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The ‘holy grail’ of invasion biology has been the identi-

fication of both suites of traits of introduced species,

and characteristics of the environment of invasion, that

permit a reasonably accurate prediction of the success or

failure of invasive species. Developing such a character-

ization of invasion success or failure has been a surpris-

ingly difficult challenge (e.g., Williamson and Fitter

1996). There are many reasons for this. For instance, it

is challenging to make reliable predictions in circum-

stances that are necessarily highly stochastic due, say, to

the small population sizes of invasive propagules, or the

haphazard and sporadic nature of inadvertent introduc-

tions. In addition, there is often only a very rough

understanding of the ecological factors (e.g., local com-

munity structure) that permit population persistence in

native ranges, an understanding that is needed for pre-

diction of establishment success or failure to be effective

in the arena of introduction (Peterson and Vieglais

2001).

In this paper, we explore another potentially important

dimension of uncertainty in making predictions about

invasion. In many situations, invasion may be facilitated,

or may even absolutely require, adaptive evolution to

novel environments, similar in some respects but differing

in others from the environments found at the site of ori-

gin. One applied situation beyond the usual scenarios of

invasion biology where this is particularly germane is the

emergence of novel infectious diseases, where genetic

adaptation to a novel host may be required for successful

establishment and persistence (Holt and Hochberg 2002;

Antia et al. 2003). To predict the success or failure of

invasions, one thus must understand something about the

genetics and evolutionary dynamics of the introduced

species in a novel environment (Lee 2002; Lee and

Gelembiuk 2008).

The mapping between genotype and phenotype is often

highly complex, and any particular phenotype that might

be exposed to selection could be produced by any of a
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Abstract

We analyze mathematical models to examine how the genetic basis of fitness

affects the persistence of a population suddenly encountering a harsh environ-

ment where it would go extinct without evolution. The results are relevant for

novel introductions and for an established population whose existence is

threatened by a sudden change in the environment. The models span a range

of genetic assumptions, including identical loci that contribute to absolute fit-

ness, a two-locus quantitative genetic model with nonidentical loci, and a

model with major and minor genes affecting a quantitative trait. We find as a

general (though not universal) pattern that prospects for persistence narrow as

more loci contribute to fitness, in effect because selection per locus is increas-

ingly weakened with more loci, which can even overwhelm any initial enhance-

ment of fitness that adding loci might provide. When loci contribute unequally

to fitness, genes of small effect can significantly reduce extinction risk. Indeed,

major and minor genes can interact synergistically to reduce the time needed

to evolve growth. Such interactions can also increase vulnerability to extinction,

depending not just on how genes interact but also on the initial genetic struc-

ture of the introduced, or newly invaded, population.
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wide range of genetic bases. Tolerance to an abiotic stres-

sor, for instance, might be influenced by genetic variation

at a single genetic locus with alleles of large effect on

fitness or instead by the summation of effects across many

loci, each with a small effect on fitness. When there are

many loci involved, these could be either unlinked or

linked to various degrees. Genetic loci could have additive

effects upon the phenotype, or there could be nonadditive

genetic interactions (epistasis). For all these reasons,

among others, one expects substantial heterogeneity

among species in the genetic capacity to adapt to novel

environments. Superficially similar species might actually

differ greatly in their capacity for evolutionary responses

during adaptation to, and invasion of, novel environ-

ments. The dearth of knowledge about the genetic basis of

traits relevant to adaptive evolution for most species (not

just invasive species) suggests that this could be a signifi-

cant reason (among others) for the difficulty in construct-

ing a general, predictive theory of species invasions.

In this paper, we focus on a particular kind of novel

environment, namely one where in the absence of evolu-

tion, an introduced species is expected to face extinction,

because conditions there are outside its ecological niche

(Holt et al. 2005). We define ‘adaptive colonization’ to be

colonization that requires evolution of a colonizing popu-

lation initially facing extinction, because its mean fitness

(finite growth rate) is less than one. If the population

mean fitness remains consistently less than unity, individ-

uals are not being replaced across generations, on average,

and the population will inexorably decline towards

extinction in the absence of heritable genetic variation in

fitness. If such genetic variation is present, and if selection

can shift the mean fitness so that it exceeds one suffi-

ciently rapidly, the population can begin to rebound and

thus has a chance of persisting in the novel environment.

The central issue we address in this article is how the

genetic basis of fitness influences the likelihood of such

adaptive colonization by an introduced species.

While invasive species must sometimes overcome inhos-

pitable environmental conditions to become established,

once a population is established, comparable issues arise

when considering the potential impact of the invader

upon resident species. Managers are not concerned with

invasive species which, though present, are rare and unob-

trusive, but rather with species such as Melaleuca quinque-

nervia in southern Florida, which has become sufficiently

abundant and ecologically dominant to drastically alter

the environment in unfavorable ways for a wide range of

other species (Bodle et al. 1994). In some cases, the arrival

of invaders may sharply degrade the environment for

some resident species, and do so sufficiently to threaten

their persistence. If the invader in effect pushes resident

species out of their ancestral niches, adaptive evolution

would be required to rescue these species from extinction

in the new world created by the dominant invader.

As a possible example, on the island of Guam, the

introduced brown treesnake (Boiga irregularis) severely

impacted many native vertebrate species, including several

species of geckos and skinks. Other gecko and skink spe-

cies, however, have managed to coexist with the invasive

snake (Fritts and Rodda 1998; Lockwood et al. 2007).

These interspecific differences in responses among mem-

bers of the native community could merely reflect differ-

ences in their degrees of exposure to the invasive species

(e.g., microhabitat use), or instead could potentially

reflect differences among taxa in the scope and rapidity

of adaptive evolutionary responses to this novel threat in

their environment.

In either scenario, successful establishment by invaders

or resistance to invasion impacts by residents might

depend on the genetic capacity species have to adapt

rapidly enough to avoid extinction in novel environ-

ments—one component of their ‘evolvability’ (Houle

1992). Theory suggests that evolution is unlikely to rescue

populations finding themselves suddenly exposed to

severe conditions, such as those faced by a colonizing

propagule entering habitats with conditions outside its

fundamental niche, or by a resident species living in a

world dominated by an aggressively successful invader

(Gomulkiewicz and Holt 1995; Boulding and Hay 2001;

Orr and Unckless 2008). However, little is known about

how the detailed genetic basis of fitness might affect the

prospects of successful adaptation in poor environments.

Our contribution will be to investigate how the genetic

complexity underlying absolute fitness impacts the capac-

ity of invasive or invaded populations to adapt and per-

sist when abruptly faced with harsh conditions. We use a

theoretical approach to address this issue, comparing

mathematical models that differ in their assumptions

about the underlying genetics of fitness. We examine

three deterministic models, which differ greatly in their

assumptions about how genotypes map onto fitness, and

then use simulations to examine the robustness of our

conclusions to issues of demographic and genetic stochas-

ticity, which are always present as a population declines

toward extinction.

Invasion fitness determined by direct genetic
effects

We begin with the biologically most abstract, but mathe-

matically most tractable, case where postinvasion fitness is

determined by summing over a set of loci, each of which

impacts fitness. Assume a randomly mating diploid spe-

cies with continuous, overlapping generations. Fitnesses

are density-independent and each fitness-contributing
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locus has two alleles, A and a, with respective frequencies

pt,i and qt,i = 1 ) pt,i at locus i at time t. We assume that

locus i has Malthusian fitness parameters mAA,i,, mAa,i,

and maa,i for the three genotypes and that the loci con-

tribute additively to total fitness. [Recall that Malthusian

fitness may be thought of as the logarithm of fitness in

discrete-time, nonoverlapping generation models (Crow

and Kimura 1970, p. 7), so additive contributions across

loci to Malthusian fitness correspond to multiplicative

contributions to fitness in discrete generation models]. In

addition, we assume Hardy-Weinberg proportions at each

locus, a condition which is approached quickly for this

continuous-time model if selection is weak (Nagylaki and

Crow 1974; Nagylaki 1992). Given these conditions, the

mean Malthusian fitness at time t is

mt ¼
Xn

i¼1

p2
t;imAA;i þ 2pt;iqt;imAa;i þ q2

t;imaa;i

h i
ð1Þ

where n is the number of loci contributing to fitness.

Note that mt is also the intrinsic rate of increase: the

population shrinks deterministically when it is negative

and grows when it is positive.

For further simplicity, we assume the parameter-

ization mAA;i ¼ rmax=n; mAa;i ¼ rmax=n� si=2; and

maa;i ¼ rmax=n� si such that a population fixed for the A

allele at all loci grows at intrinsic rate of increase rmax.

These Malthusian fitnesses are called ‘additive’ (Crow and

Kimura 1970) since each copy of A at locus i adds si/2 to

individual fitness compared with that of an aa homozy-

gote at that locus. We assume, without loss of generality,

that the selection coefficient si > 0 so that a is the rela-

tively deleterious allele at each locus. With this parame-

terization, the mean Malthusian fitness (1) simplifies to

mt ¼ rmax �
Xn

i¼1

siqt;i: ð2Þ

Since both si and qt.i are non-negative, growth can

evolve only if rmax > 0. Given additive fitnesses, one can

solve for qt,i as a function of the si, q0,i, and t (Crow and

Kimura 1970, p. 193), qt;i ¼ q0;i

�
q0;i þ esit=2 1� q0;i

� �� �
;

giving

mt ¼ rmax �
Xn

i¼1

siq0;i

q0;i þ esit=2 1� q0;i

� �: ð3Þ

Our first objective is to determine how the time needed

to evolve deterministically from a given initial intrinsic

rate of decrease (m0<0) to a non-negative growth rate

(mt � 0) depends on n, the number of loci that deter-

mine fitness. If T is the first time the evolving population

ceases to decline, then mT ¼ 0. Substituting this into (3)

shows T is defined implicitly by

rmax ¼
Xn

i¼1

siq0;i

q0;i þ esiT=2 1� q0;i

� �: ð4Þ

This equation can be solved numerically for the time T to

evolve growth from m0<0.

An explicit formula for T can be derived in the extreme

case where loci have identical allele frequencies. Let q0,i =

q0 and si = s for all i. Solving (4) for T gives

T ¼ 2

s
ln

ns� rmaxð Þq0

rmax 1� q0ð Þ

� �
: ð5Þ

Suppose we hold constant the initial mean fitness

m0 ¼ rmax � nsq0, the maximum possible growth rate

rmax, and the initial frequency of the deleterious allele at

each locus q0 as n varies. These conditions imply

s ¼ rmax �m0

nq0
: ð6Þ

Substituting (6) into (5) shows

T ¼ 2nq0

rmax �m0
ln 1� m0

rmax 1� q0ð Þ

� �
: ð7Þ

Expression (7) shows that the time to evolve growth

increases linearly with the number of loci n. The cause of

this is apparent in (6), which shows that the strength of

selection per locus declines with the number of loci con-

tributing to fitness.

Although our immediate interest is comparing invaders

with the same initial rate of decline m0, it might make sense

to keep quantities other than rmax or q0 constant for differ-

ent numbers of loci. Indeed, suppose we keep m0, rmax, and

s—rather than q0—constant as n varies. Then

m0 ¼ rmax � nsq0 implies that the initial frequency of the

deleterious allele must be inversely proportional to n:

q0 ¼ rmax �m0ð Þ= nsð Þ. Substituting this into (5) shows that

T now decreases with the number of loci (Fig. 1A). Note that

mT ¼ 0 ¼ rmax � nsqT so that qT ¼ rmax=ns. Thus, the

amount of allele frequency change required at each locus to

achieve growth, q0 � qT ¼ �m0=ns, declines with n while

the strength of selection per locus remains constant by

assumption. Genomes with more loci may experience the

same selection per locus, but require less evolution at each

locus to achieve growth than those with fewer loci.

Finally, consider how the number of loci affects T when

assuming the total initial variance in fitness,

V0 ¼ nq0 1� q0ð Þs2=2, along with m0 and rmax are held con-

stant for different n. Keeping these quantities fixed implies

s ¼ rmax �m0

n
þ 2V0

rmax �m0
ð8aÞ

and
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q0 ¼
rmax �m0ð Þ2

2nV0 þ rmax �m0ð Þ2
; ð8bÞ

which can be substituted into (5) to express how the time

to evolve growth T depends on the number of loci n

(Fig. 1B) for invaders with the same m0; rmax, and V0.

Since mean fitness evolves at a rate determined by the

variance in fitness (Fisher 1930), fixing V0 in effect com-

pares invaders with different n but the same initial per

generation increase in mean fitness. Note that per locus

selection is again weaker with larger n (equation 8a), as

when q0 was held constant (equation 6), but this is to

some extent countered by the lower initial frequency of

deleterious alleles with more loci (equation 8b), similar to

the case where s was assumed constant. Numerical evalua-

tions suggest the net result is that T increases with n

(Fig. 1B). Apparently, the reduction in total allele

frequency change required for growth for genomes with

larger n implied by (8b) fails to compensate for the

slower evolution at individual loci due to the weaker

selection per locus (equation 8a).

Clearly, then, conclusions about how the number of

loci affects the time required by an invading population

to evolve growth depend on what is held constant among

populations. The contrast between our results when hold-

ing the fitness variance V0 (Fig. 1B) or allele frequency q0

(equation 7) constant versus holding the per locus selec-

tion coefficient s constant (Fig. 1A) could hardly be

greater.

Our analyses assumed the growth rate at the start of

invasion, m0, was held constant regardless of how many

or few loci contribute to fitness. In many cases, however,

one expects that adding loci will directly alter fitness by,

say, increasing metabolic capacity or changing the regula-

tion of genetic factors. In the next two sections, we

account for these new effects explicitly by assuming loci

contribute to variation in a quantitative trait on which

individual fitness and the mean fitness of the invading

population depend. We also use this framework to relax

the assumption that loci make identical contributions to

individual fitness, and then examine the consequences of

demographic stochasticity.

Invasion fitness determined by a quantitative trait

We assume that fitness depends on n loci via a quantita-

tive trait z and model an invading population with ran-

dom mating, discrete, nonoverlapping generations and

density-independent growth. The finite growth rate at

time t is Wt , the mean fitness. At the onset of invasion,

W0<1 so that the population is initially in decline. Our

goal is to determine how the period needed to evolve a

mean fitness above one depends on the genetic assump-

tions. Unlike the previous section, we do not hold the

initial growth rate constant as we alter the genetics. This

could have consequences of its own on time to demo-

graphic recovery.

There are countless ways to map genotypes to pheno-

types. We concentrate here on just two comparatively

tractable biallelic diploid models—a two-locus model and

the n-locus hypergeometic model—and leave a more gen-

eral treatment for future investigation. For both models,

we assume alleles combine additively to determine pheno-

types z and employ the ‘quasi-linkage equilibrium’ (QLE)

approximation. The QLE approximation presumes epista-

sis and selection are weak compared with recombination,

such that the statistical associations among loci are small

(on the same order as selection coefficients) and evolve

more rapidly towards equilibrium than do allele frequen-

cies (Barton and Turelli 1991).

The hypergeometric model (Barton 1992; Doebeli 1996;

Shpak and Kondrashov 1999) assumes n loci with identi-

cal effects and allele frequencies. The loci are unlinked

but can be statistically associated. Since all loci are identi-

cal, we need only follow the evolution of the shared allele

frequency. By comparison, the two-locus model allows

loci to differ and be linked. We use the QLE approxima-

tion to track allele frequencies at each locus separately.

(A) (B)

Figure 1 Time to evolve growth versus the number of identical, independent loci contributing to growth. Lower and upper sets of points corre-

spond respectively to m0 ¼ �0:01 and m0 ¼ �0:02. (A) Holding per locus selection constant at s = 0.04 [equation 5 with q0 ¼ rmax �m0ð Þ= nsð Þ]
and rmax = 0.01. (B) Holding initial variance in fitness constant at V0 = 10)4 (equations 5 and 8) with rmax = 0.1.
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We develop recursions assuming the trait z on which

individual fitness depends (e.g., z might be body size or

metabolic rate) is determined by adding allelic effects

within and across loci. Let

z Xð Þ ¼
Xn

i¼1
bi Xfi þ Xmi

� �
; ð9Þ

where the genotype X ¼ Xf 1;Xm1;Xf 2;Xm2; . . . ;Xfn;Xmn

� �
is a string of 2n indicator variables, each representing the

presence (X = 1) or absence (X = 0) of a maternally

(subscript mi) or paternally (subscript fi) derived allele with

effect bi at locus i. An individual with all ‘0’ alleles has phe-

notype 0, which implies all phenotypic values z are scaled

relative to that of this genotype. For simplicity, we ignore

environmental effects meaning all individuals with a given

genotypic value have the same phenotype. Assuming no sex

differences E Xmið Þ ¼ E Xfi

� �
¼ pi, the frequency of the ‘1’

allele at locus i, so the mean phenotype is

z ¼ E z Xð Þ½ � ¼ 2
Xn

i¼1
bipi: ð10Þ

We model absolute fitness as a quadratic function of

z, W zð Þ ¼ Wmax 1� c z � hð Þ2
� �

, where h is the optimal

phenotype, c is a positive constant that governs effects

of deviations from h on fitness, and Wmax is the abso-

lute fitness of an individual with the optimal pheno-

type. To ensure plausibility (i.e., absolute fitness must

be non-negative), we assume the quadratic term is less

than one. This quadratic fitness model is flexible

enough to represent both primarily directional selection

(when z is far from h) and primarily stabilizing selec-

tion (when z is near h). The finite growth rate (mean

fitness) is

W ¼ E W zð Þ½ � ¼ Wmax 1� c z � hð Þ2�cr2
� �

ð11Þ

where z is given by (10) and

r2 ¼ var zð Þ ¼ 2
Xn

i¼1

b2
i piqi þ 4

Xn�1

i¼1

Xn

j¼iþ1

bibjDij ð12Þ

is the phenotypic variance given linkage disequilibrium

coefficients Dij between loci i and j with qi = 1 ) pi.

Assuming c << 1 and that the conditions for the

quasi-linkage equilibrium approximation hold, the linkage

disequilibria converge quickly to quasi-equilibrium values
~Dij that depend only on the far more slowly evolving

allele frequencies (Barton and Turelli 1991). For our

model, it can be shown that these disequilibria are

~Dij ¼
�2cbibjpiqipjqj

rij
; ð13Þ

where rij is the recombination rate between loci i and j,

and that the between-generation change in the pi is

Dpi ¼ cbipiqi 2 h� zð Þ þ bi 2pi � 1ð Þ½ � ð14Þ

to first order in c. (A Mathematica notebook with the

detailed derivation of these equations is available from

the lead author.) Substituting (13) in (12) shows that, at

QLE, the mean fitness (11) is a function solely of the slow

changing allele frequencies.

For the two-locus QLE model there are two recursions

(14), one each for p1 and p2. The mean phenotype in this

case is z ¼ 2 b1p1 þ b2p2ð Þ and the phenotypic variance is

r2 ¼ 2 b2
1p1q1 þ b2

2p2q2

� �
� 8cb2

1b2
2p1q1p2q2

r
; ð15Þ

where r = r12 is the recombination rate between the two

loci. For the n-locus hypergeometric model, we set pi = p,

qi = q, bi = b, and rij = ½ for all i and j in equations 10–

14. The mean (10) and variance (12) then simplify,

respectively, to z ¼ 2nbp and

r2 ¼ 2nb2pq� 8n n� 1ð Þcb4p2q2; ð16Þ

and the recursion for the shared allele frequency p is

Dp ¼ cbpq 2 h� 2nbpð Þ þ b 2p� 1ð Þ½ �: ð17Þ

Note that the phenotypic variance (16) in the hyper-

geometric case decreases with increasing n. Since absolute

mean fitness increases as r2 decreases, then for a fixed

initial allele frequency p0, the initial growth rate W0 will

be larger for invaders with more loci contributing to vari-

ation in the quantitative trait (Fig. 2). Could this initial

advantage translate into a shorter period of decline, and

less extinction risk, for invaders with larger n?

To address this conjecture, we numerically iterated the

hypergeometric model recursions (17) using definitions

(10), (11), and (16) in order to compute the time T

needed to adapt from W0<1 to WT � 1: The results show

Figure 2 Finite growth rate W versus the number quantitative trait

loci for the hypergeometric model (equations 10, 11, and 16) with

Wmax = 1.1, h = 2, c = 0.1, p = 0.1, and b = 1/n.

Gomulkiewicz et al. Genetics and invasion
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that, while having more loci can indeed increase the ini-

tial growth rate (Fig. 2), the increase is generally not

enough to overcome the concomitantly slower rate of

adaptation that results presumably from the effect of

spreading selection across loci, thus weakening selection

at each locus (Fig. 3).

The hypergeometric model makes the obviously

extreme assumption that frequencies and phenotypic

effects of alleles are exactly the same at all loci. We used

the two-locus QLE approximation (14) with (15) to

explore how differences among loci might affect the

capacity of an invader to evolve growth. We found that

differences in initial allele frequencies and in phenotypic

effects produce opposite results (Fig. 4). Indeed, differ-

ences in initial allele frequencies between the two loci

lengthen the time needed to evolve growth relative to

the hypergeometric model (with the same average initial

allele frequency), and larger differences result in longer

delays (Fig. 4A). In contrast, differences in phenotypic

effects among loci shrink the time required for growth

to evolve, compared with the hypergeometric model

with the same average effect, and, moreover, larger dif-

ferences produce steeper increases in mean fitness

(Fig. 4B).

When the two loci differ in both their allele frequencies

and phenotypic effects, the consequences for the evolu-

tion of invasion fitness are, not surprisingly, more com-

plicated though our results do suggest some general

features. First, if initial allele frequencies and phenotypic

effects are positively associated (i.e., the locus with larger

allelic effect bi also has the higher initial frequency pi0),

then growth evolves faster compared with a model in

which only phenotypic effects differ among loci (Fig. 5A)

whereas if the association is negative, then mean fitness

evolves slowly compared to even the hypergeometric

model (Fig. 5B). A positive association between bi and pi0

can overcome the reduced rate of evolution caused by

variable allele frequencies (Fig. 5C). While a negative

association can slow the rate of adaptation compared with

allele frequency differences alone, it need not do so

(Fig. 5D). Taken together, these results show that the

time required for an invading or invaded population to

evolve so that it can grow depends on not just the genetic

basis of fitness (via the phenotypic effects at each locus)

but also on the initial genetic structure of the population,

which in turn reflects its history.

Fitness determined by major and minor genes

The two-locus model results suggest that the evolution of

population growth can be accelerated when fitness

depends on a combination of mutations at different loci

with major and minor effects (Figs 4B and 5A). However,

it is often the case that numerous mutations of small

effect contribute to fitness. To evaluate whether the two-

locus findings generalize to genomes with a major gene at

one locus that determines fitness along with many genes

of minor effect, we utilized a model of major and minor

genes proposed by Lande (1983).

Lande’s model considers a quantitative character z

influenced by a biallelic locus of major effect and by a

genetic background determined by a large, unspecified

number of loci of small effect. The major and minor loci

are assumed in linkage equilibrium. The background vari-

ation is normally distributed with mean zB , fixed pheno-

typic variance r2
, and constant heritability h2. Lande’s

recursions are

Dp ¼ p 1� pð Þ
2

@ ln W

@p
ð18aÞ

DzB ¼ h2r2 @ ln W

@zB
ð18bÞ

where W is mean fitness and p is the frequency of the ‘1’

allele at the major locus. We assume, as in the previous

section, that the effect of trait z on fitness is quadratic

with optimum phenotype h, strength c > 0, and maxi-

mum fitness Wmax > 1. We also assume, for simplicity,

that alleles at the major locus do not have pleiotropic

effects on fitness and that they act additively on the trait

z, with each ‘1’ allele adding an amount b to the quanti-

tative character. Then

W ¼ Wmax 1� c ðzB þ 2pb� hÞ2
�	

þ r2 þ 2p 1� pð Þb2
�

: ð18cÞ

Figure 3 Evolution of the finite growth rate W for the hypergeomet-

ric model (equations 10, 11, 16, and 17) with Wmax = 1.1, h = 2,

c = 0.1, and b = 1/n, where n is the number of loci. Lines: red

(n = 1), blue (n = 2), green (n = 4), purple (n = 8), orange (n = 16).

Initial allele frequency for all is p0 = 0.1.

Genetics and invasion Gomulkiewicz et al.
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Equations (18) can be used to project evolution of the

major locus, the background genetic variation, and the

population’s finite growth rate. Note that this approach

does not explicitly consider allele frequencies or evolu-

tionary dynamics of the individual minor loci.

Iteration of (18) shows that joint variation at major and

minor genes can produce more substantial increases in

mean fitness than can be achieved via evolution with

either variation at the major locus alone (i.e., when h2 = 0

but p > 0) or minor gene variation alone (p = 0 but

h2 > 0). For the example of dynamics shown in Fig. 6, the

parameter values are such that it is impossible to evolve

W>1 with variation at the major locus only (red symbols).

With minor gene variation alone (blue symbols), the pop-

ulation can evolve W>1 given sufficient time, but in Fig. 6

it is still well below this level after the 40 generations

shown. Yet given both background and major locus

genetic variation (purple symbols), W>1 is achieved

(A) (B)

Figure 4 Evolution of the finite growth rate W for the two-locus QLE model (equations 10, 11, 14, and 15) with Wmax = 1.1, h = 2, c = 0.1,

r12 = 0.5 (unlinked loci) and initial disequilibrium coefficient D12 = 0. Solid curve in both panels is the two-locus hypergeometric model with

b = 0.5 and p0 = 0.1. (A) Different, but same average, initial allele frequencies at the two loci. Effect sizes are the same at both loci, b = 0.5.

Dashed trajectory: p10 = 0.01, p20 = 0.19. Dot-dashed trajectory: p10 = 0.001, p20 = 0.199. (B) Different, but same average, effect sizes at the

two loci. Initial frequencies are the same at both loci, p0 = 0.1. Dashed trajectory: b1 = 0.25, b2 = 0.75. Dot-dashed trajectory: b1 = 0.01,

b2 = 0.99.

(A) (B)

(C) (D)

Figure 5 Impacts of jointly variable initial allele frequencies and effect sizes on evolution of the finite growth rate W (solid curves). Parameters as

for Fig. 4 except where noted. Solid curve b1 = 0.1, b2 = 0.9, p10 = 0.001, p20 = 0.199 in both left-hand panels (i.e., initial frequencies and

effects positively associated) and solid curve b1 = 0.1, b2 = 0.9, p10 = 0.199, p20 = 0.001 in both right-hand panels (initial frequencies and effects

negatively associated). Dot-dashed curves, upper panels: effect sizes as for the solid curve but with initial allele frequency p0 = 0.1 at both loci.

Dot-dashed curves, lower panels: initial allele frequencies as for the solid curve but with effect size b = 0.5 at both loci. The dashed curve in all

four panels is the corresponding hypergeometric model (equations 16 and 17) with p0 = 0.1 and effect size b = 0.5.
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within the forty generations of adaptation. This demon-

strates that major and minor genes can work synergisti-

cally to enhance the prospects of growth for an invader.

The apparent synergy between major and minor genes

can be traced to conflicting effects of the major locus on

mean fitness. As the favored ‘1’ allele spreads from low

frequency, it quickly moves the population mean pheno-

types towards the optimum h (indicated by the straight

dashed line, zB þ 2pb ¼ h, in Fig. 6), which enhances

mean fitness. But this progress is countered by the (tran-

siently) increasing phenotypic variance contributed by the

major locus, which increasingly slows the rise of mean fit-

ness (see the last term in equation 18c). The comparable

contribution to phenotypic variance from minor gene

variation, r2, is constant by assumption so the resistance

to improving mean fitness of this variance is relatively

constant. In Fig. 6 (purple symbols), spread of the

favored allele at the major locus boosts the steady adapta-

tion due to the minor genes before the increasing pheno-

typic variance can significantly decelerate the progress of

mean fitness. While we did not find such synergy in all

cases we examined, our results clearly demonstrate the

potential for major-minor gene interactions to enhance

the evolution of growth in invading or invaded popula-

tions experiencing harsh novel environments.

Simulations

Realistic population and evolutionary dynamics contain a

number of stochastic elements, which are expected to be

particularly important in small, extinction-prone popula-

tions such as colonizing groups in harsh environments.

The models and analyses above completely ignore sto-

chasticity and besides use a number of other approxima-

tions. Moreover, we measured extinction risk in terms of

the evolution of mean fitness. This may not always be the

best measure of the potential for evolutionary rescue. For

instance, if one were dealing with a genetically heteroge-

neous clonal species, this measure clearly could be mis-

leading; for population persistence, deterministically it

suffices that a single clone be present with a positive

growth rate, regardless of mean fitness across all clones.

Despite this caveat, we have found in the past that ana-

lyzing how evolution changes mean fitness in determinis-

tic models yields useful insights into adaptation into

harsh environments using more complex models that take

proper account of stochasticity (e.g., Holt and

Gomulkiewicz 1997; Holt et al. 2003; Holt et al. 2005). In

order to assess the heuristic utility of the deterministic

approaches for gauging extinction risk utilized in the

above models, we performed individual-based stochastic

simulations to assess directly whether our conclusions are

qualitatively robust regarding how genetics impacts the

extinction risk of invaders in harsh environments.

Specifically, we based our simulations on the quantita-

tive trait model corresponding to recursion (14). For each

set of genetic assumptions and parameter values, we sim-

ulated 10 000 replicate populations and estimated the

associated probability of extinction as the fraction of

these that went extinct within 200 generations.

Details of the simulations are as follows. Each replicate

started with N0 diploid hermaphroditic adult individuals.

Each position at locus i within an individual was initially

assigned the ‘1’ allele with probability p0i and the ‘0’ allele

otherwise. Each adult could mate as a female, male, or

both. If there were 500 or fewer adults, then all mated as

females. Otherwise 500 adults were chosen randomly

without replacement to be female parents. For each mat-

ing female, an individual was chosen at random from all

adults (with replacement) to act as the male parent; self-

fertilization was allowed. Each mated pair produced a

binomially distributed number of offspring with expecta-

tion Wmax and probability of success Wmax/2. The parent

generation died after all matings were completed. There

was no mutation, and each parent contributed a haploid

gamete with free recombination to each of its offspring.

Figure 6 Evolution of the finite growth rate W for Lande’s major-

minor locus model (equations 18) assuming Wmax = 1.1, h = 2,

c = 0.1, b = 0.5, and r2 = 0.64. Forty generations of joint dynamics

of the major locus and background variation (initial value of zB ¼ 0)

are plotted on the mean fitness contour surface. The straight dashed

line corresponds to the phenotypic optimum, zB þ 2pb ¼ h. Red sym-

bols: variation at major locus only (p0 = 0.02, h2 = 0). Blue: back-

ground genetic variation only (p0 = 0, h2 = 0.1). Purple: background

and major locus genetic variation (p0 = 0.02, h2 = 0.1).
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An offspring survived to adulthood with probability

v zð Þ ¼ 1� c z � hð Þ2; where z is its phenotype (deter-

mined via equation 9), h is the optimum phenotype, and

c is the strength of stabilizing selection. Extinction

occurred if no offspring survived to adulthood.

Results from these stochastic simulations are, on aver-

age, in quantitative agreement with the predictions of our

deterministic analyses, even for initial population sizes as

small as four (see Fig. S1). The simulations also confirm

that the time needed to evolve growth is positively related

to the probability of extinction. In particular, Fig. 7 con-

firms that genomes with more loci have higher probabili-

ties of extinction, as suggested by our deterministic

analyses of the hypergeometric model (cf., Fig. 3). Our

two-locus simulations likewise show that differences

among loci in phenotypic effects reduce extinction risk

(compare Figs 8A and 4B), that differences in initial allele

frequencies increase vulnerability to extinction (Fig. 8A

versus Fig. 4A), and that positive/negative association

between phenotypic effects and initial allele frequencies

further reduce/enhance extinction hazard (Fig. 8B versus

Fig. 5). In sum, the simulation results suggest strongly

that our relatively tractable deterministic approach

focused on the dynamics of mean fitness produces quali-

tative conclusions about population survival emerging

from evolutionary rescue consistent with the far more

analytically complex stochastic realities of extinction and

evolution.

Discussion

We have used a series of mathematical models to examine

the impact of genetics on a new population invading a

harsh environment in which it would go extinct without

evolutionary change. We applied the term ‘adaptive colo-

nization’ to an invading population, initially declining in

size, which evolves so that it can eventually grow and

become self-sustaining. Note that our findings are rele-

vant to any population that finds itself in decline regard-

less of cause, including a resident population whose

existence is suddenly threatened by an exotic invasion (or

for that matter any other source of degradation in its

environment, such as abrupt climate change or a surge in

the concentration of a toxic pollutant).

Our results show that the prospects of adaptive colo-

nization narrow considerably with an increase in the

number of genetic loci on which adaptation depends,

given a fixed initial variance in fitness. This is because

per locus selection must be adjusted downward as more

loci are added in the model to keep the fitness variance

constant. The effect is to ultimately slow the pace of

adaptation and extend the time before growth evolves,

increasing the risk of extinction. Interestingly, just the

opposite holds in model (1) if, instead of initial vari-

ance in fitness, the per-locus strength of selection is

fixed regardless of the number of loci. This is because,

with more loci, the amount of allele frequency change

per locus required to achieve a mean fitness consistent

with growth is smaller while the strength of selection at

each locus is assumed to be the same. Invading popula-

tions in nature will undoubtedly differ in genetic archi-

tecture, variability in fitness, and how they experience

selection. Our results emphasize that predicting when

invasion will be successful will require understanding

how those factors affect the strength of selection on,

and the amount of genetic change at, individual loci

ultimately required for overall positive growth.

Having more loci contribute to fitness can sometimes

enhance the mean fitness and growth rate of an invading

population. Our findings show, however, that this initial

enhancement tends to be far too small to compensate for

weakened per locus strength of selection if the effects of

fitness are divided among more and more loci. Our

results also show, intriguingly, that loci of small effect can

make significant contributions to rapid increases in mean

fitness. Indeed, we found that adaptive colonization was

more likely when major genes interact with variation at

minor loci compared with the progress achievable given

their separate effects. However, these interactions can also

greatly impede adaptive colonization, depending not on

how genes interact, but rather the initial genetic struc-

ture—the history—of the invading population.

Our conclusions regarding the importance of major

and minor genes in a population faced with a consider-

able adaptive challenge, such as an new invader, differ

from those of Lande (1983) and Macnair (1991). Lande
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Figure 7 Estimated probability of extinction (fraction of 10 000 repli-

cates extinct by generation 200) versus initial population size assum-

ing different numbers of identical quantitative trait loci for the

individual-based simulation model. Parameter values as in Fig. 3.
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showed that rapid evolution toward a new distant pheno-

typic optimum can be accomplished just as easily with

polygenes as with a major mutation and, indeed, is more

likely if the major mutation is initially rare or initially

common but doomed to be lost. Macnair countered that

if a large phenotypic response is required for population

persistence, it can only be achieved via spread of rare

mutations of large effect.

Lande’s analyses focused on how major and minor

genes contribute to the attainment of adaptive equilib-

rium given the new phenotypic optimum (Lande 1983).

Our analyses, instead, concentrated on how major and

minor genes affect the time needed to attain a mean fit-

ness that allows population growth, which can occur

when the population is still far from its evolutionary

equilibrium. In fact, we found cases in which a mutation

at the major locus is ultimately lost but nevertheless helps

reduce the time needed to evolve positive growth, com-

pared with a population whose adaptation relies strictly

on background genetic variation (results not shown).

Macnair emphasized, as we have here, the importance of

evolving far enough to ensure persistence (Macnair 1991,

p. 214), but his treatment did not explicitly quantify the

phenotypic distance required for growth. By comparison,

this distance is explicit in our models.

The contrast between the conclusions of Lande and

Macnair versus our finding that major and minor genes

can lead to the evolution of growth most rapidly together

can thus be traced to our focus on the explicit, transient

evolutionary dynamics of the population mean fitness.

We believe this focus is particularly relevant for an invad-

ing population whose successful establishment depends

on it evolving such that it can increase its numbers. More

generally, this comparison highlights the difference

between adaptation and adaptive colonization, as we have

defined it here. The latter accounts for the demographic

fate of a population and focuses on transient dynamics,

whereas the former term usually refers to long-term

evolutionary outcomes, often regardless of their connec-

tion to population dynamics.

The models and analyses considered in the paper

expand our conceptual understanding of how evolution

contributes to biological invasions. They also serve as

important building blocks for developing models tailored

to particular empirical systems that could be used to pre-

dict the prospects and risks of invasion. Moreover, our

results have ramifications for applications beyond inva-

sion biology. For example, our results may help to

explain the evolution of emerging infectious diseases. Spe-

cifically, our findings suggest that the genetic underpin-

nings of pathogen-host adaptation may explain why some

pathogens successfully shift onto novel hosts whereas oth-

ers do not. Any environmental change that is experienced

abruptly by a species, and in which adaptation by natural

selection is required for it to persist, can in principle be

addressed with models along the lines of those we have

explored here. For instance, a sudden increase in harvest-

ing pressure might threaten overexploited species, which

could potentially survive by altering body size to escape a

particular mesh of net. A pesticide might incidentally and

quickly reduce the abundance of a nontarget insect spe-

cies, which to persist must evolve adaptation to the novel

toxin. In all such cases, heterogeneity among species in

their observed abilities to persist in the novel environ-

ments might reflect hidden variation in the genetic archi-

tecture underlying the traits determining fitness in these

environments.

This study relied, for the most part, on biologically

simplistic, deterministic models, and a relatively simple

surrogate for extinction risk—the time a population

spends declining in size—allowed for clear comparison

of specific genetic effects on invasion success or failure.

Similar to an empirical experiment, our theoretical

approach provides a highly controlled assessment of

precisely manipulated features, which in our case are

the number of loci that contribute to fitness and the
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Figure 8 Probability of extinction (fraction of 10 000 replicates extinct by generation 200) versus initial population size for individual-based simu-

lations with two loci. (A) Influences of between locus differences in initial allele frequencies or phenotypic effects. (B) Influences of simultaneous

differences in allele frequencies and phenotypic effects. Parameters as in Figs 4 and 5.
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variability of their effects. But like experimental con-

trols, our simplifying assumptions are simultaneously

limiting in that they preclude insight into the potential

impacts of numerous demographic and genetic features

that were ignored—small population size, demographic

stochasticity and heterogeneity, linkage, random genetic

drift, epistasis, and dominance to name just a few. Our

simulations showed that the qualitative results of our

deterministic analyses are robust to violations of several

of these assumptions and thus suggest that the deter-

ministic models may provide a reasonable starting point

for development of more complex models of adaptive

colonization, tailored to the biological details of partic-

ular invasive species.
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Figure S1. Average trajectories of population growth

rate (Wt) for simulations (based on initial population

sizes of N = 4, 16, and 64) compared with analytic results

obtained by iterating (17) for one-locus (A) and two-

locus (B) hypergeometric model assumptions. Parameter

values are as in Fig. 3 of the main text. Simulation results

at each generation were averaged over all populations that

survived to that time.
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