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          CHAPTER 3 

Theoretical refl ections on the 
evolution of migration  
  Robert D. Holt and John M. Fryxell   

      3.1  Introduction   

 Migration in nature occurs against a complex, shift-

ing backdrop of kaleidoscopic changes through 

time due to many distinct forces of variation acting 

over different time scales, from stochastic daily fl uc-

tuations in the weather, to multi-annual oscillations 

in the abundance of resources and natural enemy 

populations, to the stately march of climate change 

over geological time. Migrants move across land-

scapes that are complex over many spatial scales 

( Chapter  7  ). Organisms themselves are of course 

comparably complex, with plastic, multifaceted 

adaptive strategies for contending with variation in 

the environment across space and time ( Chapter  2  ). 

 The theoretical fi tness consequences of migration 

have been considered many times and in many 

ways. Most of these models, however, have been 

built around specifi c taxa or ecosystems. To gain a 

conceptual handle on the evolutionary forces that 

have generated and today maintain migration, we 

suggest it might be equally useful to start with a 

simple idealized organism living in an equally 

 idealized world. Here we consider the conditions 

under which non-migratory home range behaviour 

is vulnerable to invasion by a migratory phenotype; 

we also consider the converse conditions under 

which a migratory population can be invaded by 

non-migratory individuals. Our larger goals are to 

clarify the logic underlying migratory habitat selec-

tion in a seasonal environment, help to defi ne con-

ditions for what we might call the ‘evolutionary 

statics’ of migration, and set the stage for more com-

plex evolutionarily dynamic models. At the end of 

this chapter, we will consider how our simple model 

compares with other models of the evolution of 

migration in the published literature.  

     3.2  An idealized organism in an 
idealized world   

 The organism we consider is one that has haploid or 

clonal inheritance with no age or stage structure. It 

lives in a world with two distinct habitats, and two 

distinct seasons in each habitat, but no inter-annual 

variability. The model is deterministic, and so we 

      Table of contents   

      3.1  Introduction 17  

   3.2  An idealized organism in an idealized world 17  

   3.3   When is a non-migratory species vulnerable to invasion 
 by migratory strategies? 18  

   3.4   When is a migratory species vulnerable to invasion 
 by non-migratory strategies? 22  

   3.5  Discussion 27        



OUP CORRECTED PROOF – FINALS, 12/10/2010, SPi

18 T H E O R E T I C A L  R E F L E C T I O N S  O N  T H E  E V O L U T I O N  O F  M I G R AT I O N

are ignoring the impact of both environmental and 

demographic stochasticity. Within a given habitat 

type, all individuals are assumed to have the same 

fi tness. Genetic variation, if present, infl uences the 

propensity to move between the two habitats, but 

not fi tness within each habitat. We follow the usual 

protocol of analyses of evolutionary stability and 

adaptive dynamics, which is to assume that initially 

the species is fi xed for one strategy (i.e., one clone), 

and then ask if this strategy can be invaded by 

another, rare clone. The habitats are assumed to be 

far enough apart that an imposed perturbation in 

population density in one habitat does not at the 

same time alter the fi tnesses of the individuals in 

the other habitat. In other words, density depend-

ence, if it occurs, is entirely within-habitat. 

 Our measure of ‘fi tness’ is very simple. If, in the 

absence of movement, at the start of an annual cycle 

in generation  t  there are  N ( t ) individuals of a given 

clone in habitat  i  ( i  = A,B), and at the end of season 

1, of length t, there are  N ( t  + t) present, then aver-

age ‘seasonal fi tness’ is measured as the per capita 

contribution of each individual (including itself) to 

the population present at  t  + t, or 
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 Likewise, for each individual present at the begin-

ning of season 2, of length 1 − t, the expected 

number it will leave to start the next generation, 

 t  + 1, (its seasonal fi tness for this second season) is 
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 The fi tness over a complete annual cycle in  habitat 

 i  is the multiple of these:
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the usual measure of fi tness for an organism with 

discrete generations synchronized to an annual 

cycle. What we have done is express overall annual 

fi tness as a product of what we are calling ‘seasonal 

fi tnesses’. The proposition that we will explore is 

that the patterning of seasonal fi tnesses can be exam-

ined to characterize when non-migration and com-

plete migration are respectively evolutionarily stable 

strategies, or ESSs for short  (Maynard-Smith  1982 ) . 

 We can generalize this approach to consider two 

habitats, where  R ij   denotes the seasonal fi tness of an 

individual in habitat  i  during season  j . Any of these 

seasonal fi tnesses can be functions of density. Over 

any given generation, the system is thus defi ned by 

four seasonal fi tnesses (two seasons in each of habi-

tats A and B). In this snapshot, there are four combi-

nations of seasonal fi tnesses possible over an annual 

cycle ( R  
A1

  R  
A2

  , R  
B1

  R  
B2

   R  
A1

  R  
B2

 , and  R  
B1

  R  
A2

 ). The fi rst 

pair of annual fi tnesses describes individuals who 

stay in either habitat over the annual cycle, whereas 

the second pair pertains to individuals who migrate, 

in each of the two possible directions (habitat A to B 

versus habitat B to A), over a given year. 

 We are here interested in populations that persist 

and are naturally regulated by density dependence 

occurring somewhere in the life cycle, in at least one 

habitat at one season. We assume that our initial 

population is genetically homogeneous and in 

demographic equilibrium. Our general models 

make no specifi c assumptions about density 

dependence, except making the implicit assump-

tion that it occurs, and that the population is ini-

tially at its demographic equilibrium. When we use 

a specifi c model to provide some numerical exam-

ples to accompany the analytical results, for sim-

plicity we assume that density dependence is in a 

single season. Future work should extend such spe-

cifi c models to incorporate density dependence 

across both seasons.  

     3.3  When is a non-migratory species 
vulnerable to invasion by migratory 
strategies?   

 We fi rst start with a population that is non-migra-

tory, and ask if a migratory strategy can colonize. For 

non-migration to be in equilibrium, without loss of 

generality we can assume that the initial habitat 

occupied is habitat A. In other words, for this case, 

the initial condition is for the species to occupy a 

restricted geographical range, within which seasonal 

variation occurs. When is this restricted distribution 

an ESS, relative to a rare invasive migratory strat-

egy? We assume for now that there are no costs to 

movement (this is, of course, a huge assumption). 

 For the non-migratory specialist in habitat A to 

be in demographic equilibrium requires  R  
A1

  R  
A2

  = 1, 
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hence the ‘rate’ of geometric growth must be unity. 

We will denote fi tness at population equilibrium by 

asterisks    (      R  
  A  1  

    *      R  
  A  2  

  *    )   . If an individual moves to habi-

tat B, and stays there (i.e., a rare dispersal event, 

rather than migration), for the initial condition to 

persist (and thus for the restricted range to be eco-

logically stable) it requires that

   A1 A2 B1 B2 B1 B2
* * or 1 .R R R R R R> >    (1)  

This simply restates the fact that, in a closed pop-

ulation, there is a geometric growth rate criterion 

for population persistence. 

 If now a mutant individual arises that regularly 

shuttles back and forth between the two habitats, it 

can experience two possible net growth rates, 

depending upon the order of seasons it experiences. 

For non-migration to be an ESS (i.e., a rare migra-

tory clone which attempts to invade, and migrates 

completely between the two habitats within each 

year, then declines towards extinction), we must 

have both

  A1 A2 A1 B2 A1 A2 B1 A2
* * * * * *and .R R R R R R R R> >    

 The fact that there are two conditions refl ects the fact 

that there are logically two distinct patterns of com-

plete migration between two habitats. Based on our 

assumption of demographic equilibrium for the resi-

dent population, this pair of inequalities simplifi es to

  A1 B2 B1 A2
* *1 and 1 .R R R R> >    

 Without loss of generality, assume season 2 in habi-

tat A is the bad season. Because      R*  
  A  1  

        R*  
  A  2  

      =  1   , we can 

eliminate      R*  
  A  1  

        from our equation by letting      R*  
  A  1  

       =  

 1  /    R*  
  A  2  

        So, the conditions for non-migration to be an 

ESS are:

  
A2 B2 A2 B2

B1 A2 B1 A2

* *1 (1/ ) or , and

* *1 or 1/ .

R R R R

R R R R

> >

> >
   

 We can put these two inequalities together in a joint 

inequality, defi ning the necessary and suffi cient 

demographic conditions for non-migration to be an 

ESS, as follows:

   B1 A2 B2
*1/ .R R R> >    (2)  

Note that  Equation  2   implies  Equation  1  , which was 

earlier deduced to be the condition for ecological 

stability of habitat specialization (to habitat A) in a 

seasonal world. So a necessary condition for non-

migration to be an ESS, with specialization to habi-

tat A, is that colonization of habitat B (without 

back-migration) fails. 

 But this is not suffi cient. In other words, there can 

be habitats that cannot sustain a population, on 

their own, but which could foster the evolution of 

migration. In particular, if      R  
  A  2  

  *     <     R  
  B  2  

   , then the non-

migratory condition is not an ESS, and complete 

migration can invade. Put simply, if the seasonal fi t-

ness during the worst season in the habitat initially 

occupied (habitat A) is less than seasonal fi tness in 

the other unoccupied habitat (habitat B), an indi-

vidual that begins a migratory shuttle between hab-

itats, leaving habitat B after season 2 then back to 

habitat A for season 1, enjoys the best of both, and 

can invade. A comparable condition arises in analy-

ses of the utilization of stable sink habitats when 

source habitats fl uctuate in  fi tness, as part of spatial 

bet-hedging strategies  (Holt  1997 ) . 

 If the necessary condition in  Equation  1   does not 

hold, then habitat 2 should be colonized. In the con-

tinued absence of migration, each habitat should 

then equilibrate over time such that its geometric 

mean fi tness is unity, or

   = =A1 A2 B1 B2
* * * *1 and 1 .R R R R    (3)  

We have now added asterisks to the seasonal fi t-

nesses in habitat B to denote the requirement for 

population equilibration. The reason is that after 

invasion of habitat B, numbers must grow there 

until density dependence occurs, such that fi tness 

over the annual cycle is unity. This requires that one 

or both seasonal fi tnesses must be functions of den-

sity, so realized seasonal fi tness for at least one sea-

son at equilibrium is depressed over the initial 

seasonal fi tness at the time of invasion. 

 Is this distribution, where a species occupies two 

habitats but does not migrate between them, stable 

against invasion by a completely migratory geno-

type? As a limiting case, we assume that there is no 

cost to such migration. The migratory genotype has 

two possible fi tnesses, depending upon its order of 

movement during the annual cycle.
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  A1 B2 B1 A2
* * * *or .R R R R    

 For both of these to be less fi t than the resident 

 non-migratory type requires that both

   A1 B2 B1 A2
* * * *1 and 1.R R R R< <    (4)   

 Again, we can use the assumption of demo-

graphic equilibrium to eliminate some terms. At 

 demographic equilibrium in the non-migratory 

population,

   A2 A1 B2 B1
* * * *1/ and 1/ .R R R R= =    (5)   

 Substituting the left-hand equality of (5) into the 

right inequality of (4) leads to

   B1 A1
* * .R R<    (6)   

 Substituting the right-hand equality of (5) into the 

left inequality of (4)     R  
  B  2  

  *     gives

   B1 A1
* * .R R>    (7)  

Inequalities (6) and (7) are contradictory. 

 Ergo, the above line of reasoning thus leads to the 

simple conclusion that:

   If a species can persist across two habitats 
without movement between them, and those 
two habitats fl uctuate through time, in a man-
ner that is refl ected in ‘seasonal fi tness’, then 
the species is always vulnerable to invasion by 
a completely migratory genotype.    

 The migratory strategy in effect exploits the fact 

that in each habitat, there is a season where seasonal 

fi tness is greater than one (a necessary consequence 

of temporal variation in fi tness, combined with the 

assumption of demographic equilibrium in each 

habitat). Shuttling regularly between habitats, when 

rare, then clearly implies an initial geometric mean 

fi tness greater than one. Interestingly, this may hold 

even if it implies that the migratory type (which we 

recall is rare) moves into a habitat during the season 

when seasonal fi tness there is lower than in the 

alternate season, and the two habitats experience 

synchronous and in-phase variation in seasonal 

fi tnesses. 

 A numerical example may suffi ce to illustrate this 

point. For simplicity, we assume that density 

dependence occurs in the same season in each habi-

tat, which is the time of year when a single bout of 

reproduction occurs, with no density dependence 

in the other season. Fitness in the birth season in 

both habitats is given by a Ricker formulation 

(1954), with density dependence arising from the 

summed density of all clones that are found in a 

given habitat. Fitness in the non-breeding season is 

determined by the magnitude of a density-inde-

pendent rate of survival. We can represent morph 

dynamics with the following system of equations:

  [ ]1( 1) 1( ) exp( 1 1( ) 3( ) )A AN t N t r N t N t s+ = ⋅ ⋅ − − +   , (8a)  

  [ ]2( 1) 2( ) exp( 1 2( ) 4( ) )B BN t N t r N t N t s+ = ⋅ ⋅ − − +   , (8b)  

  [ ]3( 1) 3( ) exp( 1 1( ) 3( ) )A BN t N t r N t N t s+ = ⋅ ⋅ − − +   , (8c)  

  [ ]4( 1) 4( ) exp( 1 2( ) 4( ) )B AN t N t r N t N t s+ = ⋅ ⋅ − − +   , (8d)  

where exp( r j  ) is the maximal birth rate of individuals 

in habitat  j  during the breeding season, exp( s j  ) is the 

exponential survival rate of individuals in habitat  j  
in the non-breeding season, and  Ni ( t ) is the popula-

tion density of individuals of behavioural morph  i  at 

time  t . In this formulation, morph 1 represents indi-

viduals that are selective for the best year-round 

habitat A; morph 2 represents individuals that are 

selective for the worst year-round habitat B; morph 

3 represents individuals that reproduce in the best 

habitat, but migrate to the other habitat in the non-

growing season (dubbed ‘logical migrants’); and, 

morph 4 represents individuals that reproduce 

in the poorer habitat, but migrate to the other habi-

tat in the non-growing season (labelled ‘perverse 

migrants’). We have scaled density so that if survival 

is guaranteed through the non-breeding season, car-

rying capacity (viz., equilibrial density) is set at 

unity. Morphs that co-occur are competitively equiv-

alent, as measured by density dependence in births. 

 This is perhaps the simplest mathematical repre-

sentation possible for depicting seasonal migration, 

demarcating a period of density-dependent growth 

from a season of density-independent mortality, 

and contrasting the fates of clones that interact 

equivalently with each other but display different 

migratory propensities. 
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 Fitness maxima (i.e. the per capita annual rate of 

change as  N  ® 0, which is equal to the product of 

the seasonal fi tnesses) can be readily calculated as 

 R  
A1

   R  
A2

  = exp( r  
A
 +  s  

A
 ) for sedentary (i.e., non-migra-

tory) specialists in habitat A,  R  
B1

   R  
B2

  = exp( r  
B
  + s  

B
 ) for 

sedentary specialists in habitat B,  R  
A1

   R  
B2

  = exp( r  
A
  + s  

B
 ) 

for those migrants that use the best habitat to breed 

and  R  
B1

   R  
A2

  = exp( r  
B
  + s  

A
 ) for the perverse migrants 

that use the worst habitat to breed. For any of these 

four morphs, its maximal fi tness must exceed unity, 

or it will surely disappear. In isolation, the equilib-

rium abundance of specialists in the best habitat = 

1 +  s  
A
  /r  

A
 , whereas the equilibrium abundance of 

specialists in the worst habitat = 1 +  s  
B
   /r  

B
 . For these 

quantities to make sense (i.e., have a non-zero pop-

ulation) requires that | s 
i
  | <  r 

i
  . We will assume that 

these general conditions for potential viability of 

each strategy hold. 

 Assume as an example that a non-migratory spe-

cies occupies habitat A, where  r  
A
  = 1 and  s  

A
  = −0.69. 

These demographic parameters imply an equilib-

rium density of 0.31 (where  N  
eq

  = 1 +  s  
A
  /r  

A
 ). Seasonal 

fi tness in habitat A fl uctuates between  R  
A1

  = 

exp( r  
A
 [1 −  N  

eq
 ]) = 2 in the growing season and 

 R  
A2

  = exp( s  
A
 ) = 0.5 in the non-growing season. Fit-

ness over the year is the product of these two 

 numbers, 1, so the population in habitat A is in 

demographic equilibrium. A non-migratory popu-

lation in habitat B, where  r  
B
  = 0.5 and  s  

B
  = −0.36, is in 

demographic equilibrium at a population density 

of 0.28 (where  N  
eq

  = 1 +  s  
B
  /r  

B
 ). While breeding suc-

cess is lower at equilibrium in habitat B, such that 

 R  
B1

  = exp( r  
B
 [1 −  N  

eq
 ]) = 1.43, animals residing there 

enjoy a more benign environment in the non-breed-

ing season, such that  R  
B2

  = exp( s  
B
 ) = 0.7. Good and 

bad seasons are synchronized across space. If a 

migratory genotype now arose, which resided in 

habitat A in the good season, and habitat B in the 

bad  season, its annual growth rate when rare would 

be (2)(0.7) = 1.4, so it would be selected and increase 

when rare ( Fig.  3.1  ).  

 In this example, one would expect to see the evo-

lution of at least some migration into and out of the 

poorer habitat. Paradoxically, however, some indi-

viduals should leave just as conditions begin to 

improve locally in habitat A. In turn, the evolution 

of logical migration in this example makes it inevi-

table that non-migratory morphs would also per-

sist in the poorer habitat, because their increase in 

the growing season more than compensates for 
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    Figure 3.1  Variation over time in the relative frequency of (a) behavioural morphs and (b) total population abundance in a system with specialists in two 
distinct habitats that is invaded by rare morphs that migrate between habitats on a seasonal basis ( r  A  = 1.0,  r  B  = 0.5,  s  A  = −0.69,  s  B  = −0.36). Habitat A is 
best during the growing season, whereas habitat B is best during the non-growing season.     
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their density-independent losses during the non-

growing season. This of course hinges on the 

assumption that the non-migrant can escape from 

any density-dependent effects experienced from 

the much larger resident population, when they co- 

occur during the non-growing season. If habitat B 

is a sink (were it to be occupied on a year-round 

basis) then only migrants can persist in the system 

( Fig.  3.2  ), echoing a pattern seen in earlier models 

of habitat-mediated dispersal  (McPeek and Holt 

 1992 ; Holt  1997 ) . Provided that the fi tness in alter-

nating habitats is high enough, it is readily possible 

to construct a system in which both habitats are 

sinks, yet permitting persistence of migrants, 

although such migrants could only arrive via colo-

nization from elsewhere.  

 So far we have assumed that habitats alternate 

seasonally in terms of fi tness advantage. This need 

not be the case, of course; habitat A might well yield 

both the higher rate of growth and the higher sur-

vival in the non-growing season. In this case, non-

migratory individuals obviously would have an 

advantage over all other morphs and would pre-

dominate ( Fig.  3.3  ). However, this situation opens 

an opportunity for a perverse migrant to evolve, 

one that chooses to breed in the poorer habitat, but 

then moves into the better habitat during the non-

growing season. As before, this outcome may 

depend on our assumption of no competition dur-

ing the non-growing season.   

     3.4  When is a migratory species 
vulnerable to invasion by non-migratory 
strategies?   

 We now start, in effect, at the other end of the spec-

trum of migratory behaviours, and assume that the 

species is initially completely migratory, thus aban-

doning each habitat in turn over the course of the 

annual cycle. When can this species be invaded by a 

completely non-migratory strategy? Another ques-

tion that should be considered is whether this 

migratory strategy can be invaded by a counter-

migratory strategy (i.e. individuals that go in the 

opposite direction to the general spatial fl ow of the 

population)? 

 To address these questions, we can assume that 

the initial condition is such that individuals use the 
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    Figure 3.2  Variation over time in the relative frequency of (a) behavioural morphs and (b) population abundance in a system with specialists in two 
distinct habitats that is invaded by rare morphs that migrate between habitats on a seasonal basis ( r  A  = 1.0,  r  B  = 0.5,  s  A  = −0.69,  s  B  = −0.51). Habitat A is 
best during the growing season, whereas habitat B is best during the non-growing season. Unlike the system in Fig. 3.1, habitat B is a sink if occupied 
year-round. Initial abundance of both specialists is 0.31.     
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best habitat (A) in the breeding season, but migrate 

to the other habitat (B), during the non-breeding 

season. The realized annual fi tness over this cycle 

(again ignoring the potential cost of movement 

itself) is

   A1 B2
* * 1,migrationF R R= =    (9)   

 assuming demographic equilibrium (hence the use 

of asterisks). Because breeding occurs in A we can 

assume that

   A1 B2
* *1 .R R> >    (10)   

 If a few individuals stay behind in habitat A, or 

habitat B, respectively, they will experience little or 

no density dependence, and so have expected fi t-

nesses of

   = =1 A1 A2 2 B1 B2
* *and .F R R F R R    (11)  

The asterisks indicate that in the respective seasons, 

there may be density dependence in that habitat. 

The absence of asterisks indicates that, in that sea-

son, there should be no density dependence, when 

a novel non-migratory clone is initially rare (because 

the migratory population has completely left that 

habitat, for the other one). 

 For complete migration to be an ESS, each of 

these fi tnesses for non-migrants must be less than 

unity:

   A1 A2 B1 B2
* *1 and 1.R R R R< <    (12)   

 Multiplying these two inequalities together leads 

to 

   A1 A2 B2 B1
* * 1.R R R R <    (13)   

 Substituting (9) into (13), then

   B1 A2 1.R R <    (14)  

The inequality in (14) represents the annual growth 

rate of a perverse migratory genotype, going in the 

opposite direction to the resident type, when it is 

initially rare and hence experiences no density 

dependence. So if non-migrants cannot invade (i.e., 

the conditions in (12) hold), then counter-migration 

is simply unviable. 
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    Figure 3.3  Variation over time in the relative frequency of (a) behavioural morphs and (b) population abundance in a system with specialists in two 
distinct habitats that is invaded by rare morphs that migrate between habitats on a seasonal basis ( r  A  = 1.0,  r  B  = 0.5,  s  A  = −0.11,  s  B  = −0.22). Habitat A is 
best in both seasons.     
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 What about non-migration? We can re-write (12) as

   A2 B1
A1 B2

1 1
and .

* *
R R

R R
< <    (15)  

It is clear after substitution from (10) into the left 

side of (15) that a non-migratory strategy in the bet-

ter habitat A is excluded, provided that seasonal fi t-

ness in the ‘off’-season (when the migrants are 

elsewhere) is suffi ciently less than unity. 

 Intriguingly, exclusion does not require low fi tness 

in the poorer habitat B. Because      R  
  B  2  

  *    <  1   , it is possible 

for  R  
B1

  > 1, yet for a resident strategy remaining in 

habitat B nonetheless to be excluded. The reason is 

that even though seasonal fi tness in the absence of 

migrants exceeds one in season 1, fi tness averaged 

over the entire annual cycle has to take into account 

fi tness in the other season. If the intrinsic fi tness of 

habitat B in season 2 is suffi ciently low, then non-

migration may be excluded even in the absence of 

density dependence (an example of exclusion con-

sistent with this effect is shown in  Fig.  3.2  ). 

Alternatively, strong negative density dependence 

from the migrant may suffi ciently lower fi tness that a 

 non-migrant is excluded—even though a non-migra-

tory population could persist just fi ne in isolation For 

example,  Fig.  3.1   shows a system where each habitat 

is initially occupied by a non-migratory species. 

When migratory morphs are introduced, they rap-

idly replace one of the specialists. 

 If survival rates in the non-growing season are 

identical across habitats ( R  
A2

  =  R  
B2

 ), then there is no 

fi tness advantage between pairs of competing 

morphs, even if there is pronounced habitat-medi-

ated variation in fi tness during the growing season. 

Habitat A specialists and migrants have equivalent 

annual fi tness, since      R  
  A  1  

   *        R  
  B  2  

       =     R  
  A  1  

   *        R  
  A  2  

      .    The same is 

true of habitat B specialists and perverse migrants, 

since      R  
  B  1  

   *        R  
  B  2  

       =     R  
  B  1  

   *        R  
  A  2  

       . Constant mortality across 

habitats leads to all four morphs coexisting in the 

two habitats, at frequencies dictated by initial 

 conditions ( Fig.  3.4  ), provided that  R  
A1

  R  
A2

  > 1 and 

 R  
B1

  R  
B2

  > 1. A very similar process of neutral selec-

tion was demonstrated previously in models of 

habitat-mediated dispersal  (McPeek and Holt  1992 ) , 

where many combinations of dispersal strategies 

are neutral, relative to each other.  
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    Figure 3.4  Variation over time in the relative frequency of behavioural morphs in a system with specialists in two distinct habitats that is invaded by 
rare morphs that migrate between habitats on a seasonal basis ( r  A  = 1.0,  r  B  = 0.5,  s  A  = −0.36,  s  B  = −0.36). Both habitats yield equal fi tness in the 
non-growing season, although habitat 1 provides higher fi tness in the growing season. The two sub-plots show simulations with differences in initial 
conditions: (a) population densities for both habitat specialists set initially at equilibria, (b) habitat specialist A was initiated at equilibrium, whereas habitat 
specialist B was initiated ~ 10% below its equilibrium. Migrants started lower in (b).     
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 More typically, however, one might expect to 

see differences in demographic parameters across 

different habitats. Under these more general con-

ditions, in systems that settle down to demo-

graphic equilibrium, at most two out of the four 

discrete behavioural morphs that we are contrast-

ing can coexist in a system with two habitats, due 

to direct density-dependent selection between 

pairs of competing morphs (habitat A specialists 

vs. logical migrants or habitat B specialists vs. 

perverse migrants). Only migrants by themselves, 

or a pair of migratory morphs (logical and per-

verse migrants), can persist when both habitats 

are sinks (as assessed by the fate of non-migratory 

morphs, when alone). 

 Our general conclusion is that if a species is 

widely distributed, and the world fl uctuates 

through time (an ecological truism if there ever 

were one), then if one does NOT observe migra-

tion, it must be because migration itself is costly. 

Such costs are not explicitly built into the logic of 

fi tness in the seasonal environments that we have 

presented above. However, one can use the gen-

eral approach sketched above to ‘titrate’ such costs, 

so as to determine threshold conditions for when 

migration would not be favoured because of its 

intrinsic costs. In particular, assume that there is a 

multiplicative decrement in fi tness of  c  (for cost) 

for each bout of migratory movement, expressed 

as realized seasonal fi tness in each habitat. Assume 

that the highest such fi tness is      F  
  potential  

   º     R  
  A  1  

   *       R  
  B  2  

   *     

 >   1   , so migration should be favoured (the asterisks 

indicate that there should be density dependence, 

given that both habitats are occupied, and the pop-

ulation persists without moving between them). If 

migration is not in fact favoured, that must be 

because it is costly to move, as measured in a fi t-

ness decrement. Incorporating a fi tness decrement 

of  c  equal in magnitude for each year (habitat A 

to B, and habitat B back to A), the actual annual 

fi tness is 

   = −A1 B2
* * .actualF R R c    (16)   

 The threshold between migration being favoured 

and not corresponds to a cost of

   = −A1 B2
* *c 1.R R    (17)  

Extending the numerical example discussed earlier, 

if rare migrants invade a system in which fi tness 

during the growing season is  R  
A1

  = 2 and fi tness dur-

ing the non-growing season in the alternative habi-

tat B is  R  
B2

  = 0.7, then the threshold cost each way 

required to impede the evolution of migration 

 c  = (2 � 0.7)�1 = 0.4. To illustrate this effect, we 

apply a travel cost slightly exceeding the threshold 

for the migratory system modelled in  Fig.  3.1  . The 

imposition of a minor energetic cost makes the sys-

tem  vulnerable to re-invasion by the non-migratory 

 specialist in habitat A ( Fig.  3.5  ). Such a cost that (just) 

prevents migration from being favoured in a tempo-

rally variable environment within an occupied geo-

graphical range (in our case, two discrete habitats) is 

determined by the geometric mean of the better sea-

sonal fi tnesses across both habitats. The threshold 

cost per move cannot be assessed just by looking at 

one habitat, but involves an assessment of fi tness 

benefi ts across the entire migratory cycle.  

 So far, we have considered only outcomes in 

which equilibria are locally stable. It is well known 

that discrete time models with this structure exhibit 

population cycles or even deterministic chaos at 

elevated rates of growth  (May  1976 ) . Variation in 

fi tness over time has the potential to infl uence evo-

lutionary dynamics in any system, including those 

with spatial structure  (McPeek and Holt  1992 ; Holt 

and McPeek  1996 ) , so unstable systems are impor-

tant to consider. Increase in the rate of population 

growth for our two habitat system typically induces 

fl uctuations in both total population abundance 

and relative frequencies of each morph ( Fig.  3.6  ). 

Peaks and troughs in population density are posi-

tively correlated with variation in the relative fre-

quency of migrants.  

 A variation on this expected theme arises when 

both habitats offer similar growth rates ( r  
A
  =  r  

B
 ), but 

differ in survival rates ( s  
B
  >  s  

A
 ). When maximum per 

capita growth rates are large, migrants and habitat 

B specialists often show a complex pattern of out-

of-phase fl uctuation as the migrant behavioural 

morph invades the ecosystem, but these fl uctua-

tions settle down to constant proportions over time, 

despite the fact that overall population abundance 

remains highly unstable ( Fig.  3.7  ).  

 Interestingly, this outcome is sensitive to ini-

tial conditions. Slight modifi cations in the initial 
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    Figure 3.6  Variation over time in the relative frequency of (a) behavioural morphs and (b) population abundance in a system with specialists in two 
distinct habitats that is invaded by rare morphs that migrate between habitats on a seasonal basis ( r  A  = 2.5,  r  B  = 0.5,  s  A  = −0.69,  s  B  = −0.36). Habitat A is 
best in the growing season whereas habitat B is best during the non-growing season.     
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    Figure 3.5  Variation over time in the relative frequency of (a) behavioural morphs and (b) population abundance in a system with specialists in two 
distinct habitats that is invaded by rare morphs that migrate between habitats on a seasonal basis ( r  A  = 1.0,  r  B  = 0.5,  s  A  = −0.69,  s  B  = −0.36). Habitat A is 
best during the growing season, whereas habitat B is best during the non-growing season. A demographic cost of 0.44 was applied at each habitat 
transition for migrants. Initial population densities of habitat B specialists and migrants were based on equilibria from the simulation depicted in Fig. 3.1.     
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 abundance of specialists before the mutant migrant 

morph invades can produce a mirror-image: popu-

lation abundance that stabilizes over time, yet with 

morph frequencies that fl uctuate violently over time 

( Fig.  3.8  ). In other words, dynamic instability in 

migratory systems can be expressed through varia-

tion in either population abundance or behaviour.  

 This example suggests that a ripe area for future 

work will be to examine the interplay of seasonality 

and intrinsic population instabilities, and how this 

can both promote migration and potentially lead 

to counter-intuitive results. Only more detailed 

analyses, across a range of models, will be able to 

determine if these intriguing patterns are merely 

curiosities, or instead arise as surprising outcomes 

in a broad array of circumstances. The interplay of 

temporal variation and spatial processes often leads 

to surprising results, and migration may at times 

amplify the dynamic complexities inherent in many 

ecological systems.  

     3.5  Discussion   

 Our simple two habitat model captures some of the 

key biological characteristics that recur in virtually 

all migratory ecosystems. First and foremost, the 

evolution of migration requires some interplay 

between seasonal and spatial variation in fi tness 

 (Lack  1968 ; Fryxell and Sinclair  1988a ; Lundberg 

 1988 ) . Such variation is, of course, nearly ubiqui-

tous in the natural world. One would be hard-

pressed not to fi nd spatial variability in critical 

ecological characteristics across the habitable range 

of most organisms, particularly those of larger body 

size. Seasonality, as well, is a hard fact of life, even 

in the tropics. Alternation between periods of breed-

ing and non-breeding is the norm, rather than the 

exception, in nature, even if the absence of seasonal-

ity is the norm in most ecological theory. Even envi-

ronments that at fi rst glance seem to be devoid of 

seasonality (e.g., caves, the deep sea) can be infl u-

enced by seasonal variation, if they are coupled 

to external, variable environments—which they 

almost always are. 

 Our model is admittedly—and unashamedly—

rather crude. It is useful to summarize these limita-

tions in the model, each of which we suggest 

represents a potential avenue for further theoretical 

exploration and refi nement of the evolutionary 

 theory of migration. 
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    Figure 3.7  Variation over time in the relative frequency of (a) behavioural morphs and (b) population abundance in a system with specialists in two 
distinct habitats that is invaded by rare morphs that migrate between habitats on a seasonal basis ( r  A  = 2.5,  r  B  = 2.5,  s  A  = −0.69,  s  B  = −0.36). Both habitats 
are equal during the breeding season whereas habitat B is best during the non-breeding season.     
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 We did not account for the ecological and genetic 

complexities that no doubt occur in real organisms, 

because we assumed clonal inheritance. Yet most 

species that migrate are sexual, and migratory 

behaviour is likely to be under rather complex 

genetic control ( Chapter  2  ). Even for clonal inherit-

ance, we have not paid attention to the potential for 

mixed strategies, such as partial migration, say with 

different propensities to migrate in each habitat. 

Broadening the range of migratory strategies that 

are competing with each other, and how they are 

generated by alternative rules of inheritance, is 

clearly an important step that would go beyond the 

models we have presented here.  Griswold  et al . 
( 2010 )  have developed an excellent template for 

exploring the intricacies of genetics and demogra-

phy in migration models of the sort that we have 

described here. 

 We have also ignored the crucial role sensory cues 

can play in the actual mechanisms generating 

migratory behaviour ( Chapter  6  ). Our simple model 

presumed in effect that organisms have no ability to 

anticipate fi tness in either their current or alterna-

tive habitats and make appropriate decisions. This 

seems inconsistent with well-documented instances 

of migratory organisms reversing their migratory 

circuit under unusual environmental conditions, 

such as wildebeest returning to the Serengeti plains 

in years with exceptional dry season rainfall 

 (Maddock  1979 ) . 

 Space is implicit and admittedly rudimentary in 

our models. Real migrants must use constrained 

movement modes to traverse rugged landscapes, 

with dynamic interplay between navigational 

capacity, social pressures, and complex motiva-

tional goals  (Mueller  et al .  2008 ; Nathan  et al .  2008 ; 

Schick  et al .  2008 ) . This in turn makes it likely that 

some habitats could remain part of a migratory rep-

ertoire even if, in terms of the strict calculus of natu-

ral selection, such habitats should be ignored. 

 Our models also, and crucially, do not explicitly 

include ecological interactions other than direct 

density-dependent competition between behav-

ioural morphs. Ecological interactions may be 

implicitly contained, however, depending upon the 

details. For instance, if one ecological dominant 
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    Figure 3.8  Variation over time in the relative frequency of (a) behavioural morphs and (b) population abundance in a system with specialists in two 
distinct habitats that is invaded by rare morphs that migrate between habitats on a seasonal basis ( r  A  = 2.5,  r  B  = 2.5,  s  A  = −0.69,  s  B  = −0.36). Both habitats 
are equal during the growing season whereas habitat B is best during the non-growing season. This fi gure differs from  Fig.  3.7   only in a slight difference in 
initial conditions: In Fig. 3.7, (a) initial population densities set at their equilibria for both habitat specialists; in this fi gure, habitat specialist A was initiated 
at equilibrium, whereas habitat specialist B was initiated ~10% below its equilibrium.     
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species migrates, this automatically sets up a sea-

sonal driver in the lives of other, more subordinate 

species. 

 Some ecological interactions may need to be spe-

cifi cally modelled, because there are direct feed-

backs between the migratory species and these other 

players in the ecological system ( Chapter  9  ). In our 

model, there is no explicit resource dependence, 

predation or disease risk, nor social or agonistic 

interactions within or among morphs. Incorporating 

such interactions could permit a more refi ned 

assessment about which environments might foster 

migration, and for which taxa. Moreover, many of 

these interactions operate with a time lag. Depending 

on the timing of these lags, they could either mag-

nify, or dampen, the impact of external seasonal 

drivers on fi tness, and thus alter the relationship 

between seasonality and migration. 

 Moreover, our model organisms have a simple 

life history, whereas real organisms can employ 

state- and age-dependent decisions to maximize 

lifetime reproductive success, which we know can 

considerably alter optimal evolutionary strategies 

 (Clark and Mangel  2000 , Stephens  et al .  2007 ) . Even 

simple models such as ours can employ carryover 

effects from one season to the next, which can 

have important population dynamic properties 

 (Ratikai nen  et al .  2007 ) . 

 Despite all these caveats, a simple model such as 

the one we have presented is valuable, because it is 

tractable enough to allow analytical approaches as 

well as straightforward simulation, a mixture that is 

often powerful in understanding the full range of 

possible outcomes of ecological models. In our 

experience, many insights from simple models such 

as the ones we have presented provide crucial yard-

sticks for assessing the importance of the various 

factors we have listed as potential caveats and com-

plicating factors in the above paragraphs. 

 There is a substantial published literature on the 

evolutionary dynamics of dispersal in systems with 

two or more habitat patches. Limitations on space 

preclude a detailed review here. Suffi ce it to say that 

formal models of invasion dynamics often suggest 

the coexistence of two or more dispersal morphs in 

a metapopulation setting  (McPeek and Holt  1992 ; 

Doebeli  1995 ; Doebeli and Ruxton  1997 ; Parvinen 

 1999 ) . Population dynamics play a key role in main-

taining behavioural polymorphism in meta-popu-

lations  (McPeek and Holt  1992 ; Doebeli  1995 ; 

Doebeli and Ruxton  1997 ; Parvinen  1999 ) , as does 

stochastic variation in extinction risk across the 

ensemble of patches  (Heino and Hanski  2001 ) . We 

have found in our numerical simulations of the sea-

sonal Ricker model that likewise coexistence of 

alternative migratory morphs can occur. Note that 

our clonal model can also be interpreted as a model 

for interactions between two competing species, 

which are equal with respect to density depend-

ence, when they co-occur. What our model results 

suggest is that the combination of seasonality and 

migration can permit species coexistence, despite 

their competitive equivalence within patches. 

 It has long been appreciated that geographic vari-

ation in survival rates outside the breeding season 

can contribute importantly to the selective advan-

tage of migration  (Lundberg  1988 ) .  Lack ( 1968 )  

pointed out that temporal variation in survival 

rates could lead to balanced long-term fi tness of 

migrants vs. residents. Similar arguments underlie 

 von Haartman’s ( 1968 )  state-dependent evolution-

ary arguments for the evolution of avian migration; 

resident birds obtain compensatory reproductive 

advantage balancing the higher over-wintering 

costs relative to migrants. Both these treatments 

were well ahead of the development of ESS theory, 

so it is not surprising that they did not consider con-

ditions for successful invasion by other phenotypes. 

In a prescient theoretical study,  Cohen ( 1967 )  devel-

oped a formal model of invasion dynamics in the 

special case of a population with geometric growth 

with inter-annual variation in λ. Population dyna-

mic effects alone could not create opportunities for 

invasion by alternate phenotypes, such as those we 

have shown. As a simplifying assumption, Cohen 

presumed identical reproductive rates of migrants 

vs. residents, focusing purely on variation in over-

winter survival. Theoretical treatments of migration 

evolution rarely consider the possibility that resi-

dents could exist as an ancestral condition in both 

habitats. 

 More recent models on the evolution of migration 

have typically used more highly structured models 

and less generic contrasts between habitats 

 (Lundberg  1987 ; Kaitala  et al .  1993 ; Kokko and 

Lundberg  2001 ; Griswold  et al .  2010 ) . For example, 



OUP CORRECTED PROOF – FINALS, 12/10/2010, SPi

30 T H E O R E T I C A L  R E F L E C T I O N S  O N  T H E  E V O L U T I O N  O F  M I G R AT I O N

 Kaitala  et al . ( 1993 )  evaluate conditions under which 

over-wintering migration is an ESS in an age-struc-

tured population of birds that must breed in one 

habitat, developing a theme fi rst formally developed 

by  Lundberg ( 1987 )  in a graphical model. Over-

wintering survival is assumed to be density-inde-

pendent in migrants, but linearly density-dependent 

in non-migrant individuals. These conditions are 

reasonable for many passerine birds, and demo-

graphic parameters were chosen accordingly.  Kaitala 

 et al . ( 1993 )  found that mixed strategies (i.e. partial 

migration) were selected for under conditions of 

density-dependent over-winter survival.  Griswold 

 et al . ( 2010 )  linked genetic effects with habitat-medi-

ated variation in seasonal fi tness, using paired habi-

tats in a similar manner to our model, with an 

important difference: either reproduction or survival 

was assumed impossible in one habitat.  Griswold 

 et al . ( 2010 )  found that the evolution of partial mig-

ration depended on the genetic basis for behaviour 

and in which season habitats were shared, demon-

strating a clear need for proper linkage of genetic 

and demographic dynamics in future modelling 

efforts. Our more generic formulation, with milder 

seasonality, predicts partial migration as a common 

outcome except under exceptional conditions of 

source–sink dynamics. Echoing Kaitala  et al .’s fi nd-

ings, partial migration requires some form of den-

sity dependence, but this can be expressed either for 

the breeding or non-breeding season. 

 Where spatial and seasonal variation in fi tness 

does occur, our simple model predicts that migra-

tion should often prove selectively advantageous. 

This assertion may explain why migration has 

repeatedly evolved in a wide variety of biomes and 

taxa ( Chapter  2  ). The conditions favouring migra-

tion are common, so it is not surprising that this life-

style has evolved countless times in evolutionary 

history. Indeed, the conditions favouring migration 

are so general, it is perhaps more relevant to ask 

why migration isn’t ubiquitous? 

 One answer to this paradox suggested by our 

model is that the demographic cost of migration 

itself may exceed the benefi ts in some systems. This 

cost could be expressed in myriad ways. It could be 

a simple energetic debt that simply cannot be repaid 

at the end of each arduous journey. Many migrants 

respond to this challenge through stopover sites en 

route, used to restore depleted energy reserves 

 (Alerstam  et al .  2003 ) . Nonetheless, energetic costs 

may be of suffi cient magnitude to compromise indi-

vidual fi tness, particularly for females that must 

choose wisely between investment of energy 

reserves in movement vs. production of offspring. 

In probing this question, it might well prove instruc-

tive to compare energetic costs of migration across 

different taxa and modes of locomotion, particu-

larly in relation to body size ( Chapter  4  ). 

 The cost of migration could be social, particularly 

in species where social dominance and therefore 

access to potential mates depend on acquisition and 

control of scarce resources, via territoriality or semi-

exclusive home range use  (Lundberg  1987 ; Kaitala 

 et al .  1993 ; Kokko and Lundberg  2001 ) . Individuals 

that reposition each season may lose priority access 

to favoured patches of real estate, which is untena-

ble in the long-run. For example, territorial lions are 

seemingly unable or unwilling to track the seasonal 

migration of large herbivores from the Serengeti 

plains to the northern woodlands, possibly because 

of the risk of losing fi ercely-defended group territo-

ries to neighbouring prides (Mosser  et al . 2009). It is 

intriguing to speculate that social costs of migration 

may be more prevalent in organisms placed at the 

top of food-webs, where territoriality and complex 

social dominance are the norm, rather than the 

exception. 

 The demographic cost of migration could be 

expressed through increased exposure to predators, 

particularly if migrants are easier to fi nd, readily 

visible, more vulnerable to attack, or less capable of 

predator avoidance than non-migrants. Grizzly 

bears congregating along salmon spawning runs or 

crocodiles lurking at traditional river crossings used 

by wildebeest instantly leap to mind. There are cer-

tainly well-documented examples of humans lying 

in wait along migratory routes to ambush migra-

tory ungulates, fi sh or waterfowl ( Chapter  11  ). 

 Whatever these costs may be, our simple model 

suggests that they need to be compared with the 

demographic benefi ts of migration to realize a full 

Malthusian accounting. Indeed, our model suggests 

that it is not enough to think about the ecological 

characteristics of used habitats—these are only 

meaningful in comparison with habitats passed up 

by migrants. Demographic assessment could be 
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quite challenging, admittedly, if migratory individ-

uals choose not to live in some habitats. One can 

even imagine experimental titration of the demo-

graphic costs vs. benefi ts of migration allowing rig-

orous new testing of alternative constraints on the 

evolution of migration. 

 Our model suggests that alternate behavioural 

morphs should be sought as coexisting strategies, 

as a mixed ESS, in systems with habitat and sea-

sonal structure. The favoured mix of coexisting 

strategies depends, however, on the magnitude of 

spatial and temporal variation in vital rates. Systems 

with seasonal alternation in the habitats with opti-

mal fi tness select for migrants that shift seasonally 

between the best habitats available and non-

migrants that specialize in the poorest breeding 

sites. Systems in which one habitat is always opti-

mal select for habitat specialists in the ideal habitat, 

mixed with perverse migrants that move away to 

breed in poor sites before returning to share the 

non-breeding season with their specialist brethren. 

Where neither habitat is best during the non-breed-

ing season, anything goes; all combinations of 

migrants and non-migrants can coexist. We should 

caution that the particular model we used to illus-

trate these points assumes that density dependence 

occurs entirely in one habitat, in one season. Future 

studies should examine what happens when there 

is density dependence in both habitats and in both 

seasons. We surmise that our results will prove to 

be robust to at least weak density dependence in the 

second habitat. 

 It is intriguing that even in our simple model, 

coexisting migratory strategies are found to 

robustly persist. Where close study has been con-

ducted, a mixture of migratory strategies often 

occurs  (Lundberg  1988 ) . For example, some elk in 

the Rocky Mountains migrate seasonally between 

high and low elevations, yet others in close prox-

imity remain rooted within a small home range 

year-round  (Hebblewhite and Merrill  2007 ; 

Hebblewhite  et al .  2008 ) . Similarly, although most 

Canada geese migrate between northern latitudes 

and the southern United States, resident popula-

tions also thrive alongside more typical migrants in 

many northern sites. Such observations are what 

we might expect, based on the general outcomes of 

our models. Rarely do we know, however, which 

pairs of strategies are represented; is a migrant 

behavioural type exploiting the best of all possible 

habitat combinations, or is it eking out a second-

rate coexistence on poorer breeding habitat? Are 

non-migrants evolutionary winners or losers, inev-

itably on their way out, but caught at present in a 

transient snapshot of temporary coexistence? These 

alternate possibilities, predicted by our simple 

model, call for a fresh look at the fi tness of migrants 

vs. residents. We caution again that our specifi c 

model assumes that individuals have fi xed migra-

tory strategies, and that there are few operative 

constraints or migratory costs. In some of these 

empirical examples, individuals may be making 

the best of a bad situation, for instance, and the 

evolutionarily stable strategy is in fact a fi xed, 

 conditional strategy. 

 The range of mixed ESS outcomes suggested by 

our models suggests that it may be more relevant to 

ask not how migration behaviour has evolved, but 

rather why we don’t always see a mixture of 

strongly contrasting movement strategies. In our 

model, a migratory strategy is the only pure ESS 

provided at least one habitat is a sink, unable to sus-

tain a non-migratory population at all, and the other 

habitat has suffi ciently large temporal variation in 

fi tness or fi tness components. Relating this predic-

tion to empirical data will require information both 

on spatial variation in fi tness and temporal variabil-

ity. This is daunting, but a nettle that must be 

grasped, if we are ever to understand at a deep level 

the evolutionary basis of migration.                




