patients whose viral load is
otherwise suppressed. In a recent study, Cuevas et al.
(2003) developed a model which followed viral geno-
types in various tissue types (environments); simulation
results predicted that increased migration between
tissues should decrease the abundance of locally favored
genotypes by removing these genotypes from their
‘‘best’’ environment. Experimental in vitro tests of this
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Table 1

Variables and Parameters

Dynamical variables

qi=number of virions in compartment i

nji=number of uninfected cells of type j in compartment i

n�ji=number of infected cells of type j in compartment i

Constants

[For the following constants, the subscript j gives the cell type, and i

indicates the within-host compartment. In the text, the j subscript is

generally dropped when there is only one cell type. ]

nji=burst size, the number of virions produced from an infected cell

lji=input rate of uninfected cells

mji=death rate of uninfected cells

m�ji=death rate of infected cells
m0i =death rate of virions (clearance rate by host immune system)
bji=infection constant

mik=migration rate of virions from compartment i to compartment k

Mik=migration rate of uninfected cells from compartment i to

compartment k

M�
ik=migration rate of infected cells from compartment i to

compartment k
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model using mammalian cell cultures supported these
predictions, implying that migration among heteroge-
neous cell environments should select for generalist
viruses and against specialization.
Our own work has recently linked viral population

dynamics and population genetics by focusing on a
‘‘standard model’’ of viral dynamics, generalized to
consider the infection of multiple host cell types (Kelly
et al., 2003). This model is similar to that of Nowak and
May (2000), except that we include a term representing
the loss of a free virion each time a cell is newly infected.
The other difference is in virion production. We specify
virion production rate by an infected cell as the product
of infected cell death rate and burst size while Nowak
and May (2000) use a single parameter for this product.
We found that, while the inclusion of multiple cell types
increases the likelihood of persistent infection and can
increase the amount of genetic diversity within the viral
population, it may actually decrease the overall rate of
viral gene sequence evolution. In this paper, we extend
our previous model, which considered only cellular
population structure, to a model that considers both
cellular population structure and spatial compartment
structure. We use this model to ask the first of two
important ecological questions: How does this addi-
tional level of within-host structure affect the conditions
for persistent infection? A follow-up paper will answer
the linked question of how such structure impacts the
equilibrium levels of virus load and numbers of infected
cells. The ecological results presented here will provide a
springboard for future analyses of coupled evolutionary
and population dynamics.
2. Model

2.1. General model

We begin by considering a dynamical model with an
arbitrary number of target cells and an arbitrary number
of compartments. The dynamical variables followed
include the number of virions in each compartment i

(qi), and the number of uninfected (nji) and infected (n
�
ji)

cells of each type j and compartment i. We assume that
movement between compartments can occur via migra-
tion of virions, cells, or both virions and cells. Changes
in these quantities are described by the following system
of differential equations (Table 1 summarizes the model
variables and parameters):

dqi

dt
¼

X
j

m�jinjin
�
ji � m0iqi �

X
j

bjinjiqi þ
X
kai

mkiqk

�
X
kai

mikqi; ð1Þ
dnji

dt
¼ lji � mjinji � bjinjiqi þ

X
kai

Mkinjk �
X
kai

Miknji;

(2)

dn�
ji

dt
¼ bjinjiqi � m�jin

�
ji þ

X
kai

M�
kin

�
jk �

X
kai

M�
ikn�

ji; (3)

where j indicates the cell type, i indicates the compart-
ment, nji gives the ‘‘burst size’’ (number of virions
released when an infected cell dies; nji � 1 will sometimes
be referred to as ‘‘net burst size’’), m0i is the death rate of
virions (clearance rate), bji is the infection constant, lji is
the input rate of uninfected cells, mji is the death rate of
uninfected cells, m�ji is the death rate of infected cells, and
mik; Mik, M�

ik give the migration rates of virions,
uninfected cells and infected cells from compartment i

to compartment k. The sum over j is for cell types, while
the sum over k is for compartments. (Note that we
assume that cell migration rates are not cell-type
specific; to include this further level of detail, one would
need to indicate an additional subscript j for the M and
M� migration terms.)

2.2. Conditions for infection: a single compartment

The conditions for infection with one compartment
are of course well known, and can be derived using the
basic reproductive ratio (R0), which is the expected
number of free virions produced by infection caused by
a single virion, when virions (and infected cells) are very
rare. If the infection is rare, the uninfected cell number
for each cell type will approach the no-infection
equilibrium n̂j1 ¼ lj1=mj1: Free virions are cleared
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(producing no new virions) at a rate m01 and infect cells of
type j (resulting in nj1 new virions) at a rate of n̂j1bj1: Of
these possible outcomes, only one can occur for a given
virion, and the probability of each is that event’s rate
divided by the total rate of all possible events (assuming
all are Poisson processes). So the probability that a
virion is cleared is m01=ðm

0
1 þ

P
bj1n̂j1Þ while the prob-

ability that it infects a cell of type j is bj1n̂j1=ðm01 þP
bj1n̂j1Þ:Weighting the number of virions produced by

each event (0 or nj1) by its probability gives R0 ¼P
bj1n̂j1nj1=ðm01 þ

P
bj1n̂j1Þ: For the virus to increase

when rare, R041; which requires
P

bj1n̂j1nj14m01 þP
bj1n̂j1; implying that

P
bj1n̂j1ðnj1 � 1Þ4m01:

The corresponding equation for R0 from Nowak and
May (2000), extended to multiple cell types, is R0 ¼P

bj1n̂j1nj1=m01: The difference arises because we include
a term for uptake of a virion when a cell becomes
infected. Therefore, a single virion can only infect one
cell. The two formulations are approximately equivalent
if m01b

P
bj1n̂j1; which means that the great majority of

virions are cleared before infecting a cell, as is probably
often true.

2.3. Conditions for infection: Two compartments

In Appendix A, we derive conditions for increase of
the virus when rare for some limiting cases of the above
general model. The general model is too complex for a
complete analytic treatment, so we begin by considering
the special case of one cell type and two compartments
(we therefore drop the subscript indicating cell type in
this section). As an example, for HIV, we might consider
T cells in both lymph nodes (compartment 1) and blood
(compartment 2). The dynamical variables followed
include the number of virions in each compartment (q1
and q2), the number of uninfected cells in each
compartment (n1 and n2), and the number of infected
cells in each compartment (n�

1 and n�
2). Changes in these

quantities are described by the following system of
differential equations (a simpler version of Eqs. (1)–(3)):

dq1
dt

¼ m�1n1n
�
1 � m01q1 � b1n1q1 þ m21q2 � m12q1; (4)

dq2
dt

¼ m�2n2n
�
2 � m02q2 � b2n2q2 � m21q2 þ m12q1; (5)

dni

dt
¼ li � mini � biniqi þ Mkink � Mikni; (6)

dn�
i

dt
¼ biniqi � m�i n�

i þ M�
kin

�
k � M�

ikn�
i ; (7)

where i ¼ 1; 2 and k ¼ 2; 1 indicate the compartment [so
there are a total of 6 equations, with 2 each of the form
of Eqs. (6) and (7)].
The first question we address is whether or not the

infection can become established. Does migration ever
make it easier for the virus to initially become
established? The condition for the virus to increase
when rare can be found by evaluating the eigenvalues at
the ‘‘edge’’ equilibrium at which virions and infected
cells are at 0, and uninfected cells are at their infection-
free equilibrium. We carry out this analysis for the two
simpler cases of viral migration alone and cell migration
alone (the more complex case with both viral and cell
migration is considered numerically below).
As shown in Appendix B, under viral migration alone

(M�
ik; Mik ¼ 0), the virus increases when rare (at a

sufficiently low level that uninfected cell numbers can be
assumed to be constant at their no-infection equili-
brium) if

½m01 þ m12 � n̂1b1ðn1 � 1Þ	½m
0
2 þ m21 � n̂2b2ðn2 � 1Þ	

� m12m21o0; or ð8aÞ

m01 þ m12 � n̂1b1ðn1 � 1Þo0; or (8b)

m02 þ m21 � n̂2b2ðn2 � 1Þo0; (8c)

where n̂i ¼ li=mi is the equilibrium number of uninfected
cells in the absence of virus. Relation (8a) determines the
boundary for viral increase (see below). [Relations (8a),
(8b) and (8c) and the analysis that follows would also
apply if the uninfected cell equations were changed (for
example, to reflect logistic growth), as long as, in the
absence of infection, uninfected cells reached a stable
equilibrium (with n̂i being the equilibrium).]
Notice that the death rate for infected cells (m�i ; which

must be positive) does not affect the initial establishment
of the viral infection, although it does affect the rate of
increase of virus once infection has been established.
This seems to be a general feature of many comparable
models (see Kelly et al., 2003). This conclusion depends
on our specification of virion production rate as the
product of infected cell death rate and burst size. In
Nowak and May (2000), with virion production rate
independent of infected cell death rate, the latter does
affect the ability of the virus to increase when rare (since
it determines the average time over which an infected
cell produces virions, which are produced at a fixed rate,
rather than a fixed number per infected cell).
In inequality (8a), the two factors in brackets consist

of positive terms related to loss of virions (clearance and
emigration), and a negative term related to the produc-
tion of virions (infection rate per virion, n̂ibi; multiplied
by net burst size, ni21). For very low infection rate or
burst size, the factors in brackets are both positive and
all inequalities in Eq. (8) are false, so the virus cannot
increase when rare. As infection rate or burst size is
increased, eventually the first inequality is satisfied and
the virus can increase when rare. With further increases,
both of the bracketed factors eventually become
negative and the first inequality eventually again
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becomes false. However, at this point the virus can still
increase when rare. (For details, see Appendix B.)
Relation (8) was derived by evaluating the stability of

the equilibrium of Eqs. (4)–(7) with infected cells and
virions at zero density. An alternative is to calculate the
value of R0; which is derived for a two-compartment,
multiple-cell-type system in Appendix A. The condition
R041 gives the same conditions as Eq. (8).
As shown in Appendix B, under cell migration (and in

the absence of viral migration, mik ¼ 0), the condition
for viral increase when rare is

m�1 þ M�
12 �

m�1n1b1n̂1
m01 þ b1n̂1

� �
m�2 þ M�

21 �
m�2n2b2n̂2
m02 þ b2n̂2

� �
� M�

12M
�
21o0; or ð9aÞ

m�1 þ M�
12 �

m�1n1b1n̂1
m01 þ b1n̂1

o0; or (9b)

m�2 þ M�
21 �

m�2n2b2n̂2
m02 þ b2n̂2

o0; (9c)

where n̂i is the equilibrium number of uninfected cells in
the absence of virus,

n̂i ¼
mkli þ Mkiðli þ lkÞ

mimk þ miMki þ mkMik

and i ¼ 1; 2 and k ¼ 2; 1 again indicate the compart-
ment. Unlike the case for viral movement, here the death
rate for infected cells (m�i ) does affect the initial
establishment of the virus (since it affects the probability
of an infected cell moving from one compartment to
another before dying). The above relations can be
expressed in terms of M�

ik=m
�
i ; so only the relative values

of infected cell migration and death rates determine
whether the virus can increase when rare.

Uncoupled compartments: Consider the limiting case
of viral and cell migration (in both directions) being set
to zero, so that the two compartments are decoupled.
Then, the condition for increase in each compartment i

(from the above discussion of a one-compartment
system) is simply

n̂i4
m0i

biðni � 1Þ
: (10)

This condition is analogous to the ‘‘minimum threshold
host abundance’’ that is familiar from epidemiological
models. The cell abundance required for viral persis-
tence reflects infection rates, burst sizes [assumed to be
greater than 1 in Eq. (10)], and virion clearance rates.

Parameter analysis: We can use Eqs. (4)–(7) to
investigate the conditions for infection numerically.
The Jacobian matrix corresponding to this set of
equations at its no-infection equilibrium is given as
expression (B1) in Appendix B. The virus can increase
when rare if the dominant eigenvalue of the lower right
4
 4 submatrix of this matrix is positive. Therefore, to
find values of one parameter that allow the virus to
increase when rare, we assign numerical values to all
other parameters and set the numbers of uninfected cells
to their equilibrium values in the absence in infection,
n̂i ¼ ½mkli þ Mkiðli þ lkÞ	=ðmimk þ miMki þ mkMikÞ: We
then vary the focal parameter and determine the range
of values giving a positive dominant eigenvalue as a
function of cell and virion migration rates. For all cases
with coupled compartments, numerical iteration of the
differential equations indicates that a non-zero equili-
brium for infected cells and virus occurs whenever this
eigenvalue is greater than zero, as we would expect from
theoretical considerations. We consider the case of two
compartments and one cell type, and to simplify analysis
further, allow migration to be symmetric and equal
between infected and uninfected cells (m12 ¼ m21 ¼ m

and M12 ¼ M21 ¼ M�
12 ¼ M�

21 ¼ M).
We first find the critical burst size (ncrit; assumed equal

in the two compartments) above which infection can
occur and below which infection cannot occur, as a
function of m and M (Fig. 1). The intersection of this
surface with the M ¼ 0 plane can be found by solving
(8) for virion migration alone, and with the m ¼ 0 plane
by solving (9) for cell migration alone. With only one
type of migration, the critical burst size is monotonic
with migration rate (m or M), and the initial slope with
respect to migration rate for ncrit is found to be 1=n̂ibi for
virion migration alone and ðm0i þ n̂ibiÞ=ðm

�
i n̂ibiÞ for cell

migration alone (where i denotes the compartment with
the lower value for m0i n̂ibi). However, the critical burst
size is not always monotonically increasing under both
types of migration. Fig. 1 provides two numerical
examples showing the critical value ncrit above which
the dominant eigenvalue of the Jacobian matrix (B1,
Appendix B) is positive and infection occurs, and below
which infection cannot occur. For either viral migration
alone (front right plane of Fig. 1a, front left plane of
Fig. 1b) or cell migration alone (front left plane of Fig.
1a, front right plane of Fig. 1b), the critical value for
burst size increases as migration between compartments
increases, indicating that migration makes it more
difficult for infection to occur. But when both types of
migration occur, there are some cases in which adding
virion migration makes infection easier (Fig. 1b). While,
in Fig. 1a, the two compartments differ only in virion
clearance rate (m01om02), in Fig. 1b, compartment 2 is less
favorable for the virus due to a higher virion clearance
rate (m01om02), a higher infected cell death rate (m

�
1om�2)

and a lower infection constant (b14b2). Here, if there is
no virion migration, cell migration causes a loss of
infected cells due to migration into compartment 2,
where m�2 is high. Virions released when the infected cells
die in compartment 2 tend to be cleared because of the
high clearance rate (m02) and low infectivity (b2). This
leads to little backflow of infected cells into compart-
ment 1 (which is more favorable for infection). Adding
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Fig. 1. Critical value of burst size (ncrit) for two-compartment, one-cell

type model; values of n above the surface allow for infection.

Migration is symmetric and assumed equal for uninfected and infected

cells (m1 ¼ m2 ¼ m and M1 ¼ M2 ¼ M�
1 ¼ M�

2 ¼ M). Both viral and

cell migration rates range from 0 to 20. (a) Parameter values are l1 ¼
l2 ¼ 10; m1 ¼ m2 ¼ 0:001; m�1 ¼ m�2 ¼ 1; b1 ¼ b2 ¼ 1024; m01 ¼ 1 and

m02 ¼ 10: (b) Parameter values are l1 ¼ l2 ¼ 10; m1 ¼ m2 ¼ 0:001; m�1 ¼
1; m2� ¼ 10; b1 ¼ 1023; b2 ¼ 10�4; m01 ¼ 1 and m02 ¼ 10: Note that the
orientation for the x and y axes (m and M) are switched between (a)

and (b), so that the surface of each plot can be clearly seen.
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virion migration provides another path for virus to
return to the favorable compartment, and to migrate out
of the unfavorable compartment prior to clearance.
Thus, at higher levels of cell migration (M), the critical
value for burst size decreases with increasing virion
migration (m).
If we allow either migration rate alone to increase

toward infinity, we find that the critical burst size
approaches

ncritðmÞ ¼ 1þ
m01 þ m02

b1n̂1 þ b2n̂2

for virion migration alone and

ncritðMÞ ¼
m�1 þ m�2

ðm�1b1n̂1=m
0
1 þ b1n̂1Þ þ ðm�2b2n̂2=m

0
2 þ b2n̂2Þ
for cell migration alone. The critical burst size
approaches the first expression above (ncritðmÞ) as virion
migration becomes infinite for any value of cell
migration, but approaches the second expression
(ncritðMÞ) as cell migration becomes infinite only when
virion migration is zero. These can be seen Fig. 1, where
the plots for ncrit becomes flat at high m but not at high
M. Generally, if burst sizes are the same in both
compartments and the equilibrium numbers for unin-
fected cells are independent of M (which will be true
whenever the ratio li=mi is equal for the two compart-
ments), at sufficiently high m, for any value of M, the
condition for viral increase when rare is

ðb1n̂1 þ b1n̂1Þðn� 1Þ4ðm01 þ m02Þ: (11)

Solving this equation for n gives the expression given
above for ncritðmÞ:
If we assume that input of uninfected cells, infection

constants, and uninfected cell death rates are the same in
both compartments, these three parameters then always
appear together (as bi n̂i ¼ bili=mi) in the conditions for
infection. Fig. 2 shows the critical value for the
combined parameters ½ðbl=mÞcrit	 as a function of both
viral and cell migration, where the two compartments
differ in viral clearance rates (m01am02). A higher input of
uninfected cells, a higher infection constant, and/or a
lower uninfected cell death rate are needed under
migration than without migration, indicating that
migration makes infection more difficult under these
conditions. From Eq. (11), we see that if burst sizes in
the two compartments are equal, the critical value of
this compound parameter again approaches a constant
value at high values of virion migration (m), ðm01 þ
m02Þ=½2ðn� 1Þ	; which is independent of the cell migration
rate (M).
Viral clearance rates (m0i) have a negative effect on the

conditions for infection. Increasing m01 and m02 makes
infection less likely, so that here, m0crit gives a maximum
instead of a minimum value. In Fig. 3, the viral
clearance rate in compartment 2 is an order of
magnitude higher than the viral clearance rate in
compartment 1 [m02 ¼ 10m01; note that the migration
rates range from 0 to 100 in (a) and from 0 to 20 in (b)].
When only the viral clearance rates differ between the
two compartments (Fig. 3a), the effect of increasing
migration is seen most strongly under viral migration
(front left plane of Fig. 3a); as viral migration becomes
very large, the clearance rate approaches the average of
the clearance rates in the two compartments, which is
quite high. The effect of letting one compartment be
‘‘better’’ in some respects for infection while ‘‘worse’’ in
other respects can be seen in Fig. 3b. Here, the
parameters are as in part (a), except that the input rates
of uninfected cells also differ between compartments
(l1 ¼ 1; l2 ¼ 10), such that the compartment with the
higher viral clearance rate (compartment 2) also has a
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viral and cell migration rates range from 0 to 20.
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higher input rate of uninfected cells. Increased viral
migration still makes infection less likely, but increased
cell migration initially makes infection more likely, with
a very rapid increase in m0crit as M increases from zero.
This is because cell migration ‘‘rescues’’ the compart-
ment with low uninfected cell recruitment, by allowing
migration of uninfected cells. The equilibrium values of
uninfected cells with no migration are 1000 for
compartment 1 and 10,000 for compartment 2. Cell
migration tends to equalize these, and since the
uninfected cell death rate is low (m ¼ 0:001), this starts
to occur at low values of cell migration. At M ¼ 0:001;
for example, n̂1 ¼ 4000 and n̂2 ¼ 7000; a fourfold
increase for compartment 1. By M ¼ 0:2; n̂1 is nearly
5400, close to its maximum value of 5500 (when the two
compartments are equalized), so further increase in M

no longer has much effect on uninfected cell numbers.
At higher rates of cell migration, movement of infected
cells into the compartment with the higher viral
clearance rate begins to be more important, and we
again see a drop in m0crit as cell migration increases past
this threshold amount.
If we allow the ratio between the two clearance rates

to vary, we see that increasing the viral clearance rate in
one compartment while holding the other constant
makes persistent infection less likely. Fig. 4 shows the
number of uninfected cells, infected cells, and virus in
both compartments at equilibrium in the case for which
m02 is held constant (m

0
2 ¼ 10) but m1 is increased. As

compartment 1 becomes less hospitable to the virus, the
equilibrium numbers of infected cells and virus de-
creases, eventually dipping below 1.
The death rate of infected cells (m�) has no effect on

viral increase when rare in the absence of cell migration
(see Eq. (8)), and with cell migration, the critical value
for infected cell death rate (m�crit) is proportional to the
cell migration rate. We see this in Fig. 5, where, for any
given value of viral migration (m), the value of m�crit is a
linear and increasing function of the cell migration
rate (M).

Isocline portrayal of invasion: viral migration alone.
We present numerical results above for systems with
both cell and virion migration. If we restrict ourselves to
systems with only one type of migration, we can in many
cases solve for conditions allowing viral persistence
analytically, and for two compartments, can display
fairly general results graphically using isoclines. We will
first consider virion migration. To characterize the
conditions for viral infection, it is useful to plot the
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inequality given in Eq. (8a) (which determines the
boundary for infection) in the n̂1n̂2-plane (see Fig. 6).
The boundary is an isocline (line of zero virus growth)
and the virus increases when rare for points, (n̂1; n̂2),
above and to the right of the isocline. The inequality in
Eq. (8a) bounds the region between two branches of a
hyperbola. The inequalities given in Eqs. (8b) and (8c)
ensure that it is the lower branch that determines the
invasion boundary. Since n̂i; bi and ni all appear together
in Eq. (8), instead of density we can use as axes n̂ibiðni �

1Þ; in which case the plot can be used to indicate the
invasion conditions on n̂i; bi or ni21 given the other two
are fixed, by simply dividing the axes by the fixed values.
(We assume both n1 and n241 in the following
discussion of isoclines, unless otherwise noted.) As the
migration rates approach zero, the isocline approaches
the segments of the lines n̂ibiðni � 1Þ ¼ m0i (i ¼ 1; 2) to the
left and below their intersection, which are indicated by
the dashed lines in Fig. 8a. This is the nearest the
isocline can be to the origin, and therefore zero virion
migration makes increase of the virus when rare easiest.
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Of course, this assumes that the virus is present at a low
level in each compartment. If only one of the migration
rates (m12 or m21) is zero, the segment of the isocline for
the source compartment is shifted in the positive
direction by the migration rate (it is more difficult for
the virus to be sustained in the source due to outflow),
while the other segment is unaffected. If there is positive
migration in both directions, the isocline is the lower
branch of the hyperbola given by Eq. (8a). This isocline
is the solid line in Fig. 6a [which always goes through the
point (m01;m

0
2)] and the asymptotes are the dotted lines.

The isoclines intersect the axes at n̂ibiðni � 1Þ ¼ m0i þ
ðm0kmik=ðm0k þ mkiÞÞ: If in one compartment (denoted k)
the number of uninfected cells (or infection rate or net
burst size) approaches 0, then for the other compart-
ment (i), the left-hand side (LHS) of this equation must
be greater than the right-hand side (RHS) for the virus
to increase. The RHS is the clearance rate from
compartment i, plus the migration rate from i to k

multiplied by the probability than the virus in compart-
ment k is cleared before it migrates back to i (since by
assumption there are no cells in k to infect). The RHS is
therefore the effective clearance rate from the system.
The asymptotes of the isocline are given by

n̂ibiðni � 1Þ ¼ m0i þ mik: If the migration rates both
increase, the asymptotes move further out and the
isocline becomes straighter, approaching a straight line
as the migration rates approach infinity. If the migration
rates are equal and approach infinity, the intercepts are
at n̂ibiðni � 1Þ ¼ m0i þ m0k; and the equation of the isocline
is n̂ibiðni � 1Þ þ n̂kbkðnk � 1Þ ¼ m0i þ m0k: The isocline al-
ways goes through (m01;m

0
2) and is concave toward the

origin; therefore, making it straighter means moving it
outward, and so increasing virion migration makes viral
increase more difficult. The reason is that with higher
migration, there is a net flow of virus from tissues with a
high inherent growth rate for the virus, to compartments
with a lower growth rate. This reduces the average
growth over both compartments combined.
For the special case in which both compartments are

equivalent, so that n̂1 ¼ n̂2 ¼ n̂; m01 ¼ m02 ¼ m0; n1 ¼ n2 ¼
n; b1 ¼ b2 ¼ b; the conditions in Eq. (8) reduce to

n̂4
m0

bðn� 1Þ
(12)

This is the same condition for increase as that for each
compartment with uncoupled compartments (relation
10). The isoclines will vary with migration rates, but by
assuming other parameters are equal in the two
compartments, we restrict ourselves to a diagonal line,
which intersects the isocline at the point (m0;m0).
As mentioned above, with no migration, the isoclines

are perpendicular lines (dashed lines in Fig. 6a), while
with increased symmetric migration, the isocline tends
to become straighter. Fig. 6b shows the effect of
increasingly asymmetrical migration. The solid line is
for equal migration rates, while the dashed line has the
same total migration rate, but with migration from
compartment 2 to 1 higher, and migration in the reverse
direction lower. The lines cross at (m01; m

0
2). Above and to

the right of this point, both compartments satisfy (10)
and the virus can increase when rare for any migration
rates, while below and to the left of this point, neither
compartment satisfies (10) and the virus can not increase
when rare for any migration rate. Migration rates only
matter in the other two regions: below and to the right
of the intersection, relation (10) is satisfied for compart-
ment 1 (to the right of m01) but not for compartment 2
(below m02). Compartment 1 is therefore more favorable
for the virus, since it can increase when rare in an
isolated compartment 1 while not for an isolated
compartment 2. In this region, the dashed isocline is
closer to the origin, so viral increase is easier. The
migration rate into compartment 1 was increased from
the solid to the dashed line. So viral increase is easier
with increased asymmetric migration into the ‘‘better’’
compartment (the compartment that can support the
virus in isolation).
For the region above and to the left of (m01; m

0
2),

compartment 2 satisfies (10) while compartment 1 does
not, so the migration rate into the better compartment is
decreased, and the dashed line is further out, making
viral increase more difficult. If flow out of a compart-
ment is fast compared to flow into that compartment,
virions spend less time, on average, in that compart-
ment. If that compartment is the one in which the virus
could persist alone, then this increase in movement out
of the ‘‘better’’ compartment makes viral increase more
difficult. (If the virus could persist alone in each
compartment, then the virus can increase when rare,
regardless of migration.)
We have assumed above that burst sizes are greater

than one. However, one can imagine situations for
which nio1; so that cells act as a virion ‘‘sink.’’ For
example, infected cells of a particular type might be
removed by the immune system prior to lysis. In this
case, an increase in uninfected cells of this type will
actually make viral persistence less likely. If nio1 in one
compartment, the isocline is still hyperbolic, but one of
the asymptotes is negative. This gives the isocline a
positive slope in the first quadrant, reflecting the fact
that increase in virus becomes more difficult as the
number of uninfected cells increases in the compartment
with nio1:
If condition (8) is not satisfied, the virus cannot

increase when rare and the infection fails, leaving only
uninfected cells (so qi ¼ 0; n�

i ¼ 0; and ni ¼ li=mi).
Numerical studies suggest that when this condition is
not satisfied, any starting viral population configuration
will tend towards extinction. Biologically, note that the
above condition for invasion assumed that healthy,
susceptible cells are at their carrying capacities. If virus



ARTICLE IN PRESS
M.E. Orive et al. / Journal of Theoretical Biology 232 (2005) 453–466462
is present at non-trivial abundances, there will be fewer
susceptible cells than possible at carrying capacity, and
the rate of new infections (and hence per capita growth
rate of the virus) should thus be depressed. This
observation suggests that if the ‘‘edge’’ equilibrium is
locally stable (i.e., the virus cannot increase when rare),
the equilibrium is also globally stable (see Diekmann et
al., 1990).

Isocline portrayal of invasion: cell migration alone.
With migrating cells, the isocline equation (obtained
from the conditions for increase of virus when rare) can
be written as

1þ
M�

12

m�1
�

n1b1n̂1
m01 þ b1n̂1

� �
1þ

M�
21

m�2
�

n2b2n̂2
m02 þ b2n̂2

� �

o
M�

12M
�
21

m�1m
�
2

:

Although this is not a parabolic function of unin-
fected cell number (as the isocline was with migrating
virions), it has a similar shape for many parameter
values. If both migration rates (M�

12;M
�
21) are 0, the

isocline consists of horizontal and vertical line segments,
which are identical to those with migrating virions (since
with migration rates set to 0, there is no migration in
either case). With both migration rates positive (and not
too large), the isocline becomes curved and concave
toward the origin, and always passes through the corner
point of the no-migration isocline (as with virion
migration). However, for sufficiently high migration
rates (M�

12=½m
�
1ðn1 � 1Þ	 þ M�

21=½m
�
2ðn2 � 1Þ	 ¼ 1), the iso-

cline becomes a straight line. For higher migration rates
the isocline becomes concave away from the origin. This
concavity is especially pronounced for low burst sizes.
For sufficiently low burst sizes, the isocline has a
horizontal or vertical asymptote.
These qualitative differences with the migrating-virion

isocline can be explained by the fact that uninfected cell
numbers in the above expression appear in terms that
saturate with increasing cell numbers. Therefore, there
are diminishing effects of increasing cell numbers. If the
isocline is plotted on the axes xi ¼ nibin̂i=ðm0i þ bi n̂iÞ;
then it has a parabolic form with asymptotes x1 ¼

1þ M�
12=m

�
1 and x2 ¼ 1þ M�

21=m
�
2; and always passes

through the point (1,1). However, we are interested in
the isocline as a function of n̂i (we will scale these axes
using bi and m0i). Solving the xi expression gives
bi n̂i=m0i ¼ xi=ðni � xiÞ: As long as xi5ni; the cell number
axis is just the xi axis rescaled. However, this inequality
is increasingly violated as xi increases, and this leads to
the xi axis being increasingly stretched to higher values.
Therefore, relative to a parabola, the isocline for cell
movement has higher values on each axis moved
relatively further away from the origin. This accounts
for the fact that, instead of approaching a straight line at
high migration rates as with virion migration, the
isocline becomes concave away from the origin,
especially at low ni:
Setting M�

12 ¼ M�
21 ¼ M�; in the limit as M� ! 1;

the axis intercepts approach bi n̂i=m0i ¼ 2=ðm�i ni=m̄� � 2Þ;
where m̄� ¼ ðm�1 þ m�2Þ=2: For sufficiently low burst size,
the denominator becomes negative and the correspond-
ing intercept becomes infinite. This indicates that the
isocline has a vertical or horizontal asymptote.

2.4. Two compartment model with a multiple cell types

per compartment

Assume two compartments for the model in Eqs.
(1)–(3). Using the same method as used in Appendix A
and B, we can find the conditions necessary for the virus
to increase when rare. First, consider the case of viral
migration alone. Let the net rate of virion loss for a
compartment i (in the absence of migration into it) be

Bi ¼ m0i þ mik �
X

j

n̂jibjiðnji � 1Þ (13)

where k is the other compartment, and n̂ji ¼ lji=mji is the
equilibrium number of uninfected cells of type j in
compartment i in the absence of infection. If Bio0 for a
compartment, the virus in that compartment can
increase when rare even in the absence of any virion
flow from the other compartment. If Bi40 for both
compartments, the virus can still increase when rare if
B1B2om12m21: So the virus increases when rare if either

m01 þ m12 �
X

j

n̂j1bj1ðnj1 � 1Þ

" #


 m02 þ m21 �
X

j

n̂j2bj2ðnj2 � 1Þ

" #
om12m21; ð14Þ

or either factor in brackets is negative. This is the same
condition as Eq. (8), except that the n̂ibiðni � 1Þ terms in
Eq. (8) are now replaced by the corresponding sums
over all cell types.
We can follow similar reasoning and find that the

condition for viral increase when rare under cell
migration alone is satisfied if

m�1 þ M�
12 �

m�1
P

nj1bj1n̂j1

m01 þ
P

bj1n̂j1

" #


 m�2 þ M�
21 �

m�2
P

nj2bj2n̂j2

m02 þ
P

bj2n̂j2

" #
oM�

12M
�
21 ð15Þ

or if either factor in brackets is negative. This is the same
condition as Eq. (9) except that, similarly to the case for
viral migration alone, the nibi n̂i terms in Eq. (9) are now
replaced by the corresponding sums over all cell types.
This result requires that migration rates and cell death
rates must be the same for all cell types (although they
may differ by compartment).
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If we define the total number of cells in compartment i

as nTi ¼
P

j n̂ji; Eqs. (14) and (15) can be rewritten as

½m01 þ m12 � nT1Efb1ðn1 � 1Þg	


½m02 þ m21 � nT2Efb2ðn2 � 1Þg	om12m21; ð16Þ

m�1 þ M�
12 �

m�1nT1Efb1n1Þ
m01 þ nT1Efb1g

� �


 m�2 þ M�
21 �

m�2nT2Efb2n2Þ
m02 þ nT2Efb2g

� �
oM�

12M
�
21; ð17Þ

where the expectations,Ef g; are taken over the distribu-
tion of uninfected cell types in each of the two
compartments. This allows the above isocline analysis
of viral invasion to be extended to multiple cell types, by
replacing cell numbers, n̂i; with total numbers of cells,
nTi; and replacing biðni21Þ; bini and bi with their
expected values over the cell types in the two compart-
ments. The first two of these expectations can be
rewritten as Efbiðni � 1Þg ¼ EfbigEfni � 1g þ Cov½bi; ni	

and Efbinig ¼ EfbigEfnig þ Cov½bi; ni	: This shows the
importance of the sign of the covariance between the
infection rate and the burst size (across cell types within
a compartment) on the conditions for viral persistence.
As an example, imagine a cell type that is rare in a
particular compartment and that has a high infection
rate combined with a low average burst size. This could
be due to the frequent removal of this cell type by the
immune system prior to lysis. Such a cell would have a
negligible effect on the total number of cells, but could
cause the covariance term to be negative, making viral
persistence less likely.
3. Discussion

For the majority of the cases we have examined,
symmetric migration between compartments makes
establishment of infection more difficult than it would
be in the absence of migration. The analyses of virion
migration alone and cell migration alone show that
establishment of infection is most likely (occurs for the
largest region of the parameter space) without migra-
tion. Within-host heterogeneity combined with move-
ment among compartments hampers the initial phase of
establishment of a viral population. This result is an
example of a general phenomenon that has been
previously identified in population ecology: in spatially
varying but temporally constant environments, sym-
metric movement between distinct habitats almost
always lowers the initial growth rate of invading
populations (Holt, 1985). It contrasts our previous
finding that the inclusion of multiple cell types within a
single spatial compartment (cellular population struc-
ture) increases the likelihood of persistent infection
(Kelly et al., 2003). The result that increased migration
generally hinders persistence may contribute to the
tissue specificity of some viruses (Flint et al., 2000,
Chapter 4). If the virus can avoid movement among
tissues, growth in preferred tissues or compartments can
be fostered. Of course, this tendency may be limited by
the extent to which pathogens can control their move-
ment among compartments.
There are two important caveats to this general-

ization. First, consider a virus that is initially entirely
restricted to a single compartment by virtue of the
biology of transmission (for example, viruses associated
with sexually transmitted diseases). If this compartment
is unfavorable (e.g., host cell number is less than the
threshold value), successful infection depends on the
virus migrating to other compartments with more
favorable growth conditions. Second, while we have
observed no instances of sustained oscillations, many
parameter combinations produced high-amplitude
damped oscillations on the approach to equilibrium
values (see also Callaway and Perelson, 2002, Section
5.1). The deterministic model does not take into account
stochastic effects. Large amplitude oscillations may
cause the viral population to die out early in infection,
well before equilibrium is reached. Not surprisingly,
increased migration between compartments decreases
the dissipation time of the oscillations. Fig. 7 illustrates
the effect of adding viral migration on infected cell and
viral population fluctuations during initial establish-
ment. In this example, compartment 2 has a higher viral
clearance rate (m01 ¼ 0:1; m02 ¼ 1); with no migration
between compartments, both the numbers of infected
cells and virus show damped oscillations as they
approach their equilibrium values for compartment 2
(m ¼ 0; Fig. 7a). Both the magnitude of oscillations and
the time until oscillations are damped are decreased
substantially by allowing a modest amount of migration
between the compartments (m12 ¼ m21 ¼ 0:5 in Fig. 7b).
Thus, migration may tend to reduce average growth
rate, yet nonetheless facilitate establishment of an
infection by reducing the length of time during which
sustained oscillations are observed. We intend to
examine the stochastic dimensions of both of these
aspects of establishment elsewhere.
Another consideration for spatially structured models

of infection is the effect of compartment ‘‘size’’ on the
type of viral transmission. We track numbers of cells
and virus, and use a density-dependent transmission
function [rather than a frequency-dependent transmis-
sion function, see discussion in McCallum et al. (2001)
and Begon et al. (2002)]. Thus, the contact rate increases
with the overall numbers of cells, and also increases with
the density for constant volume. For a one-compart-
ment model, the fact that we do not explicitly consider
compartment size can be dealt with by assuming that
our infection constant b is in fact equivalent to an
infection constant per unit volume (that is b ¼ b0=V ;
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where V is the volume) and setting that volume to the
compartment size (Begon et al., 2002). In moving from
the one-compartment model to a model with two
compartments, we have generally assumed that b1 ¼
b2 ¼ b: We have, in essence, doubled the available
volume within the host by adding another compartment
of the same size; this corresponds to increasing the
available ‘‘habitat’’ for the virus by allowing the virus to
occupy another compartment (see Appendix C). How-
ever, when considering more than one compartment, the
question arises as to how different sized compartments
would affect transmission and migration. If there are
different infection constants in each compartment (bi for
compartment i), we can define each infection constant
relative to the volume of the compartment. We
will consider the effects of compartment size on
migration rates in future extensions of the model
considered here.
Our model does not include two important possible
forms of density dependence. First, input of uninfected
cells is assumed to be constant and independent of local
cell or viral abundances. Second, we do not include
density-dependent immunological and other defensive
responses by the host, which would be expected to affect
the viral clearance rate and the death rate of infected
cells.
While we have focused on the dynamical conse-

quences of internal structure, it is important to note that
spatial structuring can also profoundly influence evolu-
tionary change (Barton and Whitlock, 1997; Wade and
Goodnight, 1998). It is an implicit component of models
of social evolution involving fitness-determining inter-
actions between genetically related individuals (Kelly,
1992; Frank, 1998). Spatial structure can be important
even with spatially uniform selection. In particular,
spatial structure slows the rate at which a uniformly
favorable allele becomes fixed (Whitlock and Barton,
1997). Spatial structure critically influences the impor-
tance of genetic drift: a species which is subdivided into
spatially localized populations with extinction and
recolonization has a different variance effective popula-
tion size than an undivided species with an equal total
number of individuals (Whitlock and Barton, 1997).
Effective size also governs the importance of drift
relative to deterministic evolutionary forces such as
selection. This directly affects, for example, the
probability that new favorable mutations are fixed
(Ewens, 1979). The processes described above may
help to explain why some estimates of effective
population size of HIV are surprisingly small (Leigh
Brown, 1997).
Finally, recent studies of evolution in spatially

heterogeneous environments suggest that selection tends
to be biased towards habitats with the greatest numbers
of individuals or in which fitness or productivity is
highest (Holt, 1996; Kawecki, 2000). Our theoretical
studies provide an essential theoretical foundation for
examining comparable phenomena in an internally
heterogeneous host environment. Migration in our
system creates a series of induced ‘‘sources’’ and
‘‘sinks,’’ where realized viral abundance is depressed in
compartments that in isolation would experience greater
viral abundance, and the virus there correspondingly
enjoy greater local growth rates than virus in
other compartments. Moreover, migration can maintain
viral populations in compartments where extinction
would be expected, were those compartments to be
isolated. Heterogeneities and asymmetries in space, in
abundance and fitness can lead to asymmetries in
directions of natural selection (e.g., Holt, 1996).
We expect such asymmetries to play potentially im-
portant roles in constraining or facilitating adaptive
evolution of viruses to the internally heterogeneous host
environment.
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