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Appendix C from M. Barfidd & al., “Evolution in Stage-Structured
Populations’
(Am. Nat., val. 177, no. 4, p. 397)

Computational Details for the Two-Stage Example

It can be shown by direct calculation that the asymptotic growth rate (leading eigenvalue) of the population
projection matrix

t,, O
is
— t, + \t121+ 4f1; 21
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The vector
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describes the corresponding stable stage structure (right eigenvedor of ), and
)\ + t21
() = O (C3)

is the vector of normalized reproductive values (left eigenvectok of ). The asymptotic rate of evolution shared
by both stages (using eq. [8]) for this scenario takes the form
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with )T, w, andv, as defined above. The notati/dz indicates that the derivative with respect to the mean
phenotype is to be evaluated at the stage-specific mean B
When it is impossible to repeat stage 1 (i.e., the population is age-structtfed)0 identically. This implies
thatdInt,/dz, = 0 and, from equation (C1),
)\ = \'f12t21 )\age (C5)

Additional algebra using equations (C2), (C3), and (C5) shows that the shared rate of evolution (C4) for an age-
structured population simplifies to
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_If the first stage can be repeated the next year but thezitzis no effect on the probability of repeating (i.e.,
t,, >0 butdint,,/dz, = 0), then the rate of evolution (C4) is
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whereX and\,,. are defined by equations (C1) and (C5), respectively. Bekausg,. , the leading fraction in
equation (C7) is less than 1, which impliaz < Az, ., . Equation (C7) thus shows that, all else being equal,
evolution is slower with repeated stages than without them if the focal trait has no bearing on the probability of
repeating a stage. The same comparison also reveals that while the speed is reduced, the direction of adaptation
is unaffected.

Finally, consider the rate of adaptation when the probability of repeating the first stage is affected by the
phenotypez. This is the same as the last case except dhiat,,/dz, # 0 . Equation (C4) in this case becomes
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which is equivalent to equation (11).
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Price’'s Theorem and the General Joint Probability Densty Function Method

We show here that the stage-structured version of Price’s equation (eq. [13]) can be derived from our general
recursions for the distribution of phenotypes and genotypes. By definition,

Z = f f zp'(g, 2)dgdz

_ T'[]20.(9, 2)dgdz + F'[[z¢,(g, z)dgdz
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whereD = g—z andd = Df;/a; . (Note that the second line corresponds to an average over the distribution
given in eq. [4] in the main text.) The fact that the average phenotype of offspring is the same as their average

genotype, which is the same as the average parental genotype, has been used in deriving the second term. The

variabled is the difference between parental and offspring phenotypes due to reproduction. Tlits istage
transitions not involving reproduction, sbis found by weightingD by the fraction ofa; that is due to
reproduction ;/a; ).

The double integrals in the last line of equation (D1) are stage-specific expected valisgézpf  da;@nd
which can be written in terms of covariances as follows:

Z = 3 Elza,@i] + Elda, @)}
~ X ez, @) + Covle,a,@)i] + EllIEla,@Ii + Covid, 2, ©2)
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wherez, = E(z|j) ,a;, = E[a;(2)|j] , andCov (z, ;) = Cov[z a,(2)|j] (similar expressions apply to thesrms).
herez; = E(z]}) .a; = E[&;(9)]]] , andCoy (z, &;) = Cov[z, & (2)[j] (simil ly to th )
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The overall mean phenotype s= 27 N,/N =2 CZ , where= N/N is the proportion of the population

in stagej. The recursion for overall mean phenotype is then
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where we have usel’ = wN , with being the mean fitness of the population. Lettirgwi (z) = X, a;(2)
be the fitness of in stagej andW- = 3,a; be the average fitness of stagedividuals, therw = E[w] =
ZJCJ Equation (D3) is then
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The change in the mean is thus
Az=7-27
=>clz ﬂv_v Coy( + 2 G \9 (D5)
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The first term in brackets describes the covariance betwe_en mean phenotype and mean relative fitness over
stages, which we write aSov (z, w/w) . (The covariancezof —anthv  E[isw /w] — E[z]E[w,/w] =

>, ¢zw /w — z; simplification of the second term used the facts IEE;] =1z B/ = 1 by definition.)

The second term in brackets is the samedor . The second summation is the average within-stage covariance
between phenotype and relative fitneE{{;oy @z, wiw)] , and the last term is the sacheTious, the stage-

structured version of Price’s equation is
M rd+ E‘Coy(d, %‘ . (D6)
W

This is the formula (slightly rewritten) shown in the main text and there arrived at more simply using the law of
total covariance.
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