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Appendix from I. Filin et al., “The Relation of Density Regulation to
Habitat Specialization, Evolution of a Species’ Range, and the
Dynamics of Biological Invasions”
(Am. Nat., vol. 172, no. 2, p. 233)

Supplemental Derivations for the Two Models Described in the Main Text
Derivation of the Dynamics Equations of the Ronce-Kirkpatrick and Kirkpatrick-Barton
Models

In the Ronce-Kirkpatrick (2001) model, the fitness of an individual of phenotype z in habitat i is r (1 � n /K) �0 i

, where is the habitat-specific phenotypic optimum and ni the population density in habitat i,2g(z � z ) /2 zopt, i opt, i

K is the carrying capacity, r0 is the intrinsic growth rate (fitness at low density) of the optimum phenotype, and
g is the strength of stabilizing selection. Given the mean phenotypes and the phenotypic variance and2z̄ ji p

genetic variance (the variances being constant and the same in both habitats), a population with its mean2jg

phenotype at the habitat-specific optimum has a realized growth rate of . Time is rescaled using′ 2r p r � gj /20 p

this growth rate ( ). Assuming the theta-logistic form of density dependence, population densities are also′T p r t
rescaled using the carrying capacity, growth rates, and v: . The mean phenotypes are′ 1/vN p (n /K) # (r /r )i i 0

expressed as normalized deviations from the habitat optima ( ). The per capita rate of¯Y p Fz � z F/ji i opt, i g

immigration between the two habitats is m (assumed to be symmetrical; there is no habitat selection, and the two
habitats are assumed to be equal in area). We scale m against the realized growth rate . The dimensionless′r
parameters of equations (1) and (2) are (i) , the standardized intensity of selection; (ii)2 ′G p j g/r H p (z �g opt, 2

, the rescaled difference in phenotypic optima; and (iii) .′z )/j M p m/ropt, 1 g

In the Kirkpatrick-Barton model, the original dynamic equations are given by

22 gj�n � n n gp 2¯p D � n r 1 � � � (z � z ) ,0 opt2 [ ( ) ]�t �x K 2 2

2¯ ¯ ¯�z � z � ln (n) �z 2 ¯p D � 2D # � gj (z � z ),g opt2�t �x �x �x

where D is the diffusion coefficient representing the rate of random dispersal across space, zopt (a function of x)
replaces as the spatially varying optimum phenotype, and all other parameters are as described above forzopt, i

the Ronce-Kirkpatrick model. Equations (4) are obtained by rescaling the variables as follows: ,′T p r t N pi

(or for the theta-logistic model, ), , and .′ ′ 1/v ′ 1/2 ′ 1/2¯n r /(Kr ) N p (n /K) # (r /r ) Z p z # (g/r ) X p x # (r /D)i 0 i i 0

(Note that the rescaling of the mean phenotype is different in the Kirkpatrick and Barton model compared with
the Ronce-Kirkpatrick model.) Finally, the dimensionless parameter A, the genetic potential for adaptation, is
given by ; that is, it is identical to G of the Ronce-Kirkpatrick model. (Note the factor 2 typographical2 ′A p gj /rg

error in the definition of A in the original article of Kirkpatrick and Barton [1997], which is corrected by Case
and Taper [2000]. In the original nomenclature of Kirkpatrick and Barton [1997], , , and′ ∗g p 1/V r p rs

).2j p Gg

Dynamics Equations under the Gaussian Approximation

Substituting a Gaussian spatial density profile, , into the density dependence relationship2N(X) p N exp (�kX /2)0

U(N) results in . This last expression can be expanded using a second-order2U[N(X)] p U[N exp (�kX /2)]0

Taylor expansion in X around :X p 0
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U[N(X)] ≈ U(N ) � # # X � # # � # # .0 2 2( ) ( ) ( ) ( ) ( ) [( ) ]dN dX dN dX 2 dN dX 2NpN Xp0 NpN Xp0 NpN Xp00 0 0

The first derivative of N(X), , is 0, and the second is . Therefore,2 2(dN/dX) (d N/dX ) p �kN U[N(X)] ≈Xp0 Xp0 0

, which is equal to , where f is defined as2 2U(N ) � N # (dU/dN) # kX /2 U[N(X)] ≈ U(N ) � (fk/2) # X0 0 NpN 00

.�N (dU/dN)F0 NpN0

Substituting the expressions for N(x) and U[N(x)] and a linear environmental gradient, , inZ p B # Xopt

equations (4) results in the following expressions:

�N N �k f(N ) # k 10 0 02 2 2 2 2� X # p k X � k � U (N ) � X � (Z � BX) # N , (A1)0 0 0[ ]�T 2 �T 2 2

2�Z � Z �Z
p � 2kX # � A(Z � BX). (A2)2�T �X �X

An equilibrium solution of equation (A2) (i.e., ) is a linear mean phenotype cline, ,�Z/�T p 0 Z(X) p b # Xeq

where

A
b p # B. (A3)eq A � 2k

Additionally, substituting in equation (A2) results in the following dynamical equation for b:Z p b # X

�b
p �2k # b � A(b � B). (A4)

�T

Finally, when is substituted into equation (A1), one obtains two equations: one for the dynamics ofZ p b # X
N0 (based on the free terms), the other for the dynamics of k (based on the X2 terms):

1 �N � ln N0 0{ p U(N ) � k, (A5)0N �T �T0

�k 2 2p �f(N ) # k � 2k � (b � B) . (A6)0
�T

Equation (A6) is equation (5) analyzed in the main text for the dynamics of range limitation.

Treatment of Theta-Logistic Density Regulation under the Gaussian Approximation

Substituting equation (A3) in equation (A6) and solving for the equilibrium range limitation give

2

2keq 2 2# B � 2k � f k p 0. (A7)eq eq eq( )A � 2keq

The term feq refers to the equilibrium strength of density regulation, which is derived using the theta-logistic
form of U and is given by

vf p v # (N ) , (A8)eq 0 eq

and the equilibrium version of equation (A5) gives

v(N ) p 1 � k . (A9)0 eq eq
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The final result is equation (8): .f p v # (1 � k )eq eq

Given this expression for feq, equation (A7) becomes
2

2keq 2 2# B � 2k � v # k (1 � k ) p 0. (A10)eq eq eq( )A � 2keq

One possible solution is always , that is, an unlimited-range equilibrium. A limited-range equilibrium isk p 0eq

also possible when equation (A10) has a positive root; that is, . First, if the limited-range solution obeysk 1 0eq

, then on the basis of equation (A5), this is a solution of an exponentially decaying population, whichk 1 1eq

results in global extinction. Hence, the extinction threshold BU can be found by substituting in equationk p 1eq

(A10) and solving for B. The solution is , regardless of the value of v, that is, regardless of1/2B p (A � 2)/2U

the specific theta-logistic form of density regulation. Second, the limited-range threshold, BL, can also be found
using equation (A10). For unregulated dynamics, the third term on the left-hand side vanishes. Then, a positive
solution, , exists if B exceeds . Therefore, for unregulated dynamics, .1/2 1/2k 1 0 A/2 B p A/2eq L

For density-regulated dynamics, the situation is a bit more complex. First, observe that a limited-range
equilibrium must obey ; otherwise, we obtain global extinction. Therefore, the third term on the left-handk ! 1eq

side of equation (A10) (i.e., the density regulation term) is always negative. Consequently, for any combination
of A and B that allow a limited-range equilibrium, keq in the density-regulated case is always smaller than that
for the unregulated case, and this difference increases with v. Additionally, combinations of A and B that
supported a limited-range equilibrium in the unregulated case might have no positive solution, , in thek 1 0eq

density-dependent case, thus pushing BL upward as indeed observed in the numerical results (fig. 3). Second,
whenever a positive solution of equation (A10) exists within the interval [0, 1], there are two such solutions
within this interval. However, only the higher value of keq is a stable solution. Third, in the limit ,A K 2k K 1
we find that the limited-range threshold can be approximated by , which also demonstrates how the2B p 4vAL

limited-range threshold becomes higher as v increases.
Straightforward solution of equation (A10) fails to provide a good approximation to the numerically obtained

curves of BL (fig. 3). This is because the Gaussian approximation is eventually only an approximation.
Specifically, the Gaussian approximation considers a linear mean phenotype cline. However, because in a limited-
range equilibrium the dynamics at the range center is density dependent while at the periphery it is largely
density independent, the slope of the mean phenotype cline will tend toward different equilibrium values in
either center or periphery. This creates a curvature of the mean phenotype cline, which feeds back into the
equation for the slope (first term on the right-hand side in eq. [A2]). Similarly, the dynamics of range limitation,
k, will change from center to periphery. Nonetheless, the Gaussian approximation captures well the qualitative
dependence of the dynamics on the form of density regulation.

Explanations of Numerical Procedures for the Continuous Gradient

The numerical procedures used in this article are similar to those previously described by Kirkpatrick and Barton
(1997), Case and Taper (2000), and Garcı́a-Ramos and Rodriguez (2002). The finite difference method was used
to solve equations (4), with a linear environmental gradient and theta-logistic density dependence. Numerical
results were verified for the unregulated case by comparing them with the analytical solution. The limited-range
threshold curves (fig. 3) were found by sampling the A-B parameter space in a uniform manner: A from 0.05 to
1 at increments of 0.02, and B from 0.05 to at increments of 0.04. Cases of limited range were determined1/23/2
as having a final range limitation value of at the final simulation time ( ). The parameter kk 1 0.0005 T p 100
was estimated by fitting a quadratic polynomial around at the final time. The curves themselves (fig. 3)X p 0
are quadratic polynomial fits of the actual contours that separate cases of limited and unlimited range in the A-B
parameter space for each value of v. Numerical work and figure preparation were done using MATLAB 6.5 and
7 (MathWorks, Natick, MA).

Transforming Fowler’s R into Estimates of v

Fowler’s (1988) R represents the relative density (relative to the carrying capacity K) at which population growth
(i.e., ) is maximal. Given the theta-logistic model, one obtains , which has a maximumvdN/dt dN/dt p N(1 � N )
at . Because the dimensionless density N is already scaled relative to the carrying capacity, we∗ 1/vN p 1/(1 � v)
obtain , or, alternatively, , which can be solved for v numerically.1/vR p 1/(1 � v) ln R p �1/v # ln (1 � v)


