## Electronic supplementary material (M. Barfield and R.D. Holt)

## Origin of Mutations in Host Shift Experiments

Using data published in Dennehy et al. (2006), the source phage population in the host shift experiment is expected to be greater than $10^{10}$ at the end of each growth period; assume it is $10^{10.5} .10^{4}$ virions go to the sink, while the rest are diluted by $10^{6}$, leaving $10^{4.5}$ to go to the next passage in the source. These phage reproduce to $>10^{10}$ and this cycle likely repeats for the duration of the experiment.

The population levels in the sink are not as clear. Again using Dennehy et al. (2006) as a reference, the population should increase to about $10^{9.5}$ following the initial inocula with $10^{4}$ phage. Subsequently this population is reduced to about $10^{3.5}$ during serial passage transfer. If no adaptation occurs and $10^{4}$ new phage are added each day, the population levels should approach $10^{4.2}$ after source phage are added, and to $10^{9.7}$ after growth. However, the absolute fitness of the static source is about $10^{-1.4}$ in Figure 4 of the current manuscript, and at the end of the experiment the host shift sink has an absolute fitness only a little greater than 1 in spite of a $10^{1.6}$ increase in relative fitness. If the change in absolute fitness is similar to that in relative fitness, this implies an absolute initial fitness of about $10^{-1.5}$, in reasonable agreement with the static source value. The Dennehy et al. (2006) results, used above, show that absolute fitness on ERA is approximately $10^{-0.5}$. If the fitness is an order of magnitude lower, then the sink population should fluctuate between about $10^{4}$ and $10^{8.5}$. Call the final sink population $N$.

A new mutant can appear in the sink on any day because of a mutation in the sink that day, or due to a mutant in the source that is transferred to the sink. If the mutation rate is $u$ per virion, then the expected number of sink mutations in the last replication is $N u$. If each phage replication increases the population by a factor of $F$, then the phage population produced in the
last-but-one replication is $N / F$, so the number of mutations would be $N u / F$. A mutant produced in this replication would produce on average $w F$ phage, where $w$ is the fitness of the mutant relative to the non-mutants (per replication cycle), for a total number of mutants in the final population due to this replication's mutations equal to Nuw. With 5 replications/day, the total number of mutants expected is $N u\left(1+w+w^{2}+w^{3}+w^{4}\right)$, with $10^{-6}$ of these passaged to the next sink, or $N u\left(1+w+w^{2}+w^{3}+w^{4}\right) / 10^{6}$.

To these are added $10^{4}$ virions from the source. Using a similar calculation for the number of source mutants per day gives $M u\left(1+v+v^{2}+v^{3}+v^{4}\right)$, where $M$ is the peak source population and $v$ is the relative fitness of the mutant in the source. The fraction of these that go to the sink is $10^{4} / M$, so the number of mutants occurring in the source on one day that go to the sink on the next passage is $10^{4} u\left(1+v+v^{2}+v^{3}+v^{4}\right)$. If $v=w$, then the number of mutants expected from the source is more than that from the sink if $N<10^{10}$. Both estimates of $N$ above are below this value (basically because the sink is a sink).

However, presumably we are interested in mutations that are beneficial in the sink. Figure 2 implies that such mutations are probably detrimental in the source. Therefore, $v$ is probably less than 1 and $w$ greater than 1 . This would increase the sink's contribution - for a single day, if $N<10^{10}\left(1+v+v^{2}+v^{3}+v^{4}\right) /\left(1+w+w^{2}+w^{3}+w^{4}\right)$, the source's contribution is larger.

This only considers mutants arising in one day for the source. Another possibility is for a mutant to go from source to sink that arose in the source on a previous day. The number of mutants in the source on one day passaged to the next source is $\operatorname{Mu}\left(1+v+v^{2}+v^{3}+v^{4}\right) / 10^{6}$. After 5 replications, the number is $M u\left(1+v+v^{2}+v^{3}+v^{4}\right) v^{5}$, of which $10^{4} u\left(1+v+v^{2}+v^{3}+v^{4}\right)$ $v^{5}$ go to the sink. This is $v^{5}$ times the source contribution above, and for even earlier days the
contributions would be $v^{10}, v^{15}$, etc. So after many days, the number of mutants coming from the source would be $10^{4} u\left(1+v+v^{2}+v^{3}+v^{4}\right) /\left(1-v^{5}\right)$, and the condition for this to be greater than the new sink mutations is $N<10^{10}\left(1+v+v^{2}+v^{3}+v^{4}\right) /\left[\left(1+w+w^{2}+w^{3}+w^{4}\right)\left(1-v^{5}\right)\right]$. Thus we conclude it is highly likely that beneficial mutations entered the sink via the source rather than arising de novo in the sink.

