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Effects of predation on host–pathogen dynamics in SIR models
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Abstract

The integration of infectious disease epidemiology with community ecology is an active area of research. Recent studies using SI models
without acquired immunity have demonstrated that predation can suppress infectious disease levels. The authors recently showed that incorporating
immunity (SIR models) can produce a “hump”-shaped relationship between disease prevalence and predation pressure; thus, low to moderate levels
of predation can boost prevalence in hosts with acquired immunity. Here we examine the robustness of this pattern to realistic extensions of a basic
SIR model, including density-dependent host regulation, predator saturation, interference, frequency-dependent transmission, predator numerical
responses, and explicit resource dynamics. A non-monotonic relationship between disease prevalence and predation pressure holds across all these
scenarios. With saturation, there can also be complex responses of mean host abundance to increasing predation, as well as bifurcations leading to
unstable cycles (epidemics) and pathogen extinction at larger predator numbers. Firm predictions about the relationship between prevalence and
predation thus require one to consider the complex interplay of acquired immunity, host regulation, and foraging behavior of the predator.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Host–pathogen interactions do not occur in isolation. All
host and pathogen species coexist with other species in
communities, and community interactions can impart complex
feedbacks on host–pathogen dynamics. There is an increasing
realization of the need to examine the influence of interspecific
interactions on infectious disease processes, in order to develop
a better understanding of pathogen persistence and dynamics,
and the role of pathogens in communities (Collinge and
Ray, 2006; Holt and Dobson, 2006). For example, species
composition and diversity can affect host and pathogen
coexistence and disease risk (de Castro and Bolker, 2005;
Keesing et al., 2006). Pathogens often infect multiple host
species (Woolhouse et al., 2001; Dobson, 2004), and hosts can
be infected by multiple pathogen species (Holt and Dobson,
2006; Rohani et al., in press). Furthermore, infectious disease
dynamics can be influenced by the entire web of trophic
interactions in the community.
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A particularly important class of trophic interactions is
predation. Generalist predators can alter disease incidence
by attacking infected prey (Hudson et al., 1992; Arneberg
et al., 1998; Dwyer et al., 2004; Ostfeld and Holt, 2004; Hall
et al., 2005). Packer et al. (2003), Ostfeld and Holt (2004),
and Hall et al. (2005) used simple models to suggest that
reduction in predator numbers can increase disease incidence,
and that a potentially harmful consequence of predator removal
could be enhanced “spillover” infection to novel host species,
including humans (also see Holt and Dobson, 2006). Hall
et al. (2005) demonstrated that selective attacks on infected
hosts can inhibit pathogen persistence, and that unstable
dynamics could emerge with saturating functional responses.
All these studies to date have considered relatively simple SI
(“Susceptible–Infective”) models without acquired immunity,
in which the host population is assumed to consist of only
two disease classes: susceptible and infective individuals.
In SI models, predation on hosts usually lowers disease
prevalence for two distinct reasons. First, predation on infected
individuals reduces their expected lifespan, thereby lowering
the number of secondary infections spawned by each primary
infection. Second, predation on susceptible hosts reduces host
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Fig. 1. Impacts of predation upon measures of disease load and dynamics, for model (1). A, B, C and D show, respectively, the equilibrium pathogen prevalence p∗

(from (4e)), equilibrium abundance of infective class I∗ (from (4b)), total prey/host abundance N∗ (from (4d)) and basic reproduction number R0 (from Eq. (5)),
plotted against predator abundance C . The mortality rates are given by (3) and indiscriminate predation (aS = aI = aR = 0.1) is assumed. The density dependence
parameter d = 0.01. E and F show plots of prevalence p∗ versus C under, respectively, selective predation on the infective prey alone (aI = 0.1, aS = aR = 0) and
the recovered prey alone (aR = 0.1, aS = aI = 0). The dashed plot in A again assumes indiscriminate predation, but uses a different value for density dependence
(d = 0.03). The dashed line in D denotes the threshold R = 1 for pathogen persistence. Other parameter values are b = 10, m = 1, β = 1 and γ = 5.
0 0
productivity, which in turn lowers the equilibrial density of
infections sustained in the population.

In a recent paper, Holt and Roy (2007) have shown that
in SIR (“Susceptible–Infective–Recovered”) models with an
immune host class, predators can at times lead to an increase
in equilibrial pathogen prevalence. They demonstrated that
the overall pattern relating prevalence to predator abundance
(assumed here to scale the consumption of host by the
predator, that is, predation pressure) can be “hump-shaped”.
If initial predator numbers are low, increasing predation can
boost disease prevalence, but beyond a certain abundance of
predators, further increases in predation reduce prevalence
(see, for example, Fig. 1A). This effect arises due to the
combined interplay of predation, negative density dependence,
and the presence of an immune class. When host abundance
is strongly regulated by density dependence, predation on
immune individuals can boost the rate of recruitment of
susceptible hosts (for instance, reduced intraspecific resource
competition increases fecundity), which in turn can generate
higher rates of infection, at least at low levels of predation.

The present paper has a two-fold objective. First, we
explore in more detail the generality of the non-monotonic
pattern of prevalence reported in Holt and Roy (2007), by
considering a wide range of realistic extensions of the basic
SIR model. We explore in detail host–pathogen dynamics
with logistic density-dependent regulation in host birth
rates, and two alternative disease transmission mechanisms
— density-dependent transmission, and frequency-dependent
transmission. The papers cited above (e.g. Holt and Roy, 2007)
assume that predator numbers are independent of the focal prey
species. We relax this assumption and consider a predator that
is a specialist on the host. We also consider a broader range
of predator foraging behaviors, including saturating (Holling
type II) responses. Finally, we replace logistic host regulation
with dependence on an explicit resource, providing an indirect
form of regulation. We demonstrate that the hump-shaped
pattern of prevalence remains qualitatively robust across all
these modifications of the basic disease model.

As the second objective of this paper, we analyze
the effect of predation on the dynamics of host–pathogen
interaction in SIR models, assuming a saturating response to
predation. We show that the interplay of predation pressure,
host density dependence and saturating functional response
generates a variety of effects, including alternative stable
states, transitions from stable equilibria to unstable cycles, and
pathogen extinction via homoclinic bifurcation. These results
complement the earlier study of an SI model by Hall et al.
(2005). Our results suggest that unstable dynamics may be
a generic feature of systems that incorporate a mixture of
predation and parasitism, and that changes in predation can
influence the likelihood of epidemic outbreaks as well as
average disease prevalence.

2. The model

We begin by assuming (as did earlier studies, Packer et al.,
2003; Ostfeld and Holt, 2004; Hall et al., 2005; Holt and
Roy, 2007) that the predator is a generalist whose dynamics
are governed by factors other than the focal prey. Predator
abundance, C , then enters the model equations as a free
parameter. Later we relax this assumption and consider a
predator that is a complete specialist with a Lotka–Volterra type
interaction with a prey species that also supports a specialist
pathogen.
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Fig. 2. Host–pathogen dynamics with predator saturation. A and B, Bifurcation diagrams as, respectively, the host density dependence and predator saturation
are varied with predator abundance C . The saturation value in A is chosen to be s = 0.01, and the density dependence in B is chosen to be d = 0.002. The
dynamical regimes in the parameter space are shown as non-overlapping domains labeled SE (stable equilibrium), UE (unstable equilibrium with persistent cycles),
EP1 (pathogen extinction via a stable transition), EP2 (pathogen extinction via homoclinic bifurcation), AS (alternative stable states) and EH (host extinction). C
and D, Illustrative examples of time series for infective abundance I (t), for values of d and C indicated by the locations (a), (b), (c) and (d) in Fig. 2A. The data
are obtained by numerically integrating Eq. (1) with the assumption of saturating mortality rates (given by Eq. (7), with s = 0.01) and indiscriminate predation
(aS = aI = aR = 0.1). Other model parameters used are bS = 10, bI = 0.1, bR = 1, m0 = 1 and β = γ = 1.
An SIR model with logistic host regulation experienced in
fecundity is as follows:

d S

dt
= (bS S + bI I + bR R)(1 − d N )

− mS(S, I, R, C)S − βSI,

d I

dt
= βSI − [γ + m I (S, I, R, C)] I,

d R

dt
= γ I − m R(S, I, R, C)R.

(1)

Here S, I and R respectively denote the numbers of
susceptible, infective and recovered (and immune) individuals
in the prey/host population (total abundance N = S + I + R);
bS , bI , bR are maximum birth rates in the absence of density
dependence, and mS , m I , m R the per capita death rates, of the
three respective classes of hosts; β is the disease transmission
coefficient; γ is the rate of recovery from infection; and finally,
d is the strength of logistic density dependence in prey births
(to preclude negative births, we impose N < 1/d throughout).

In general, prey death rates are composed of intrinsic and
predation-induced mortality, and depend on both prey and
predator abundances. These death rates can be represented
formally as follows:

mS,I,R(S, I, R, C) = mS0,I 0,R0 + fS,I,R(S, I, R, C). (2)

In this notation mS0, m I 0, m R0 denote the density-independent,
and fS , f I , fR the density-dependent, components of prey
mortality. We make the reasonable assumption that mortality
rates increase with predation pressure, so ∂ f/∂ C > 0. For
example, the standard per capita mass-action (Holling type I)
interaction between the predator and the prey assumes that f
is a linear function of C , and independent of prey density.
Expression (2) then becomes

mS,I,R(S, I, R, C) = mS0,I 0,R0 + aS,I,RC, (3)

where aS , aI and aR are predator attack rates on the three prey
classes.

Unless stated otherwise (for instance in Figs. 2 and 3), for
simplicity we assume equal birth and death rates of the prey
classes: bS = bI = bR ≡ b and mS = m I = m R ≡

m. In effect, this assumes that the pathogen is a commensal,
with no demographic impact on its host. (Numerical studies
suggest that relaxing this assumption does not affect our
qualitative conclusions, see Fig. 3.) If the density-independent
mortality m0 is same for all prey classes, then from (3)
mS = m I = m R implies aS = aI = aR = a; that
is, the predator attacks susceptible, infective and recovered
prey indiscriminately. Assuming m to be independent of prey
abundance (as in (3)), Eq. (1) can be solved for the endemic
equilibrium (S∗, I ∗, R∗) as follows:

S∗
=

1
β

(γ + m), (4a)

I ∗
=

m

β
(R0 − 1), (4b)

R∗
=

γ

m
I ∗, (4c)
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Fig. 3. Impacts of predation upon measures of disease load in unstable hosts, with saturating response and indiscriminate predation (aS = aI = aR = 0.1). A, B
and C show, respectively, the time-averaged values of pathogen prevalence p̄, infective abundance Ī and total prey abundance N̄ . D shows the standard deviation
of the time series N (t) against predator abundance C . Each data point is computed by averaging the corresponding time series over 500 time units in the stationary
regime (ignoring transients). The broken vertical arrow at C ∼= 48 in Fig. 3C denotes the Hopf bifurcation point at which the stable equilibrium changes to unstable
cycles. The corresponding equilibrial plots with (dotted line) and without saturation (dashed line, denoted by p∗, I∗ and N∗) are overlaid in A–C. The saturation
and density dependence parameters used are s = 0.01 and d = 0.002. Other model parameters are the same as in Fig. 2.
N∗
= S∗

+ I ∗
+ R∗

=
1
d

(
1 −

m

b

)
, (4d)

p∗
=

I ∗

N∗
=

m

(γ + m)

(
1 −

1
R0

)
. (4e)

In these expressions, R0 denotes the basic reproduction number
for the pathogen:

R0 =
βS∗

DFE

γ + m
=

β

d(γ + m)

(
1 −

m

b

)
, (5)

where S∗

DFE = (1/d)(1 − m/b) = N∗ gives the disease-free
equilibrium expression for wholly susceptible host abundance.
From (4d), the prey can persist under predation only if b > m.
The feasibility condition for the equilibrium (4) is the well-
known threshold condition R0 > 1, which from (5) is stronger
than the condition b > m for host survival. Equilibrium (4) is
locally stable (see Appendix A for an analytical derivation of
the stability conditions).

The minimum equilibrial prey abundance N∗

min needed for
pathogen invasion is obtained from the condition R0 > 1:

N∗ > N∗

min ≡
1
β

[γ + m(C)]. (6)

If mortality is sufficiently high, the pathogen may be excluded.
Thus, predation can indirectly benefit the prey by depressing its
abundance, thereby potentially keeping the pathogen at bay.

3. Results

Fig. 1A–D show illustrative plots of equilibrial abundances,
and the basic reproduction number R0, against predator
abundance C . These plots assume that prey mortality is given
by expression (3), and that the predator attacks the prey
indiscriminately (aS = aI = aR). Both the equilibrium
prevalence p∗ (Fig. 1A) and the infective abundance I ∗

(Fig. 1B) “exhibit a unimodal hump shape”, increasing for
low predation pressure, and then decreasing for sufficiently
high values of C . Note that R0 monotonically decreases with
increasing C (see Fig. 1D), as expected from (5), and more
rapidly so when p∗ and I ∗ increase. Thus, R0 and disease levels
can respond in opposite directions to changes in predation.

The pathogen becomes extinct (I ∗, p∗
= 0) when predator

abundance exceeds a threshold value Cth, found by setting
R0 = 1 in (5) and substituting m = m0 + aC :

Cth ≡
1

a(β + bd)
[b(β − γ d) − m0(β + bd)].

Increasing density dependence (d) lowers Cth (the dashed line
in Fig. 1A). The threshold predator abundance Cth is where
the total prey abundance N∗ drops to the minimum value N∗

min
(from (6)) that can support the pathogen (the downward arrow
in Fig. 1C). Further increases in C eventually drive the prey to
extinction (see Fig. 1C).

Numerical studies suggest that the unimodal pattern for the
prevalence in Fig. 1A does not require the strict assumption
of equal attack rates on all prey classes, or the assumption
of equal mortality or birth rates across classes. The only
requirement appears to be that the predator must attack the
recovered prey (aR > 0), along with either the susceptible
or the infective prey (aS > 0 or aI > 0), or both. Closed-
form analytical expressions of the equilibrium for such non-
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symmetric cases are very cumbersome, but the overall reason
for the hump-shaped relation of prevalence to predation can be
intuitively argued as follows. If the predator completely ignores
the recovered prey, then whether it attacks the susceptible or
the infective prey (or both), I ∗ and p∗ should always decrease
monotonically with increasing C (for the same reasons as in
the SI model discussed by Packer et al., 2003). Fig. 1E shows a
typical plot of p∗ when the predator selectively attacks only
the infective prey. By contrast, if the predator ignores both
susceptible and infective prey, and attacks only the recovered
prey, the effect of predation on the pathogen is indirect, via
relaxation of density-dependent constraints on recruitment.
Numerical studies suggest that in this case, the equilibrium
prevalence p∗ increases with C relatively fast at low level
of predation; however, the effect eventually saturates, because
the recovered class is depleted at sufficiently high predation.
Fig. 1F shows a typical plot of p∗ within the range 0 ≤

C ≤ 100. If the predator attacks the recovered prey along
with either susceptible or infective prey, one observes a hump-
shaped pattern, in effect blending the patterns shown in Figs. 1E
and F.

3.1. Predator saturation and prey cycles

The above results assume that the average predation risk of
a prey individual does not depend on prey abundance (prey
mortality was given by (3)). While this may be true at low
prey density, at high prey density the attacks inflicted by an
individual predator should usually saturate. A standard way to
model saturating predator responses is the generalized Holling
disk equation (e.g., Turchin, 2003, p. 82), which in our case
is given by fS,I,R(S, I, R, C) = aS,I,RC/(1 + aShS S +

aI h I I + aRh R R) in expression (2), where hS , h I and h R are
the handling times for the three prey classes. For simplicity we
assume the “half-saturation constant” (ah)−1 to be equal for all
prey classes, so aShS = aI h I = aRh R ≡ s. Expression (2)
then becomes

mS,I,R(N , C) = mS0,I 0,R0 +
aS,I,RC

1 + s N
, (7)

where s is the saturation parameter.
Because of the non-linear functional response, interesting

dynamics such as alternative stable states and unstable cycles
may now occur. Hall et al. (2005) showed these effects for an
SI model with a saturating generalist predator. Because our SIR
model includes this SI model as a limiting case (viz., when
γ → 0), it is clear that it too should exhibit similar dynamics.
In absence of the pathogen, at low predator numbers C the prey
exists at a stable equilibrial density, whereas at sufficiently high
predation only host extinction results. In between, alternative
stable states comprising these two stable branches can occur,
bracketed by a transcritical bifurcation on the left and a fold
bifurcation on the right (as in Fig. 1A of Hall et al., 2005).
Addition of the pathogen gives rise to a rich array of additional
behaviors, including host–pathogen coexistence via unstable
cycles, as well as instabilities leading to pathogen extinction.

Persistence and stability are determined by the joint
interplay of negative density dependence (d), the strength
of the saturating response (s) and predator abundance (C).
Fig. 2A–B illustrate the bifurcation characteristics of the SIR
model with indiscriminate predation, as a function of d, s and
C . In these results we do not assume the pathogen to be a
mere commensal (indeed, as pointed out later in the Discussion,
instability cannot arise in our model in this case). Instead, now
the fecundity of the different host classes have the relationship
bI < bR < bS , with infected individuals being most affected
by the disease, but also with a legacy impact of past infection
on the fecundity of recovered individuals. In Fig. 2A we keep
s fixed (s = 0.01) while using d and C as bifurcation
parameters, and in 2B the parameters s and C are varied
with a fixed d (d = 0.002). We used the software package
“MatCont” (Dhooge et al., 2003) to trace these bifurcations.
The different dynamical regimes in both these plots are labeled
as follows: “SE” refers to a stable equilibrium, “UE” to an
unstable equilibrium leading to sustained cycles, “EP1” to
pathogen extinction via stable transition, “EP2” to pathogen
extinction via a homoclinic bifurcation, “AS” to alternative
stable states (with the host dynamics either reaching a stable
positive equilibrium or extinction, depending on the initial
density), and finally, “EH” to the extinction of host via a
stable bifurcation. High density dependence tends to stabilize
the dynamics, as expected; conversely, cycles appear for low
values of d (SE and UE, respectively, in Fig. 2A). As predation
is increased at these low levels of density dependence, the
unstable cycles grow in amplitude until the pathogen is driven
to extinction via a homoclinic bifurcation, and the disease-free
host returns to its stable equilibrium (EP2); further increases
in C cause the host to enter the domain of alternative stable
states (AS) via a transcritical bifurcation, where it approaches
either an equilibrial abundance or extinction depending on its
initial density. By contrast, increasing predation pressure at
high values of d gives rise to stable transitions from equilibrial
host–pathogen coexistence (SE) to, first, pathogen extinction
(EP1), and then at sufficiently high predation, host extinction
(EH). Fig. 2C–D show times series examples for infective
hosts, I (t), to illustrate some of these dynamical regimes; the
locations of the d and C values used in these examples are
correspondingly labeled by (a), (b), (c) and (d) in Fig. 2A. In
Fig. 2C, the pathogen persists, whereas in Fig. 2D, the pathogen
goes extinct, either because of increasing instability due to a
homoclinic orbit (the upper panel), or because there is a smooth
approach to extinction (the lower panel).

The interplay of saturation s and predator abundance C
leads to a similar set of dynamical outcomes as shown by the
bifurcation diagram in Fig. 2B (except EP1 does not occur,
within the range of parameter values considered here). For
very low s, the saturating response is not strong enough to
destabilize the dynamics. At high values of s, the predator
has a correspondingly weak effect, and so loses control of the
host–pathogen dynamics, which then returns to its inherent
stability. The dynamics are thus unstable for intermediate
values of s (UE in Fig. 2B) at moderate levels of predation, but
the dynamics change to homoclinic pathogen extinction (EP2)
and then alternative stable states (AS) (with the host alone being
present), as predation pressure increases.



324 M. Roy, R.D. Holt / Theoretical Population Biology 73 (2008) 319–331
The origin of these cycles can be understood in terms of
the interplay of regulation of the host population by both
pathogen and predation. The two processes of prey escape and
overexploitation that create cycles in standard predator–prey
models under saturating predation (Murdoch et al., 2003, p.
39–40) are also present in our host–pathogen model. As the
number of susceptible hosts increases above its equilibrium,
there is a corresponding decline in mortality (due to the
saturating functional response); the lag in the response of the
pathogen (in converting susceptible individuals to infective
individuals) then permits the susceptible sub-population to
rise even further. Eventually the infection catches up, and
the susceptible prey is then depleted through a rapid rise
in infection. As the susceptible abundance is pushed below
its equilibrium, there is increased per capita mortality from
predation, and also the high infective abundance keeps draining
them away (analogous to overexploitation), until the pathogen
begins to “starve” because of a shortage of susceptible hosts,
and the infective numbers then start to drop. Note that we have
assumed indiscriminate predation on all prey classes; a decrease
in the susceptibles thus also indirectly increases mortality
on the infectives (because predators are less saturated). Hall
et al. (2005) previously showed that unstable dynamics in
an SI model occurred, assuming selective predation upon
infected individuals. Our results show that the assumption of
selective predation is not required for instability in an SIR
model. All three host classes in effect are indirect mutualists,
mediated through the predator’s saturating functional response;
an increase in any one of them decreases mortality in the others.
This (+, +) interaction contributes to the observed instability.

Within the unstable regime, in extensive numeric studies
we did not find any evidence of aperiodic or irregular cycles,
such as chaotic fluctuations; the value of the leading Lyapunov
exponent obtained by linearizing Eq. (1) with the mortality
rates given by Eq. (7) appears to be negative within the entire
parameter space in the unstable regime (see Appendix B). This
of course does not guarantee that such behaviors may not be
present in a small region of parameter space.

Given instability, numerical integration permits us to assess
how the time-averaged quantities Ī , N̄ and p̄ = Ī/N̄ depend
on the level of predation. Because of non-linearity, time-
averaged abundances in unstable ecological models can behave
quite differently than do equilibria in response to changes
in parameter values (Abrams, 2002). The solid line plots in
Fig. 3A–C illustrate an example for indiscriminate predation
(aS = aI = aR) for s = 0.01. These figures also
include corresponding equilibrial plots with the same value
for saturation (dotted lines) and with s set equal to zero
(dashed lines). These plots assume unequal prey birth rates
as in Fig. 2, so that bI < bR < bS . (The expressions
for p∗, I ∗ and N∗ in the absence of saturation with these
unequal birth rates are accordingly a good deal more complex
than (4a)–(4e), and including them is not useful here; we
used Mathematica to obtain equilibrial plots with and without
saturation in Fig. 3A–C).

With uniform prey births, I ∗ and p∗ both show qualitatively
similar unimodal patterns in relation to predator abundance
(Fig. 1A–B). With unequal birth rates for different prey classes,
however, this similarity no longer holds. Fig. 3A–B provide
an example showing that infective abundance and prevalence
can move in opposite directions, at least over some range of
predation pressure, when different host classes have different
fecundities: for low values of C , p̄ and p∗ increase even as Ī
and I ∗ decline rapidly. Such contrasting patterns in I ∗ and p∗

in response to changes in predation can also occur even in the
absence of density dependence (see Fig. A1, A and B in Holt
and Roy, 2007). Thus, the overall disease burden (as measured
by infective abundance) in the prey population may decrease,
even as the proportion of the infected population (prevalence)
increases, with increasing predation. The reason is that within
this range of increasing C , total prey abundance decreases at a
faster rate than does the infective abundance.

Time-averaged prevalence p̄ with predator saturation again
exhibits a hump shape similar to the no-saturation plot for
p∗, but the similarity ends at C = 48; the pattern becomes
more complex thereafter (Fig. 3A, solid line). This is also the
point beyond which, for the case with saturation, the dynamics
become unstable, and there is a divergence between the patterns
of equilibrial abundance and time-averaged abundance (solid
and dotted lines in Fig. 3A–C). Both Ī and N̄ continue to
decrease until C = 48; afterwards, they begin to increase with
C (Fig. 3B and C, solid line). The value C = 48 in this example
(indicated by a broken vertical arrow in Fig. 3C) denotes the
Hopf bifurcation point for Eq. (1) in the presence of predator
saturation, across which the stable host–pathogen equilibrium
becomes unstable, and sustained cycles begin to appear in the
dynamics (see Fig. 2A). Beyond this point, the magnitude of the
instability rapidly magnifies with increasing predation pressure,
as shown in Fig. 3D, which plots the standard deviation of
the time series N (t) against C . An increase in mean prey
population size with increasing per capita mortality in the
unstable regime regularly occurs in unstable ODE models of
predator–prey dynamics (Rosenzweig, 1971; Abrams, 2002).
Multimodal relationships between mean abundance and a
parameter value in the unstable regime, for example at C >
48 in Fig. 3A (the solid line plot), have also been observed
in other consumer–resource models (e.g. Abrams, 2002). The
pathogen becomes extinct via homoclinic bifurcation (see
Fig. 2A) when the predator abundance C crosses a threshold
(in this example C = 82), and the prey then stabilizes
at high abundance (Fig. 3C, solid line; note the logarithmic
vertical scale). As C is increased further, the prey, too, becomes
extinct (in this example, at C = 91). Thus, responses of
prey abundance to changes in predator abundance can be large
and non-monotonic, when an infectious disease is present, and
mean prevalence can show complex responses to changes in
predation when the dynamics are unstable.

4. Alternative model scenarios

4.1. Predator interference

One weakness of the above model is that we assumed the
predator attack rates to be independent of predator density.
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Fig. 4. Effects of predation upon disease loads with alternate scenarios. A, B and C show, respectively, the plots of equilibrium prevalence p∗, infective abundance
I∗ and total prey abundance N∗ against predator numbers C under frequency-dependent disease transmission, assuming indiscriminate predation. Model parameters
are b = 12, m0 = 1, β = 20, γ = 5, a = 0.1, and d = 0.01. D, E and F show similar results for host–pathogen dynamics with a specialist predator. D, Equilibrium
prevalence p∗ is plotted against predator mortality rate mC (using expression (11c)). E and F, Prevalence p∗ and total prey abundance N∗ are now plotted against
the equilibrium predator abundance C∗ (using (11a)–(11c)). Model parameters are b = 10, β = 1, ε = 0.1; others are same as in Fig. 4A–C.
More generally, predators can directly interfere with each
other. We explored the following modification of (7) to include
predator interference

mS,I,R(N , C) = mS0,I 0,R0 +
aS,I,RC

1 + s N + iC
,

where i = aq is the interference parameter, with q denoting
a wasting time due to predator interference (DeAngelis et al.,
1975; Turchin, 2003, p. 85–86). Introducing such a functional
response has a modest quantitative effect of reducing the impact
of predation on mean disease levels in the prey (interference
provides another source of direct density dependence), without
any qualitative change in the relationship of predation to disease
prevalence (details not shown).

4.2. Frequency-dependent pathogen transmission

The density-dependent disease transmission term βSI
assumes that every individual directly interacts with every
other individual in the host population, so that the contact
rate increases with population size. This may be a reasonable
approximation for small populations, but does not work well in
large and viscous populations where an individual may directly
interact only with a small fraction of the population. In this
case, the contact rate saturates with increasing population size.
The frequency-dependent transmission term βSI/N in place of
βSI in Eq. (1) captures this feature of transmission dynamics
(to save space, these otherwise identical equations are not
repeated here).

As before, for simplicity we again assume that the pathogen
is in effect a commensal: bS = bI = bR ≡ b and mS =

m I = m R ≡ m, and also assume that the prey mortality m
is independent of prey abundance. The (locally) stable endemic
equilibrium now becomes:

N∗
=

1
d

(
1 −

m

b

)
, I ∗

=
m(b − m)(R0 − 1)

bdβ
,

p∗
=

I ∗

N∗
=

m

β
(R0 − 1). (8)

The expression for N∗ is the same as (4d) under density-
dependent transmission. The basic reproduction number R0 in
(8) is given by

R0 =
β

γ + m
, (9)

which does not depend on host abundance (in contrast with
expression (5) for density-dependent transmission), and hence
the pathogen can deterministically persist in very small host
populations (there is no cut-off host population size N∗

min unlike
(6)). However, if mortality increases with predator abundance,
there will be a threshold predator abundance, above which the
pathogen disappears. The equilibrium (8) is feasible if b > m
and R0 > 1. Note that even though the expressions for p∗ in (8)
and I ∗ in (4b) are identical, it is easy to see from the definition
of R0 in (9) that p∗ is always bounded below 1, as long as
R0 > 1.

The equilibrial infective abundance I ∗ and prevalence p∗

both exhibit a qualitatively similar hump shape as observed
above (this was noted briefly in Holt and Roy, 2007), as
illustrated in Figs. 4A and B. Allowing infected individuals to
have lower birth rates and higher mortality does not alter this
basic pattern (details not shown). Fig. 4C shows a plot of N∗
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versus C that is similar to Fig. 1C (except that Fig. 4C assumes
a slightly larger b).

If we now permit the predator’s attack rate to be described
by a saturating functional response, we again find a range of
dynamical behaviors comparable to those discussed above for
density-dependent transmission (details not shown).

4.3. Predator numerical response (specialist predator)

Until now we have assumed that the predator is a generalist,
whose numerical dynamics are decoupled from the focal prey.
This assumption has allowed us to simplify the equations by
treating the predator population size C as simply a parameter.
Such generalist predators are found in many communities; for
example, cats prey on rats but also subsist on a variety of
other resources, and birds of prey such as hawks and eagles
feed on prey species across a wide range of taxa. However,
many predators exhibit some preference for a particular prey,
and respond dynamically to changes in the abundance of
that prey (e.g., the Canadian lynx on the snowshoe hare).
A canonical model of a specialist predator–prey interaction,
where the predator completely depends on a single prey
species, is the Lotka–Volterra model. Several authors have
recently studied models that combine specialist predator–prey
dynamics with disease in the prey, but none has considered the
impact of acquired immunity (Chattopadhyay and Arino, 1999;
Xiao and Chen, 2001; Chattopadhyay et al., 2003; Hethcote
et al., 2004; Braza, 2005; Hall et al., 2005). Most of these
authors, moreover, have assumed selective predation on the
infective class alone. The main focus of these papers was to
determine conditions for stable coexistence equilibria for the
pathogen and predator; some have also studied the instability
of the equilibrium via Hopf bifurcation, assuming a saturating
functional response. (Han et al. (2001) did examine an SIR
disease model with predators, but they allowed both prey and
predator to be infected by the pathogen; this is very different
from the scenarios we are considering here, where the predators
are solely mortality sources for the prey.) It is thus useful to
examine the consequences of changing our assumption about
predator regulation on the disease prevalence in a host/prey
species.

Rewriting Eq. (1) with an additional equation for the
predator abundance, and using expression (3) for prey mortality,
gives

d S

dt
= bN (1 − d N ) − (m0 + aC)S − βSI,

d I

dt
= βSI − (γ + m0 + aC)I,

d R

dt
= γ I − (m0 + aC)R,

dC

dt
= εaNC − mC C.

(10)

Here, for simplicity we have as before assumed that bS =

bI = bR ≡ b, mS = m I = m R ≡ m, that the predator
feeds indiscriminately on all prey types, and that the predator
conversion efficiency ε is same for all prey types; mC denotes
Fig. 5. Illustrative example of time series for both prey abundance N (t) and
predator abundance C(t) in the model (10) with a specialist predator and a
saturating response. The plot also shows the time series of susceptible (solid
line) and infected prey numbers (broken line). We assume indiscriminate
predation (aS = aI = aR = 0.1) as before, and other model parameters
are d = 0.002, s = 0.005, mC = 0.5; the other parameters are the same as in
Fig. 4D–F.

the per capita predator mortality rate. We can solve Eq. (10) for
the stable endemic equilibrium, leading to

N∗
=

mC

aε
, I ∗

=
b

β
(1 − d N∗)(R0 − 1), (11a)

C∗
=

1
a

[b(1 − d N∗) − m0], (11b)

p∗
=

I ∗

N∗
=

b

β

(1 − d N∗)

N∗
(R0 − 1), (11c)

where R0 is given as

R0 =
βN∗

γ + m0 + aC∗
=

βN∗

γ + b(1 − d N∗)
.

The above equilibrium is feasible if N∗ < 1/d, b > m0 and
R0 > 1.

Prey abundance N∗ increases linearly, whereas predator
abundance C∗ decreases linearly, with increasing predator
mortality rate mC . Fig. 4D shows equilibrium prevalence p∗

against predator mortality mC , and Fig. 4E plots p∗ against the
equilibrium predator abundance C∗ (which varies with mC via
(11a) and (11b)). Prevalence p∗ exhibits the now familiar hump
shape in both plots. Fig. 4F shows a linear decay of N∗ versus
C∗, as expected from (11b).

Non-linear functional responses lead to algebraically
intractable equations for the equilibrium. Using the saturating
mortality function (7) in Eq. (10), the system shows a broadly
similar dynamic instability as in Fig. 2, with the difference
that now the predator also cycles in concert with the prey.
Fig. 5 shows an example where both the prey and predator
cycle. The instability becomes pronounced both with low
density dependence d and intermediate values of saturation
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s, comparable to the patterns in Fig. 2A–B. For instance, as
predation pressure increases at low density dependence, the
pathogen is driven extinct via large-magnitude cycles. On the
other hand, at higher density-dependent regulation, increasing
predation pressure again drives the pathogen to extinction,
but via stable transitions (details will be presented elsewhere).
It is well known that a specialist predator with numerical
responses to its prey combined with a saturating functional
response, feeding upon a prey with weak direct density
dependence, can generate limit cycles in both predator and
prey numbers (Rosenzweig, 1971). Our results with generalist
predators, and those of Hall et al. (2005), show that cycles
in prey numbers and disease loads can emerge even if the
predator has fixed abundance, but has a saturating functional
response. The Lotka–Volterra predator–pathogen–prey model
with a saturating functional response thus combines two distinct
mechanisms which can contribute to unstable dynamics.

It should be noted that in this system, there is a problem
in species coexistence. The predator and pathogen both feed
on healthy hosts, and in addition the predator attacks infected
prey. The interaction among host, pathogen and predator thus is
an example of intraguild predation (Holt and Polis, 1997). The
condition for the coexistence of pathogen and predator is (see
Appendix C)

b + γ

bd + β
< N∗ <

1
d

(
1 −

m0

b

)
. (12)

Thus, the condition for pathogen and predator coexistence
sets a bound for the equilibrial prey/host abundance, when
the predator is present. The expression on the right is prey
abundance when the predator is absent. The inequality on the
left emerges from the conditions for invasion by the pathogen
into an equilibrium with both the predator and host being
present.

Considering the conditions for mutual invasion, the
pathogen is vulnerable to exclusion if the predator has a
high attack rate, or low mortality rate, or is efficient in
converting captured prey biomass into predator births. At
sufficiently high birth rates (e.g., in a highly productive
environment) the condition for pathogen persistence reduces
to d > aε/mC , which is independent of the rate of disease
transmission (β). The reason is that density dependence reduces
the number of predators that can be sustained by the prey, thus
moderating the mortality experienced by infected hosts. When
the prey is potentially highly productive, this indirect constraint
on predator numbers and hence on the mortality inflicted
on infected individuals is crucial for pathogen persistence.
(Note that these relatively simple expressions assume that the
pathogen has a negligible impact on the demography of its
host. Permitting host impacts of infection leads to much more
cumbersome algebraic expressions.)

Lotka–Volterra models of intraguild predation can exhibit
unstable dynamics, even with linear functional responses (Holt
and Polis, 1997). We have not found an example of
this phenomenon for the symmetrical case leading to the
equilibrium described by (11). The issue of unstable dynamics
and alternative equilibria in asymmetrical cases where the
pathogen does impact its host, or with saturating functional
responses, deserves further attention.

Other authors have previously explored systems where
specialist natural enemies (e.g. parasitoids) and specialist
pathogens interact (e.g., Anderson and May, 1986; Hochberg
et al., 1990). Borer et al. (2007) point out that this suite
of interactions parallels in many ways, intraguild predation.
However, this issue to our knowledge has not been examined
for systems in which hosts have acquired immunity.

4.4. An explicit resource for the prey

We have assumed that the prey is regulated by direct density
dependence on its fecundity. We now consider the case where
the prey consumes an explicit resource and density dependence
emerges indirectly from the resource–consumer interaction.
(This is a “semi-chemostat” model, which differs from the
standard chemostat model in that the consumer does not have
the same wash-out rate as the resource; see Murdoch et al.,
2003, p. 213.) The equations are as follows:

d F

dt
= Λ − (w + cN )F,

d S

dt
= bN F − m(C)S − βSI,

d I

dt
= βSI − [γ + m(C)]I,

d R

dt
= γ I − m(C)R,

(13)

where F denotes resource biomass, Λ is the constant resource
input rate, w is the (per capita) resource wash-out rate, and c
is the resource (per capita) consumption rate by the prey. The
prey birth rate b can be interpreted as b = qc, where q denotes
the resource conversion efficiency. The equilibrium solution
(assuming m(C) to be independent of prey population size, but
dependent on predator numbers, C) is:

F∗
=

m

b
, N∗

=
1

cm
(bΛ − mw), (14a)

I ∗
=

m

β
(R0 − 1), (14b)

p∗
=

cm2

β

(R0 − 1)

(bΛ − mw)
, (14c)

R0 =
βN∗

γ + m
=

β(bΛ − mw)

cm(γ + m)
. (14d)

Assuming, as before, that the prey mortality rates are given
by expression (3), the equilibrium resource level F∗ linearly
increases, whereas both the infective abundance I ∗ and the
total prey abundance N∗ decrease, with increasing predator
abundance C . Fig. 6 plots p∗, I ∗ and N∗ against C ; prevalence
again exhibits a unimodal hump-shaped pattern (Fig. 6A). As
in the example of Fig. 3, the disease load I ∗ and prevalence
p∗ move in opposite directions in response to changes in low
to moderate predation pressure (compare Figs. 6A and B), but
now these patterns occur even with equal birth rates for all
prey classes. The hump shape in p∗ results because the prey
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Fig. 6. Results are shown for equilibrium predator–prey–pathogen dynamics where prey consumes an explicit resource. A, Equilibrium prevalence p∗ is plotted
against predator abundance C (from (14c)). B, Equilibrium infective abundance I∗ is plotted against C (from (14b)). C, Equilibrium prey abundance N∗ is plotted
against C (from (14a)). Model parameters are b = 8, m0 = 1, β = 1, γ = 5, a = 0.1, w = 1 and Λ = 2.8.
abundance N∗ decreases faster than I ∗ initially, which raises
the prevalence before it finally begins to descend at higher
levels of predation.

Again, permitting the predator to have a saturating numerical
response can lead to unstable dynamics, even though predator
numbers themselves are fixed (details not shown).

5. Discussion

Previous studies using simple host–pathogen models
without acquired immunity have shown that predation on
the host typically suppresses pathogen outbreaks in the
host population, thereby indirectly benefiting the host and
potentially the broader community by restricting “spillover”
infection to novel hosts (Packer et al., 2003; Ostfeld and
Holt, 2004; Hall et al., 2005). However, it has been recently
recognized that counterintuitive patterns can arise when an
immune host class is present, giving a hump-shaped pattern
of prevalence against predation pressure (Holt and Roy, 2007).
In this paper, we have demonstrated that this pattern is
qualitatively robust to a wide range of realistic extensions of
the basic SIR model, including different assumptions about host
regulation, predator foraging, and the mechanism of disease
transmission. Moreover, saturating predation can influence
the stability of the host–pathogen dynamics, so that a stable
equilibrium can change to unstable cycles via a Hopf type
bifurcation, and the dynamics also exhibit alternative stable
states. This complements the findings of Hall et al. (2005) for
an SI model, and shows that unstable dynamics can occur even
with acquired immunity in a broad range of models, even if
predator numbers are fixed.

The hump-shaped pattern of pathogen prevalence against
predation pressure arises from two distinct mechanisms (Holt
and Roy, 2007). When the host is strongly regulated by
density dependence, predation on recovered prey causes a
compensatory increase in recruitment, and hence in the supply
rate of fresh susceptibles that can “feed” the infection.
Second, total host numbers and the abundance of infectives
can respond in different degrees to changes in predation. In
Fig. 1C, note that total host abundance declines linearly with
increasing predation. But small amounts of predation increase
the absolute abundance of infectives (Fig. 1B), due to density-
dependent compensation in recruitment. Eventually, predation
is sufficiently large to push down I ∗, but more slowly than N∗,
so prevalence still rises with predation (Fig. 1A). When the
infectives are sufficiently depleted, of course, further increases
in predation will then drive down prevalence.

In many of the examples we have presented, we assumed
that the pathogen had no direct effect upon host mortality or
fecundity. This greatly simplified the algebra and permitted
analytic expression of equilibria. We should emphasize that the
qualitative existence of a non-monotonic relationship between
predation and prevalence, which we first showed elsewhere
(Holt and Roy, 2007) and have explored in more detail in this
paper, is not sensitive to this assumption. Relaxing it typically
leads to much more complex algebra. However, for unstable
dynamics to occur for predators with a fixed abundance but
saturating functional responses, there must be some differences
between prey classes in their demographic parameters and/or
attack rates as a function of current or past infection (for
example, in Figs. 2 and 3, we assume the fecundity of prey
classes to be different). Without such differences, one can add
all the compartments of the prey population in Eq. (1) to give
the equation d N/dt = bN (1 − d N ) − [m0 + aC/(1 + s N )]N ;
this population can exhibit alternative stable states, but not
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unstable dynamics. Thus, unstable dynamics in this model
emerge from the interplay of parasitism, predation, and host
heterogeneity.

Our results suggest that predation can eliminate pathogens
via two distinct dynamical routes. First, at high predation
the pathogen has an R0 < 1, and so pathogen extinction
is inevitable. Second, with a saturating response, high
predation can lead to highly unstable dynamics, where
epidemics are followed by a period of very low densities of
infected individuals. In more realistic models incorporating
stochasticity, it is likely that pathogens would risk extinctions
during these phases of low abundance.

One way to get empirical traction with these results is to
relate field estimates of prevalence to estimates of predator
abundance. However, as we have noted above, prevalence p∗

and the absolute abundance of infecteds I ∗ do not always
respond to predation in the same way. Prevalence can be
estimated from samples, whereas estimating the total density
of infecteds in general will be much harder. Yet for some
purposes, it is the latter quantity which one needs. For instance,
to estimate the risk of spillover infection onto a novel host, it is
more valuable to know I ∗ than p∗.

The take-home message from this study is that it may
not be possible to generalize about how pathogen prevalence
responds to predation on a host, unless one considers in
detail the interplay of acquired immunity, host regulation and
predator selectivity. Moreover, the combination of predation
and infection can lead to unstable host dynamics and recurrent
epidemics, when either factor alone entails stability. This can
arise even with fixed predator numbers, and it is yet more likely
when predator numbers respond dynamically to host density.

If there is no acquired immunity, the impact of predators
will usually be to lower pathogen prevalence (Packer et al.,
2003). Some taxa (e.g., many invertebrates) are believed to not
have acquired immunity. For these species, the relationship of
predation to disease levels may be simpler than that for taxa,
like vertebrates, which have acquired immunity.

The disease models considered in this paper are fairly
simple. Real host–pathogen systems have a variety of additional
features, each of which could potentially influence the results
presented here. Many host species exhibit age- and size-
structured predation. For example, fish often show size-
selective predation. Cats attack juvenile rats below certain
sizes, but ignore bigger rats (Gregory E. Glass, pers. comm.).
In addition, pathogen transmission itself can be age- or size-
structured. In the residential areas of urban Baltimore, sub-
adult rats in the size class of 100–200 g carry most of the
pathogen load for several viral species, whereas transmission is
apparently very low in adult rats weighing above 200 g (Childs
et al., 1989). Such age- and size-structure effects in predation
and disease transmission can have both ecological and
epidemiological consequences for host–pathogen dynamics.
Furthermore, host–pathogen dynamics often play out in
spatially explicit settings. It is important to explore spatially
explicit metapopulation models to examine the intertwined
effects of predation and host–pathogen dynamics in distributed
systems. All of these themes provide a challenge for future
work.
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Appendix A. Local stability of equilibrium (4)

The Jacobian of Eq. (1) with bS = bI = bR ≡ b and
mS = m I = m R ≡ m(C), evaluated at the equilibrium (4),
is given by

J =

m(2 − R0) − b m − b − γ 2m − b
m(R0 − 1) 0 0

0 γ −m

 .

The characteristic equation det(J − λI) = 0, where I is a 3 × 3
identity matrix, can be rearranged as λ3

+a1λ
2
+a2λ+a3 = 0,

with the coefficients,

a1 ≡ m(R0 − 1) + b,

a2 ≡ m[b − m + (b + γ )(R0 − 1)],

a3 ≡ m(γ + m)(b − m)(R0 − 1),

a1a2 − a3 = m(R0 − 1)[γ R0 + b(R0 − 1)]

+ b[b(R0 − 1) + (b − m)].

The Routh–Hurwitz criteria for local stability (p. 234,
Edelstein-Keshet, 1988) require a1 > 0, a3 > 0 and a1a2 > a3,
all of which hold with R0 > 1 (which implies b > m).

Appendix B. Estimating Lyapunov exponents from ODEs

The spectrum of Lyapunov exponents {λi }, i = 1, . . . , n,
of a continuous dynamical system in an n-dimensional phase
space is determined by monitoring the long-term stretching of
an infinitesimal sphere of initial conditions as it evolves into an
ellipsoid under the action of the dynamics. The i th Lyapunov
exponent is defined in terms of the length of the ellipsoid’s
principal axis pi (t) (Wolf et al., 1985):

λi = lim
t→∞

1
t

ln
pi (t)

pi (0)
. (B.1)

The center of the sphere traces a “fiducial” trajectory in the
phase space, obtained by integrating the ODEs with an arbitrary
initial condition. The n principal axes are given by an initially
orthonormal vector frame anchored to the fiducial trajectory,
and their evolution is determined by integrating the linearized
equations (of the original ODEs) for n initial conditions.
Because in a chaotic system each vector tends to align itself
along the direction of the maximum growth, the Gram–Schmidt
reorthonormalization (GSR) procedure is used repeatedly on
the vector frame to retain its orthonormality (Wolf et al., 1985).
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For our system we rewrite the three equations in (1) in terms
of the variables N , I and R as follows

d N

dt
= [bS(1 − d N ) − mS]N

+ [(bI − bS)(1 − d N ) − m I + mS]I

+ [(bR − bS) (1 − d N ) − m R + mS]R,

d I

dt
= βN I − (β I + γ + m I )I − β I R,

d R

dt
= γ I − m R R.

(B.2)

The fiducial trajectory given by (B.2) and the three (n =

3) infinitesimal principal axes are dynamically evolved
by simultaneously integrating (B.2) along with nine other
equations. These equations are given by linearizing (B.2) for
the three principal axes, and can be compactly written as:

dn1

dt

dn2

dt

dn3

dt
di1

dt

di2

dt

di3

dt
dr1

dt

dr2

dt

dr3

dt

 =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 n1 n2 n3
i1 i2 i3
r1 r2 r3

 ,

(B.3)

where the orthonormal set (ni , ii , ri ), i = 1, 2, 3,
denotes infinitesimal deviations from the fiducial trajectory
(N (t), I (t), R(t)) for each of the three principal axes, and the
matrix {ci j }, i, j = 1, 2, 3, denotes the Jacobian of (B.2).
Assuming a saturating mortality expression given by (7) and
uniform predation (aS = aI = aR ≡ a), we have

c11 ≡ bS[(1 − d N ) − d(N − I − R)]

− mS0 −
aC

(1 + s N )2 − d(bI I + bR R),

c12 ≡ (bI − bS)(1 − d N ) − m I 0 + mS0,

c13 ≡ (bR − bS)(1 − d N ) − m R0 + mS0,

c21 ≡

(
β +

aCs

(1 + s N )2

)
I,

c22 ≡ β(N − 2I − R) −

(
γ + m I 0 +

aC

1 + s N

)
,

c23 ≡ −β I,

c31 ≡
aCs

(1 + s N )2 R, c32 ≡ γ,

c33 ≡ −m R0 −
aC

1 + s N
.

The twelve equations in (B.2) and (B.3) are simultaneously
integrated over a small time interval ∆t with initial conditions
(N (0), I (0), R(0)) and the 3 × 3 identity matrix respectively,
where the identity matrix gives the initial orthonormal vector
set. After the integration, the principal axes become stretched as
well as slightly aligned along the direction of maximum growth
due the action of the dynamics. The stretching factors of the
three axes are computed as pi (t) =

√
ni (t) + ii (t) + ri (t), and

the vector set is again reorthonormalized following the GSR
procedure (Wolf et al., 1985). This process is repeated after
successive integration over ∆t time intervals, and the Lyapunov
spectrum is estimated using (B.1). As noted in the main
text, using this procedure we found no evidence for chaotic
dynamics in model 1 with a saturating functional response. This
question is still open for the other models we have discussed.

Appendix C. Condition for mutual invasion and species
coexistence in model (10)

Note that the model assumes the pathogen to be in effect a
commensal of the host, so the coexistence problem is one-sided;
the presence of the pathogen has no effect on the persistence of
the predator. From (11b), the predator persists (C∗ > 0) if

N∗ <
1
d

(
1 −

m0

b

)
. (C.1)

Because we always assume b > m0 (otherwise the prey
becomes extinct), this condition implies N∗ < 1/d. The
pathogen persists (I ∗ > 0) if either N∗ > 1/d and R0 < 1
(the predator becomes extinct under the first inequality), or
N∗ < 1/d and R0 > 1. The second set of conditions gives

N∗ >
b + γ

bd + β
. (C.2)

Combining (C.1) and (C.2), we get the condition (12) for a joint
equilibrium of predator and pathogen (C∗, I ∗ > 0).

To find the condition under which the predator can invade the
host–pathogen system in equilibrium, we rewrite the predator
equation in (10):

1
C

dC

dt
= εaN̂ − mC ,

where N̂ = (1/d)(1 − m0/b) is the equilibrium prey
abundance in the absence of the predator. The invasion
condition (1/C)dC/dt > 0 then gives aε(1 − m0/b) > dmC ,
which is the same as (C.1) for predator persistence (using the
expression for N∗ from (11a)).

To obtain the condition for pathogen invasion in a
predator–prey system in equilibrium, we likewise rewrite the
equation for infective numbers from (10):

1
I

d I

dt
= β S̃ − (γ + m0 + aC̃),

where S̃ = Ñ = mC/aε and C̃ (the same as N∗ and C∗ in (11a)
and (11b)) give the equilibria in the absence of pathogen. With
these expressions in the invasion condition, (1/I )d I/dt > 0
gives the inequality aε < mC (β + bd)/(b + γ ), which is the
same as (C.2) for pathogen persistence.

Thus, inequality (12) gives the condition for pathogen and
predator coexistence and also for mutual invasability.

More generally, one would expect the pathogen to impose
demographic costs upon the host. In this case, the pathogen
can potentially exclude the predator; alternative stable states
(where one natural enemy excludes the other) are also
possible. Anderson and May (1986) noted some historical
examples where diseases in prey seemed to reduce predator
numbers.
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Hall, S.R., Duffy, M.A., Cáceres, C.E., 2005. Selective predation and
productivity jointly drive complex behavior in host-parasite systems. Am.
Nat. 165, 70–81.
Han, L., Ma, Z., Hethcote, H.W., 2001. Four predator–prey models with
infectious diseases. Math. Comput. Modelling 34, 849–858.

Hethcote, H.W., Wang, W., Han, L., Ma, Z., 2004. A predator–prey model with
infected prey. Theor. Popul. Biol. 66, 259–268.

Hochberg, M.E., Hassell, M.P., May, R.M., 1990. The dynamics of host-
parasitoid-pathogen interactions. Am. Nat. 135, 74–94.

Holt, R.D., Dobson, A.P., 2006. Extending the principles of community ecology
to address the epidemiology of host-pathogen systems. In: Collinge, S.K.,
Ray, C. (Eds.), Disease Ecology: Community Structure and Pathogen
Dynamics. Oxford University Press, NY, pp. 6–27.

Holt, R.D., Polis, G.A., 1997. A theoretical framework for intraguild predation.
Am. Nat. 149, 745–764.

Holt, R.D., Roy, M., 2007. Predation can increase the prevalence of infectious
disease. Am. Nat. 169, 690–699.

Hudson, P.J., Dobson, A.P., Newborn, D., 1992. Do parasites make prey
vulnerable to predation? Red grouse and parasites. J. Animal Ecology 61,
681–692.

Keesing, F., Holt, R.D., Ostfeld, R.S., 2006. Effects of species diversity on
disease risk. Ecol. Lett. 9, 485–498.

Murdoch, W.W., Briggs, C.J., Nisbet, R.M., 2003. Consumer-Resource
Dynamics. Princeton University Press, Princeton, NJ.

Ostfeld, R.S., Holt, R.D., 2004. Are predators good for your health? Evaluating
evidence for top-down regulation of zoonotic disease reservoirs. Frontiers
Ecol. Environ. 2, 13–20.

Packer, C., Holt, R.D., Dobson, A.P., Hudson, P., 2003. Keeping the herds
healthy and alert: Impacts of predation upon prey with specialist pathogens.
Ecol. Lett. 6, 797–802.

Rohani, P., Wearing, H.J., Vasco, D.A., Huang, Y., Understanding host-multi-
pathogen systems: the interaction between ecology and immunology. In:
Ostfeld, R.S., Keesing, F., Eviner, V. (Eds.), Ecology of Infectious Diseases,
Princeton University Press, NJ (in press).

Rosenzweig, M.L., 1971. The paradox of enrichment: Destabilization of
exploitation ecosystems in ecological time. Science 171, 385–387.

Turchin, P., 2003. Complex Population Dynamics. Princeton University Press,
Princeton, NJ.

Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining
lyapunov exponents from a time series. Physica D 16, 285–317.

Woolhouse, M.E.J., Taylor, L.H., Haydon, D.T., 2001. Population biology of
multihost pathogens. Science 292, 1109–1112.

Xiao, Y., Chen, L., 2001. Modeling and analysis of a predator–prey model with
disease in the prey. Math. Biosci. 171, 59–82.


	Effects of predation on host--pathogen dynamics in SIR models
	Introduction
	The model
	Results
	Predator saturation and prey cycles

	Alternative model scenarios
	Predator interference
	Frequency-dependent pathogen transmission
	Predator numerical response (specialist predator)
	An explicit resource for the prey

	Discussion
	Acknowledgments
	Local stability of equilibrium (4)
	Estimating Lyapunov exponents from ODEs
	Condition for mutual invasion and species coexistence in model (10)
	References


