
vol. 177, no. 4 the american naturalist april 2011

Evolution in Stage-Structured Populations

Michael Barfield,1 Robert D. Holt,1 and Richard Gomulkiewicz2,*

1. Department of Biology, University of Florida, Gainesville, Florida 32611; 2. School of Biological Sciences, Washington State
University, Pullman, Washington 99164

Submitted March 12, 2010; Accepted December 10, 2010; Electronically published March 9, 2011

Online enhancements: appendixes.

abstract: For many organisms, stage is a better predictor of de-
mographic rates than age. Yet no general theoretical framework exists
for understanding or predicting evolution in stage-structured pop-
ulations. Here, we provide a general modeling approach that can be
used to predict evolution and demography of stage-structured pop-
ulations. This advances our ability to understand evolution in stage-
structured populations to a level previously available only for pop-
ulations structured by age. We use this framework to provide the
first rigorous proof that Lande’s theorem, which relates adaptive
evolution to population growth, applies to stage-classified popula-
tions, assuming only normality and that evolution is slow relative to
population dynamics. We extend this theorem to allow for different
means or variances among stages. Our next major result is the for-
mulation of Price’s theorem, a fundamental law of evolution, for
stage-structured populations. In addition, we use data from Trillium
grandiflorum to demonstrate how our models can be applied to a
real-world population and thereby show their practical potential to
generate accurate projections of evolutionary and population dy-
namics. Finally, we use our framework to compare rates of evolution
in age- versus stage-structured populations, which shows how our
methods can yield biological insights about evolution in stage-struc-
tured populations.

Keywords: stage structure, demography, Price’s theorem, Lande’s the-
orem, Trillium.

Evolution occurs when organisms exhibit differences in
the vital rates of birth, death, and dispersal that are at least
partly heritable. The best-developed body of evolutionary
theory that accounts for interindividual variability in vital
rates is for age-structured populations (e.g., Lande 1982a,
1982b; Charlesworth 1994). Yet in many species, age (time
since birth) is not the best index for characterizing indi-
vidual variation in demography. Many factors other than
age, such as sex, body size, location, developmental stage,
the magnitude of nutritional reserves, and measures of
physiological condition, can be better predictors of birth
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and death than is age alone. As a concrete example—and
indeed a motivation for this study—Trillium grandiflorum
(Melanthiaceae) is a perennial, nonclonal herb that oc-
cupies mature forest in the deciduous biome of eastern
North America. After reproduction, seeds germinate in
their first year, then pass through a number of stages, each
defined by the number and sizes of leaves, before reaching
the reproductive stage (Knight 2004). It is not uncommon
for an individual to live in, say, a three-leaf stage for some
years, before becoming reproductive. Reproductive indi-
viduals can also regress to previous stages, particularly after
being damaged by deer herbivory. Because this damage is
correlated with flowering time, declining as the growing
season progresses, within each season there is a component
of selection in favor of later-flowering plants.

Evolutionary biologists who seek to predict adaptive
evolution in species like Trillium, where vital rates depend
primarily on stage, lack an established general framework
for doing so comparable to the one available for age-
structured populations (e.g., Charlesworth 1994). It is not
known whether approaches developed for age structure
will be valid for more general kinds of population struc-
ture. Indeed, describing evolutionary dynamics in stage-
structured populations poses a major challenge not present
for populations structured solely by age, since in stage-
structured populations any given stage might at any time
contain a mixture of cohorts of different ages, each of
which could have a different history of selection.

Even if a general framework were available for studying
evolution in stage-classified populations, its complexity
might present a major obstacle to its utility for evolu-
tionary biologists, due to “the difficulty of providing con-
cise descriptions of evolutionary dynamics with these
models” (Charlesworth 1994, p. 11). Moreover, some of
the most basic tenets of evolutionary biology that are
known to be valid with age structure have yet to be firmly
established for stage structure. This lack of progress not
only inhibits evolutionary biologists from applying stage-
structured methods but also undermines the conceptual
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grounding of stage-structured population evolution within
presumably general theories of evolution.

These considerations suggest that there is a serious need
in evolutionary biology for a general, practical, and sound
understanding of how evolutionary processes operate in
stage-structured populations. It is equally important to
understand how such processes relate to well-known evo-
lutionary principles. To these ends, we focus here on three
main objectives. First, we seek a general set of tools that
can be used to model evolution by natural selection in any
stage-structured population. Second, we assess whether
Lande’s theorem (Lande 1976, 1979, 1982a, 1982b) holds
for generally structured populations. Third, we derive a
version of Price’s theorem (Price 1970) that applies to
stage-classified populations. We also demonstrate the use
of the general model and simplifications of it to a real
population of Trillium and a hypothetical population with
only two stages and then use our results to develop bio-
logical insights about rates and directions of evolution in
age- versus stage-structured populations.

A General Model

We first describe how to construct a completely general
discrete-time model of stage-structured population dy-
namics and evolution, assuming the population includes
a number of discrete stages. The model tracks changes
over time in both the population sizes and the joint prob-
ability density functions (PDFs) of genotypes and phe-
notypes for all stages. Selection could act on any set of
stages through the stage-dependent vital rates, which can
in turn be functions of a multivariate phenotype denoted
by the vector z. The model we consider is completely
general in that it permits transitions between any pair of
stages, reproduction by any stage, and newborns in any
stage.

The modeling framework we present focuses on evo-
lution over single time steps (which we will generically
call years) and so pertains directly to short-term analyses
of populations living in variable environments or with
density dependence. Making predictions about long-term
evolution using this short-term framework, of course, re-
quires one to make assumptions about variation in tran-
sitions through time owing to both environmental change
and changes in population size and structure (e.g., if there
is density dependence) and about sources of genetic var-
iation such as mutation.

We also assume that numbers are large enough to ignore
demographic stochasticity. Density dependence and sto-
chasticity are important and realistic complications, but
the framework we present here provides a necessary step
for future extensions that directly explore the impact of
such factors on evolution in stage-structured populations.

Let represent a multivariate quan-Tz p (z , z , … , z )1 2 m

titative trait whose components are expressed in specific
stages. Our framework extends beyond quantitative traits
and can be used to describe allele and genotype frequency
dynamics in stage-structured populations by letting z in-
dicate allele or genotype content (e.g., Rice 2004). Let

, where g is the additive genetic (i.e., breeding)z p g � e
value and e is the nonadditive genetic value plus an en-
vironmental deviation (e.g., developmental noise). We also
assume that, at birth (before selection), g and e are un-
correlated and the expected value of e is 0. Our model
follows, at each time step and for each stage i, the number
of individuals and the joint PDF of g and z, denotedNi

.p (g, z)i

An individual in stage j can contribute to stage i in the
next year in two distinct ways: via reproduction or by
making a direct transition. Direct transitions can include
retention of individuals in a given stage, growth to a higher
stage or regression to a lower stage. Let tij(z) be the prob-
ability of a direct transition (survival and retention,
growth, or regression) to stage i in the next year from stage
j in the current year, and let fij(z) be the number of sur-
viving offspring in stage i the next year produced by an
individual in stage j in the current year. Denote the total
transition rate as . Our notation em-a (z) p t (z) � f (z)ij ij ij

phasizes that stage-specific transition probabilities and fer-
tilities may depend on an individual’s phenotype z. Con-
sideration of our general framework stresses that empirical
information about how stage-dependent vital rates (direct
transitions and reproduction) are determined by traits of
interest is required for accurate projections of adaptive
evolution in real populations. A real-world application is
discussed below.

We begin by describing how abundances in each stage
change through transition and reproduction over a time
step. The average transition probability to stage i and fer-
tility to stage i of a stage j individual are, respectively,

t̄ p t (z)p (g, z)dzdg, (1)ij �� ij j

f̄ p f (z)p (g, z)dzdg, (2)ij �� ij j

where the integrals are evaluated over all values of the
vectors g and z. The number of current individuals that
transition directly to i in the next year is ,′ ¯T p � t Ni ij jj

whereas the number of the next year’s newborns that begin
in stage i is . Summing these contributions′ ¯F p � f Ni ij jj

gives the total abundance of individuals in stage i next
year:

′ ′ ′ ¯¯ ¯N p T � F p (t � f )N p a N . (3)� �i i i ij ij j ij j
j j
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This shows that the population dynamics can be pro-
jected using a Lefkovitch matrix with ijth element equal
to (see Caswell 2001, chap. 5). The total pop-¯¯ā p t � fij ij ij

ulation size in the next year is the sum of equation (3)
over all stages: .′ ′ ¯N p � N p � � a Ni ij ji i j

Derivation of the change in the joint probability density
function is considerably more involved than forp (g, z)i

Ni, and we relegate most of the details to appendix A. The
reasoning there shows that the joint PDF of genotype and
phenotype in stage i at the next time step is

′ ′T Fi i′p (g, z) p v (g, z) � f (g, z) , (4)i i i′ ′N Ni i

where , , and are as defined above. The function′ ′ ′F T Ni i i

is the joint PDF of g and z of all individuals thatv (g, z)i

transition directly to stage i (see eq. [A1]). This is weighted
by , the fraction of stage i individuals in the next′ ′T /Ni i

year that reach that stage through direct transition. The
second part of the sum in equation (4) describes contri-
butions to the class i PDF via reproduction. The factor

is the joint PDF of genotypes and phenotypesf (g, z)i

among newborns in class i (eq. [A5]). The weighting factor
is the proportion of stage i individuals next year that′ ′F /Ni i

are newly born. The specific form of depends onf (g, z)i

the genetic basis of inheritance, mating scheme, distri-
bution of the environmental component of phenotype
among offspring, and so forth. In appendix A, we derive

for a particular case with random mating, namely,f (g, z)i

the infinitesimal model of inheritance (Fisher 1918; Bul-
mer 1971) with a normally distributed environmental
component. However, the above machinery applies much
more broadly.

Taken together, recursions (3) and (4) provide a general
model for projecting adaptive evolution in a stage-struc-
tured population. The framework does not require the
population to have reached any particular state, such as a
stable stage distribution (SSD), and with additional as-
sumptions, it could be extended (along the lines, say, de-
scribed in Caswell 2001) to accommodate more complex
population dynamics, such as density dependence or var-
iable environments. Moreover, as indicated in appendix
A, the framework can be adapted to any genetic basis or
mating system. We do not pursue such extensions here;
rather, we illustrate the practical application of our ap-
proach below by using data from a real-world system (the
Trillium study mentioned in the introduction). In the pro-
cess, we also assess the accuracy of our approach by com-
paring its predictions to results generated by individual-
based simulations.

The modeling framework developed in this section is
completely general and provides a well-defined approach
to developing accurate predictions of both short- and long-

term evolutionary change in stage-classified populations.
The approach is, however, sufficiently complex that it is
not immediately apparent how—or even if—evolution in
stage-structured populations can be related to important
evolutionary concepts familiar from consideration of far
simpler populations. In the next section, we demonstrate
how one such result, Lande’s theorem, emerges from our
general stage-classified modeling framework.

Lande’s Theorem

Lande’s theorem relates the rate of adaptive evolution of
quantitative traits to the rate of population growth. It re-
veals a clear, simple link between evolutionary dynamics
and demography. Although Lande (1982a, 1982b) showed
that this striking result holds for populations classified by
age, it has never been clear whether it applies to popu-
lations with other sorts of structure, such as those classified
by developmental stage, body size, or spatial location. The
goal of this section is to apply to stage-structured popu-
lations the assumptions required of Lande’s theorem and
rigorously answer this question.

Lande’s theorem, in both its original and generalized
forms (Lande 1976, 1979, 1982a, 1982b), assumes that
breeding values and phenotypes have a joint normal dis-
tribution (Falconer and MacKay 1996; Lynch and Walsh
1998). This assumption is, strictly speaking, dubious
(though perfectly reasonable as a starting point). It is more
doubtful for stage-structured populations since even if dis-
tributions in stages and among newborns were normal in
one year, the stage-specific distributions the next year, be-
ing mixtures of different normal distributions, would gen-
erally deviate from normality. Despite the added scope for
violating assumptions of normality, we assume it applies
in our modeling framework in an effort to derive a version
of Lande’s theorem for stage-structured populations. Us-
ing the Trillium case study mentioned above (Knight et
al. 2008), we show later that the normal-based simplifi-
cation of our general model is capable of providing sur-
prisingly accurate approximations of evolutionary and
population dynamics in a situation where one might ex-
pect that the normality assumption would break down.

Assume that the joint genotype-phenotype distribution
in stage j is Gaussian (normal), with means and and¯ ¯g zj j

correlation matrices and , and that the additive-geneticG Pj j

and nonadditive (environmental) components of the phe-
notype are uncorrelated. The genotype of an offspring is
the average of the genotypes of its parents. Using these
assumptions and definitions in equations (3) and (4), the
stage i genotypic mean in the next year is
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′ ′ḡ p gp (g, z)dgdzi �� i

� N a (z) gp (g, z)dgdz∫ ∫j ij jj

p (5)′Ni

¯ ¯p c g � c G∇ ln a ,� � ¯ij j ij j z ijj
j j

where is the fraction of individuals in stage′¯c p N a /Nij j ij i

i in the next year contributed by stage j. The last equation
in (5) is obtained using integration by parts for the in-
tegration with respect to phenotype z. Overbars indicate
expected values over the distribution of stage j, and

is the gradient operatorT¯ ¯ ¯∇ p (�/�z , �/�z , … , �/�z )z̄ 1 2 mj

with respect to trait means evaluated at , the multivariatez̄j

mean phenotype of stage j. The first sum in the last line
of equation (5) is a weighted average of stage-specific mean
genotypes contributing to stage i. The second sum de-
scribes the combined effects of selection.

The mean phenotype in the next year is determined by
separate terms for direct transitions and for births, since
with reproduction, the environmental component of the
phenotype is assumed to be reset. The phenotypic recur-
sion is

′ ′z̄ p zp (g, z)dgdzi �� i

′ ′T zv (g, z)dgdz � F zf(g, z)dgdz∫ ∫ ∫ ∫i i i
p (6)′Ni

t f ¯¯¯ ¯p [c z � c g � c (P∇ t � G∇ f )],� ¯ ¯ij j ij j ij j z ij j z ijj j
j

where and are the relative con-t ′ f ′¯¯c p N t /N c p N f /Nij j ij i ij j ij i

tributions to stage i by stage j through direct transition
and reproduction, respectively. Note that .t fc p c � cij ij ij

Lande’s theorem for age-structured populations (Lande
1982a, 1982b) states that the mean phenotype eventually
evolves at the same rate at each age and that′¯ ¯ ¯Dz p z � z
this shared asymptotic rate is

¯¯Dz p G∇ ln l, (7)z̄

where G is the additive-genetic covariance matrix for the
characters z and is the geometric growth rate of thel̄

population at the stable age distribution based on a Leslie
projection matrix with vital rates averaged over the phe-
notypic distribution. Equation (7) shows that the change
in the trait mean depends on the amount of heritable
variation (G) and on the effect of a change in the trait on
fitness (the gradient term). Besides multivariate normality,
this result assumes selection is weak and evolution is slow
relative to population dynamics.

In appendix B, we consider the same assumptions for

a stage-classified population whose population dynamics
are described by the Lefkovitch matrix with elementsA

—the average values of —and with the evo-ā a p t � fij ij ij ij

lutionary dynamics of equations (5) and (6). We prove
there that the asymptotic rate of evolution is the same¯Dz
for all stages, even if phenotypic means and additive-z̄i

covariance matrices Gj differ among stages. This shared
rate of evolution is

1
¯ ¯Dz p v w G∇ a , (8)� ¯i j j z ijjl̄ i, j

where is the population growth rate at the stable stagel̄

distribution for . The vector describes the stableA w p {w }i
population structure, and is the set of stage-spe-v p {v }i
cific reproductive values normalized so that .Tv w p 1
Moreover, if every class has the same mean and additive-z̄
genetic variance G, then the arguments in appendix B show
that equation (8) collapses to Lande’s equation (7). To our
knowledge, this is the first rigorous demonstration that
Lande’s theorem is valid for stage-classified populations.
Indeed, our proof shows it applies to any such popula-
tion—including those that have multiple newborn and
parental classes.

Application to a Real-World Case

We now illustrate the practical application of our general
model (eqq. [3], [4]), normal approximations (eqq. [5],
[6]), and the stage-structured version of Lande’s equation
(7) to an empirical setting. Knight (2003, 2004) studied
populations of Trillium grandiflorum declining due to in-
creased deer herbivory on flowering plants. Consumed
plants lose aboveground tissues but can survive and re-
sprout from underground tissue. However, they do not
reproduce in the year of consumption and have an in-
creased probability of regressing to a nonreproductive
stage the next year. The probability of browsing on a plant
was higher for earlier-flowering plants and 0 for late-flow-
ering plants. Knight et al. (2008) examined the evolution
of flowering time in response to deer herbivory to discern
whether selection could act rapidly and effectively enough
to rescue populations from extinction. Here we show how
the general and approximate modeling frameworks de-
veloped here can be used to address this issue.

The demographic model for Trillium includes six stages,
the first being germinants and the last reproductive plants.
Higher values of the phenotype z (flowering time in days)
increase fecundity and reduce the probability of repro-
ductive-stage regression (because of lower browsing). The
matrix of phenotype-dependent vital rates, , isa (z)ij
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Figure 1: Evolution of mean flowering time (averaged over all
stages), as predicted by four models of evolution for the Trillium
system. A, Heritabilities (h2) of 0.25 and 0.5. B, . C,2h p 0.75

. Note the different scales on the abscissa. The other param-2h p 1
eters used are described in the main text and are assumed to be the
same for all models. JPDF (joint probability density function) cor-
responds to equations (1)–(4), Gaussian denotes equations (5) and
(6), Lande denotes equation (7), and IBM (individual-based model)
denotes the individual-based model (100 realizations were run, and
the averages calculated over all populations that persisted).

0 0 0 0 0 min (2.291 � 0.587z, 9.468) 
0.11 0 0 0 0 0

0 0.33 0.65 0.04 0 0
. (9)

0 0 0.15 0.84 0.20 0 0 0 0 0.10 0.64 max (0.5763� 0.0291z, 0.22)
0 0 0 0 0.16 min (0.4237 � 0.0291z, 0.78) 

Element a16 represents reproduction, and all other el-
ements are direct transitions. Browsing as a function of
flowering time was fitted using linear regression, giving

. This was used until it reached 0 at a flow-0.758 � 0.062z
ering time of about days, beyond which brows-z p 12.23
ing was assumed to cease (causing the three elements in
the right column of eq. [9], which depend on flowering
time, to become constant). For the population represented
by this matrix of vital rates, the measured distribution of
flowering time z (of reproductive plants) had a mean of

days and variance days2. We do notz̄ p 7.6 P p 10.543
know the additive-genetic variance G for flowering time,
so we projected dynamics using four assumed heritabilities

.2h p G/P
We predicted evolution of mean flowering time (av-z̄

eraged over all stages) and dynamics of total density
using four approaches: the general joint

6
N p � Niip1

probability density function method (JPDF; eqq. [3], [4]),
the Gaussian approximation (eqq. [5], [6]) with fixed var-
iances but without the assumption that evolution is slow
relative to population dynamics, Lande’s theorem (eq. [7]),
and an individual-based model (IBM; see Knight et al.
2008 for details of this model). In the IBM, each individual
is simulated, along with its genetics, with probabilities of
each transition and fecundity given by the vital rate matrix
(9). One hundred populations were simulated for each
heritability with the IBM and the results averaged for all
realizations that did not become extinct. The IBM ap-
proach incorporates many kinds of stochasticity in devel-
opment, reproduction, inheritance, and death, unlike the
other three approaches, which are all deterministic. The
distributions of genotypes and phenotypes in the IBM and
JPDF are not constrained to be Gaussian.

We compared the evolution of flowering time for this
system using these four methods and four different her-
itabilities (fig. 1). All methods agreed quite well for the
first several hundred years. Overall, the JPDF approach
agrees very well with the IBM, except for rather late in
the evolution at the lowest heritability ( ; fig. 1A).2h p 0.25
Only for this heritability did extinctions occur in the IBM.
Populations in the deterministic methods can approach
arbitrarily close to zero abundance but do not become
extinct; this limitation may account for the slightly more
rapid evolution with the IBM seen up until about year 600
because only populations that persisted are depicted, and
these would tend to have evolved faster than those that
did not. The evolutionary plateau in the IBM for the lowest
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Figure 3: Stage-specific phenotypic means and variances for flow-
ering time in stages 1, 3, 5, and 6 (indicated by the key) from the
IBM (individual-based model) for (averages over 100 runs).2h p 0.5
For clarity, values have been smoothed using a 5-year moving average,
and stages 2 (similar to stage 1) and 4 (similar to 5) have been
omitted. The bold lines are for stage 6.

Figure 2: Population dynamics for the four models of Trillium evo-
lution, assuming an initial population of 5,000. Same notation and
parameters as in figure 1. Geometric mean population size was used
for the IBM (individual-based model). Note the logarithmic ordinate
scale. A, and 0.5. B, and 1. JPDF p joint prob-2 2h p 0.25 h p 0.75
ability density function.

heritability ( ; fig. 1A) may reflect depleted ge-2h p 0.25
netic variation due to selection and drift (these populations
plummeted to low numbers; see fig. 2A). Where results
differ among models, the deterministic methods all tend
to evolve faster than the IBM, especially those based on
Gaussian assumptions with fixed variances. Phenotypic
variances from the IBM showed an initial increase followed
by a significant decrease as selection removed genetic var-
iation (see fig. 3). Thus, methods based on fixed variances
would naturally be expected to evolve faster than the IBM.
The JPDF method does not assume fixed variances and so
can model variance depletion by selection; its evolution
slows in a pattern similar to that of the IBM, although not
quite as much. (Note that the JPDF accounts for non-
normal distributions but not processes such as drift.)

Figure 2 shows corresponding trajectories for total
abundance. It is intriguing that while Lande’s equation

gives faster evolution than the other methods, it also pre-
dicts deeper declines in population. As far as population
size projection is concerned, the Gaussian approximation
is expected to be very similar to Lande’s equation: both
use a transition matrix with each element averaged over
an assumed normal phenotypic distribution. The differ-
ence is that Lande’s equation (as we have applied it) pro-
jects population size using the dominant eigenvalue of the
average transition matrix, whereas the Gaussian method
tracks abundance of each stage separately. That is, our
implementation of Lande’s equation assumes a stable stage
distribution each generation, whereas the Gaussian
method does not. For this example, deviations from the
SSD or from the normal approximations that emerge as
selection takes place do not seem to have a strong quan-
titative effect on the rate of evolution or changes in pop-
ulation size. Taken together, these results support the va-
lidity and accuracy of our general JPDF modeling
framework (indeed, the dynamics it predicted are almost
identical to those in the IBM) and show that for this sys-
tem, simpler approximations that assume normality work
reasonably well.

Only the overall average flowering time is shown in
figure 1, but the JPDF, Gaussian, and IBM methods also
describe evolution of mean flowering time for each stage.
These stage-specific evolutionary trajectories share the
same general shape as the overall average (cf. figs. 1, 3),
with some stages consistently higher (stages 1, 2, and 6),
some lower (stages 4 and 5), and one about the same (stage
3) as the average. That pattern remains throughout, with
the curves slowly converging with time (fig. 3). This con-
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Figure 4: Probability density functions of the phenotype for the joint
probability density function model for at 0, 200, 400, 600,2h p 1
and 800 years (from left to right).

vergence is probably due in part to the fact that over time,
more individuals flower late enough to completely avoid
browsing and, thus, avoid further selection. For the IBM,
there is also a reduction of genetic variance, which is
greatest for the reproductive stage (stage 6; bold lines in
fig. 3) targeted by selection. Therefore, this stage evolves
somewhat slower than do the others, and since its phe-
notype is higher than average, this contributes to the slow
convergence.

The JPDF method allows one to project evolution of
the entire probability density function for the flowering-
time phenotype, including evolved departures from nor-
mality. In this example, the initial distribution was Gauss-
ian and, as the population evolved, the flowering-time
distribution became right skewed (fig. 4). Notice too the
kink that evolves in the distribution function at 12.23 days
(the zero-browsing threshold). It is impossible to predict
the evolution of such detailed features using the Gaussian
approximation or Lande’s theorem for stage-classified
populations.

Application to a Conceptual Question

The Trillium example demonstrates the practicality and
versatility of both our general and approximate modeling
frameworks for predicting the joint evolution and popu-
lation dynamics of real-world stage-structured popula-
tions. Our methods can also be used to develop conceptual
insights related to stage structure per se, as we illustrate
now.

The basic question we consider is how does repeating
a stage affect adaptation rates? For simplicity and clarity,
we examine this issue by applying our extension of Lande’s
theorem (eq. [8]) to a simple system, consisting of a pair
of populations with different two-stage life histories. One
might, for instance, imagine desert plants with two classes:
seed and adult. One population is age structured, with
juveniles that mature into adults in a year (or die), and
adults that produce offspring and then die. The other pop-
ulation is identical, except that individuals can stay in the
juvenile stage for multiple years (e.g., a desert plant might
have a seed bank with long-lived seeds and delayed ger-
mination; a similar analysis could allow individuals to re-
main as adults for multiple years). For both populations,

, and the Lefkovitch ma-f p f p f p t p t p 011 21 22 12 22

trix contains elements , , , and¯¯ ¯¯ ¯ ¯A a p t a p f a p t11 11 12 12 21 21

. We focus on the evolution of a simple quantitativeā p 022

trait z with mean that may affect one or more of thesez̄
vital rates. (All derivations are provided in app. C in the
online edition of the American Naturalist.)

Consider first the age-structured population ( ,t̄ p 011

making a Leslie matrix). In this case, the asymptoticA
growth rate of the population is . The rate1/2¯¯ ¯l p (f t )age 12 21

of adaptive evolution in this population, as derived in
appendix C (eq. [C6]), is

¯¯1 d ln t d ln f21 12¯Dz p G � G . (10)age 1 2( )¯ ¯2 dz dz1 2

The notation indicates the derivative with respect to¯d/dzi

is evaluated at .¯ ¯z zi

Compare these rates for an age-structured population
to those of a stage-structured population for which the
first stage can be repeated ( ). The stage-structuredt̄ 1 011

population grows asymptotically at rate ¯ ¯l p [t �stage 11

and, as derived in appendix C (eq. [C8]),2 1/2¯¯ ¯(t � 4f t ) ]/211 12 21

evolves at rate

2¯ ¯¯ ¯2l t l d ln tage 11 stage 11¯ ¯Dz p G � Dz . (11)stage 1 age2 2 2¯ ¯ ¯( )¯l � l 2l dzage stage age 1

Observe that , which means the stage-struc-¯ ¯l 1 lstage age

tured population will grow faster than a comparable age-
structured one (because of increased juvenile survival). It
also implies that the factor in front of the parentheses is
less than 1.

If the focal trait z has no effect on the probability of
repeating the first stage, then and the first¯ ¯dt /dz p 011 1

term inside the parentheses of equation (11) is 0. Since
the leading factor is positive and less than 1, allowing
retention in the first stage slows the rate of evolution with-
out changing its direction compared with the rate in an
age-structured population, all else being equal. (If we in-
clude but reduce the maturation rate by an equal¯ ¯t t11 21

amount [so stage 1 survival stays the same], then the same
framework shows that evolution is still slowed [as is pop-
ulation growth] when .)¯ ¯dt /dz p 011 1



404 The American Naturalist

If the focal trait does influence the probability a stage
1 individual survives and remains in that stage from one
time step to the next (i.e., ), then equation¯ ¯d ln t /dz ( 011 1

(11) shows that repetition of the first stage could accelerate,
slow, or even reverse the direction of evolution relative to
the comparable age-structured population. Stage- and age-
structured populations would have opposite evolutionary
directions if the magnitude of were large enough¯ ¯d ln t /dz11 1

and its sign opposite to that of , the direction of¯Dzage

evolution in the age-structured population. Biologically,
such a reversal might occur for a trait z, such as seed coat
thickness, which might tend to be reduced if there is no
seed bank but would be increased in a species with a seed
bank if thicker coats give much higher seed survival. A
similar analysis could be used to analyze the impacts of
repeating the second stage. This could be relevant, for
instance, to a plant with a perennial adult class but seeds
that either germinate and become adults or die at each
time step.

Price’s Theorem

In this section we show how evolution in stage-structured
populations can be related to a simple, universal law of
evolution, Price’s theorem (Price 1970), which provides a
general statement about any evolutionary system—in-
cluding a stage-structured one. Originally, Price’s equation
was applied mainly to the levels-of-selection issue (e.g.,
Frank 1998; see Leigh 2010 for an overview), but it has
recently begun to be applied to a wide range of evolu-
tionary and ecological issues, including evolutionary ep-
idemiology (Day and Gandon 2006) and even community
and ecosystem ecology (e.g., Fox and Harpole 2008). Coul-
son and Tuljapurkar (2008) developed an age-structured
Price equation, which has been used to draw interesting
insights about stasis and change in body size of the red
deer of Rhum (Coulson and Tuljapurkar 2008), the Soay
sheep of St. Kilda (Ozgul et al. 2009), and yellow-bellied
marmots in Colorado (Ozgul et al. 2010).

Here, we briefly remind the reader of Price’s theorem
for a univariate trait in an unstructured population and
then show how one can write a Price equation for a stage-
structured population. To complement this derivation, we
show in appendix D in the online edition of the American
Naturalist how a Price equation can be derived directly
from the recursions of the general joint PDF method (eqq.
[3], [4]). This alternative derivation could be useful for
instance in examining complicated mating systems and
selection regimes.

Price’s equation for the change in a univariate trait over
a single time step is (e.g., Rice 2004)

( ) ( )Cov z, w Cov d, w
¯¯Dz p � � d, (12)

¯ ¯w w

where z is the phenotype of a “parent,” w is the number
of its “offspring,” d is the average deviation of its off-
spring’s phenotypes from its own, and , , and are the¯¯ ¯z w d
respective averages of z, w, and d over all parents. Note
that “parent” and “offspring” can be broadly defined such
that an individual is treated as an offspring of itself. The
deviation d can have a genetic basis or result from phe-
notypic plasticity or other factors such as maternal effects.

We obtain a stage-structured version of Price’s equation
by applying the law of total covariance (a straightforward
extension of the law of total variance or the conditional
variance formula; e.g., Weiss 2005) to equation (12):

,Cov (X, Y ) p Cov [E(XFV ), E(YFV )] � E[Cov (X, YFV )]
where X and Y are random variables and V is a given
condition. Applying this law to the covariance terms in
equation (12) and conditioning on stage directly yields the
general (univariate) stage-structured form of Price’s equa-
tion:

¯( )¯¯ ¯( ) ( )E Cov z, wCov d , wCov z , w [ ]jj jj j
¯Dz p � �

¯ ¯ ¯w w w (13)

E[Cov (d, w)]j ¯( )� � E d ,jw̄

where is the covariance between parental phe-Cov (z, w)j

notype z and fitness w in stage j, is the co-Cov (d, w)j

variance between d and w for parents in stage j, and ,z̄j

, and are the respective averages of z, w, and d over¯w̄ dj j

all parents in stage j. Unsubscripted operators Cov and E
are computed over stages. Here, we define parent and
offspring to include the results of direct transitions as well
as actual births (so if an individual changes from stage j
to stage i, it is treated as a stage j individual giving rise to
an offspring in stage i). It can be shown that Coulson and
Tuljapurkar’s (2008) age-structured version of Price’s
equation is a special case of equation (13), as is Taylor’s
(1990) stage-structured formulation for allele frequency
evolution. Unlike the latter, equation (13) holds regardless
of whether a population has reached a stable stage distri-
bution. Like Price’s original equation (12), equation (13)
is easily extended to multivariate traits (see Rice 2004).

The first two components of equation (13) reflect
changes in due to differences among stages. Indeed, thez̄
mean phenotype can change from one year to the next
even if all individuals within a stage are identical (so that
the third and fourth terms of eq. [13] are 0) and there is
no average tendency for offspring phenotypes to differ
from their parents ( ). By comparison, the third¯E(d ) p 0i

and fourth components of equation (13) describe changes
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in due to variability within stages. Note thatz̄
is the selection differential (Robertson 1966)¯Cov (z, w) /wj

for z in stage j, which is nonzero if trait and fitness are
correlated within that stage. The third term of equation
(13) is thus the average selection differential over all stages.
The fourth term is similar but reflects the relationship
between fitness and parent-offspring phenotype difference.
For example, this component would be positive if a parent
who produces more offspring also tends to have offspring
that have phenotypic values larger than its own.

Equation (13) makes no assumptions about the cause—
genetic, environmental, or epigenetic—of any parent-off-
spring phenotype difference d. Such differences could arise
in Trillium if (for instance) there is a directional change
in the environment (e.g., warming temperature) and flow-
ering time is a plastic trait responsive to temperature. The
second, fourth, and fifth components of equation (13)
then account for the among-stage, within-stage, and over-
all impacts of this plastic response on change in the mean
phenotype. Some stages could experience greater plasticity
than others (second term), there could be more variance
in the magnitude of such plastic responses among indi-
viduals within stages (fourth term), or the plastic response
could manifest at the level of the entire population (fifth
term).

Discussion

Our results provide three important advances for evolu-
tionary biology. The first is a general set of modeling tools
for prediction of joint evolution and demography of stage-
structured populations. Such a framework has not been
available, and its establishment completes the tool set
available for understanding evolution in stage-structured
populations, which previously contained only methods
specialized for populations structured by age (e.g., Charles-
worth 1994). Our next advance is the first rigorous veri-
fication that Lande’s theorem applies to stage-classified
populations. Our derivation shows that this simple equa-
tion applies to any structured population, assuming only
multivariate normality and evolution that is slow relative
to population dynamics. Our third major result is ex-
tending a fundamental law of evolution—Price’s theo-
rem—to stage-structured populations.

Our general framework extends Taylor’s earlier treat-
ment of models of allele frequency change in stage-struc-
tured populations (Taylor 1990) by allowing standing var-
iation and populations that have not reached a stable stage
distribution. Our model can be used to predict the evo-
lution of quantitative traits and, through use of indicator
variables, allele or genotype frequencies. It can also be used
to project the evolution of trait moments and distributions
for an entire population or individual stages, providing

null expectations for hypothesis testing in empirical
systems.

There was good reason to doubt that Lande’s theorem
would hold in general for stage-structured populations,
and Caswell (1989; see also Caswell 2001, p. 284) hy-
pothesized that it might apply only to stage-structured
models with the same general flow of individuals as an
age-structured model. Our analysis shows that given nor-
mality and slow evolution, Lande’s theorem applies to any
stage-structured population, even if offspring are born into
more than one class or individuals can repeat a stage or
regress to a previous one, or there are differences among
stages in trait means or variances. Assuming normality
may seem problematic, because even if a population is at
an SSD and phenotypes and breeding values initially have
a joint normal distribution, the mixing of survivors from
different stages tends to destroy normality. Our Trillium
example shows that Lande’s equation approximates pro-
jections assuming Gaussian distributions but does deviate
somewhat from the general model (which closely agrees
with our individual-based simulations). Nevertheless,
Lande’s formulation provides a quite reasonable descrip-
tion of this population’s evolution. Our result extends the
domain of life histories over which this illuminating de-
scription of evolution should be applicable.

Our formulation of Price’s theorem shows how stage-
classified evolution can be placed within this broad evo-
lutionary principle and provides a relatively compact equa-
tion (13) that can be used as an alternative to our general
modeling framework to project evolution of phenotypic
means, variances, and other moments (e.g., Rice 2004).
This may be useful in systematic comparisons among
stage-structured taxa differing in life histories and patterns
of inheritance. Some might find it easier to incorporate
complications like nonrandom mating, phenotypic plas-
ticity, temporal variability, and even density dependence
using Price’s equation (13) than with our general for-
mulation (eqq. [3] and [4]).

While the vital rates of almost all organisms are stage
dependent, evolutionary biologists have until now lacked
a general theoretical framework within which to organize
stage-classified demographic data and analyze the impli-
cations of stage structure for evolution. Our results com-
plete such a framework and provide relatively accessible
formulas that can be used to understand evolutionary pasts
and predict evolutionary futures of stage-structured
populations.
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APPENDIX A

General Framework for Modeling Evolution of a
Stage-Structured Population

This appendix provides details behind the general equation
(4) for projecting the evolutionary dynamics of a stage-
structured population. We use the definitions and as-
sumptions described in the main text and find an equation
for , the joint probability density function (PDF)′p (g, z)i

of genotypic and phenotypic values in stage i in the next
year, as a function of the PDF in the current year,

. The distribution in the next year is due to a mix-p (g, z)i

ture of current individuals who directly transition from
all stages to stage i (including those that remain in stage
i) and any new offspring recruiting into that stage. The
joint PDF of individuals that transition to stage i from j
is given by . The PDF of all individuals that¯t (z)p (g, z)/tij j ij

transition to stage i is the weighted average of these dis-
tributions, with each weight equal to the fraction of all
individuals transitioning to stage i that come from stage
j:

¯t (z)p (g, z) t Nij j ij j
v (g, z) p 7�i ′t̄ Tj ij i (A1)

1
p N t (z)p (g, z).� j ij j′T ji

The next step is to find the joint PDF among newborns
in stage i. Consider the distribution of g among parents
of offspring born into stage i:

¯f (z)p (g, z)dz∫ f Nij j ij j( )F g p 7�i ′f̄ Fj ij i (A2)

1
p N f (z)p (g, z)dz.� j� ij j′F ji

Let be the probability that parents with ge-′ ′′R (gFg , g )
notypes g′ and g′′ produce an offspring with genotype g.
Assuming the population is either monoecious or without

sex differences, and that parents mate at random, then the
genotypic distribution among offspring in stage i is

′ ′′ ′ ′′ ′ ′′( )q g p R(gFg , g )F(g )F(g )dg dg . (A3)i �� i i

(Though we do not do so here, one could employ the
formalism of Barton and Turelli [1991; see also Kirkpatrick
et al. 2002] in place of equation [A3] to allow practically
any genetic basis or even nonrandom mating.)

A special case of interest is the infinitesimal model of
inheritance (Fisher 1918; Bulmer 1971). With this model,
the (multivariate) breeding value of an offspring is the
average of the breeding values of its two parents plus a
zero-mean normal random variable with covariance ma-
trix VLE—the additive-genetic covariance matrix among
the m characters at linkage equilibrium. In this case, the
offspring genotype PDF is given by

q (g) pi (A4)

g g 1 1
TF ∗ F ∗ exp � g V g ,i i LE( ) ( ) ( )m2 2 2�( ) ( )2p det VLE

where the asterisks indicates convolution. The arguments
of the parents’ PDFs are halved because parental genotypes
are averaged.

The phenotype of the offspring is the sum of the ge-
notype and a zero-mean random variable representing the
nonadditive genetic and environmental components of
phenotype. The joint PDF of the offspring, , canf (g, z)i

be found from the genetic distribution, , using theq (g)i

fact that the joint probability of two outcomes is the prod-
uct of the probability of the first outcome (genotype) and
the probability of the second outcome (phenotype) given
the first:

f (g, z) p q (g)g(zFg), (A5)i i i

where is the PDF of the phenotype given the ge-g(zFg)i

notype for newborns, which is the PDF of the nonadditive
genetic plus the environmental component of the phe-
notype evaluated at . If this component has a mul-z � g
tivariate normal distribution, then

g(zFg) pi (A6)

1 1
T �1exp � (z � g) V (z � g) ,Em [ ]� 2( )(2p) det VE

where VE is the covariance matrix for the environmental
component of the phenotype.

Returning to the general derivation, the last step in de-
riving the new joint distribution of genotypes and phe-
notypes in stage i is to average the contributions of existing
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individuals that transition into the stage with those of
individuals that are newborn into that stage. Weighting by
the relative contributions of those two sources shows, fi-
nally, that the joint PDF for the genotypes and phenotypes
found in stage i in the next year is

′ ′T Fi i′p (g, z) p v (g, z) � f (g, z) , (A7)i i i′ ′N Ni i

which is equation (4) in the main text.

APPENDIX B

Lande’s Theorem for Stage-Structured Populations

We prove here that Lande’s equation, , ap-¯¯Dz p G∇ ln l

plies to random mating stage-structured populations un-
der assumptions comparable to those used in the deri-
vation for age-structured populations (Lande 1982b). To
that end, it will be convenient to put equations (5) and
(6) in the form of a matrix equation. Let the vector of
phenotypes and genotypes be , whereT¯ ¯¯x p (z, g) z pt

and , and let the vector of selection terms be¯ ¯¯{z } g p {g }i i

, where , ,Tb p (b , b ) b p {b } b p {b } b pz g z zi g gi gi

, and (su-¯¯¯� c G∇ ln a b p � c (P∇ t � G∇ f )¯ ¯ ¯ij j z ij zi ij j z ij j z ijj jj j j

perscript T denotes the transpose). Also, define matrices
of contributions of each stage to every other stage: C p

, , and , and combine these into at t f f{c } C p {c } C p {c }ij ij ij

single matrix:

t fC C
K p . (B1)( )0 C

The matrices C, Ct, Cf, and K contain only nonnegative
numbers, and . Under our assumptions, C ist fC p C � C
primitive (i.e., all the elements of the matrix power Ck are
positive for some integer ) and row stochastic (i.e.,k 1 0
each row of C sums to 1). The matrix K is likewise row
stochastic but is “reducible” because of the lower-left sub-
matrix 0 that it contains. (Interested readers may consult
Caswell [2001] and Meyer [2000] for more information
about the matrix terminology, definitions, and results used
in this appendix.) Using this notation, the recursions for
evolution assuming normality, equations (5) and (6), can
be written as the linear recursion

x p Kx � b. (B2)t�1 t

To solve this equation, we need to assume that evolu-
tionary dynamics are much slower than population dy-
namics. Also assume the population dynamics are density
independent and described by the Lefkovitch matrix A
with elements , the average values of the over theā aij ij

phenotypic distribution. Since evolution is slow, (andA
) are nearly constant and the population maintains ab

stable-stage distribution (SSD; Caswell 2001). At SSD, all

stages grow geometrically at the same rate, so ,′ ¯N p lNi i

where is the eigenvalue of largest magnitude of . Letl̄ A
and be the respective right and left ei-w p {w } v p {v }i i

genvectors of corresponding to . The elements of w¯A l

sum to 1 and give the proportions in each stage at the
SSD, and v (which contains reproductive values) is scaled
so that . At SSD, the coefficients , , andT t fv w p 1 c c cij ij ij

take on constant values: ′ �1¯¯ ¯c p N a /N p l a N /N pij j ij i ij j i

and similarly for and .�1 t f¯ ¯l a w /w c cij j i ij ij

With these assumptions, direct iteration of equation
(B2) gives

t�1

t ix p K x � K b, (B3)�t 0
ip0

so the rate of evolution at time ist

t ( )Dx p x � x p K K � I x � b . (B4)[ ]t t�1 t 0

We need the following result for the reducible, stochastic
matrix K (Meyer 2000, p. 698):

t f T�1( )0 I � C C 1rtlim K p , (B5)tr� T( )0 1r

with I being the identity matrix, 1 a vector of all 1s, and
the left eigenvector of C, corresponding to itsr p {r }i

leading eigenvalue normalized so that . (Since CTr 1 p 1
is row stochastic, its leading eigenvalue is 1, with a cor-
responding right eigenvector of 1.) Now observe that, since
K is row stochastic, . Thust f fC 1 � C 1 p 1 C 1 p (I �

, which implies . (D. Watkinst t �1 fC )1 (I � C ) C 1 p 1
pointed out this latter result to us.) So, in fact,

T0 1rt def ˆlim K p p K. (B6)tr� T( )0 1r

Combining equations (B4) and (B6),

ˆlim Dx p K[(K � I)x � b]tr� t 0 (B7)

1Tˆp Kb p r b .g ( )1

The second equality follows from the fact that K̂(K � I)
is a matrix of zeros because by definition of r:T Tr C p r
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T t f0 1r C � I C
K̂(K � I) p T( )( )0 1r 0 C � I

T0 1r (C � I)
p T( )0 1r (C � I) (B8)

T T0 1(r C � r )
p T T( )0 1(r C � r )

0 0
p .( )0 0

Result (B7) shows that, asymptotically,

T def¯ ¯¯ ¯Dz p Dg p r b p r c G∇ ln a p Dz (B9)� � ¯i i g i ij j z ijj
i j

for all stages i. It can be shown that . Recallingr p v wi i i

too that at the SSD and simplifying shows�1¯ ¯c p l a w /wij ij j i

equation (B9) is equivalent to

1
¯ ¯Dz p v w G∇ a . (B10)� ¯i j j z ijjl̄ i, j

(Taylor [1990] used the same weighting vector r when
analyzing models for allele frequency change in stage-
structured populations at SSD.)

In his derivation for age-structured populations, Lande
(1982a) assumed the mean phenotype and additive genetic
covariance matrix were approximately the same for every
age class. (He argued this is conceivable given weak se-
lection.) If we make comparable assumptions for our
stage-structured model (i.e., assume and¯ ¯z p z G p Gj j

for all stages j), then the shared rate of evolution (B10)
becomes

1
¯ ¯Dz p G v w∇ a . (B11)� ¯i j z ij

l̄ i, j

Now consider

¯1 �l 1¯ ¯ ¯∇ ln l p ∇ a p v w∇ a , (B12)� �¯ ¯ ¯z z ij i j z ij¯ ¯¯l �a li, j i, jij

where we combined the standard result ¯ ¯�l/�a pij

(e.g., Caswell 2001, p. 209) with our regulari-Tv w /v wi j

zation . Substituting equation (B12) in equationTv w p 1
(B11) shows that Lande’s equation, , holds¯¯Dz p G∇ ln lz̄

for stage-structured populations.
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Having escaped the devastating destruction of white-tailed deer, Trillium plants flower peacefully in a forest understory. Photograph by
Tiffany Knight.




