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1 Appendix: s and T dependence of parameters

We here provide details for the parameterizations described in the section "Phytoplankton:
Parameterization" of the main text. Results for the dependence of i,,,, and scaled assimil-
ation affinity on cell size were from table 1 of Edwards et al. (2012), using their allometries
common to freshwater and marine phytoplankton under N-limited growth. Confidence in-
tervals provided by Edwards et al. (2012) were converted to standard errors by dividing half
their length by 1.959964. The standard error of the scaling exponent of H,, was computed
as the square root of the sum of the squares of the standard errors of the scalings exponents
of fimae,; and scaled assimilation affinity, since the scaling exponent of H,,, was a difference of
the two other exponents. This effectively assumes errors in the exponents are independent.
Results for E,, . from Bissinger et al. (2008) are from the first row of their table 1, con-
verted from exponential dependencies to Arrhenius dependencies. Their confidence intervals
were converted to the standard error for £, = presented in the main text by converting
an exponential dependence using each confidence interval endpoint to an Arrhenius depend-
ence using the exponential prefactor 0.81 they provide (see their equation 2). The resulting
confidence range for F, . was converted to a standard error by dividing half its length by
1.959964.

Data on the viscosity of sea water at a range of temperatures were downloaded from the
Chemical Hazards Response Information System of the U.S. Coastguard (www.chrismanual.
com/Intro/prop.htm; downloaded data are reproduced in table S1). Temperatures were
converted to °K and viscosities to kg - m~! - s7!. A linear model was fitted with response
variable log, viscosity and predictor ﬁ The slope was 0.1781 (SE 0.001) and the intercept
was —13.8738 (standard error 0.0405). The linear model explained 99.98% of the variation

in log, viscosity.

2 Appendix: a specific T" dependence of Hgy,

Equation 9 of the main text establishes a power law dependence of H,,, on cell size, s. Al-
though not needed for the results of the main text, we here provide theoretical and empirical
arguments supporting a particular 7" dependence of H,,,. By the equation for H,, in equa-
tions 6 in the main text, it suffices to understand the 7" dependencies of H,y,, Q) min, and Vigz:
the T" dependence of iy, is in the main text.

We begin with theoretical arguments for H,, and Vi,,,, largely taken from Aksnes & Egge
(1991). Nutrients are actively transported into a cell by ion uptake sites on the cell surface.
Aksnes & Egge (1991) mechanistically modeled this process using the same reasoning behind
the Holling type II functional response used in predator-prey models (Holling, 1959). They
obtained a formula for uptake rate, as limited by encounters between ions and uptake sites,
and by the time it takes for an uptake site to process an ion once encountered. Converting
their formulas to our notation provides

n

Vmam = 7 (1)
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1

Ty (2)
where n is the number of uptake sites occurring on the cell surface (sites - cell™'), h is the
time required for an uptake channel to process an ion, i.e., the “handling time” (days), A
is the capture area of an uptake site (um?), and v is a “mass transfer coefficient” which is
an average equivalent relative velocity between ions and uptake sites (pm - day_l). We can
model the s and T" dependence of V,,, and H,, by modeling the s and 7" dependence of n,
h, A and v. This is the strategy used by Litchman et al. (2007) and Verdy et al. (2009),
though they did not include temperature dependence.

We assume A is independent of both s and T'. We assume n is proportional to cell surface
area and independent of 7', so

H,, =

n o s%/°. (3)

The handling time, h is the time required for the biochemical reactions of ion uptake, and
as such seems likely to have inverse Arrhenius temperature dependence. We assume h does
not depend systematically on s, so

E
h — 4
with Ej, > 0. Aksnes & Egge (1991) used the approximation

v=—, Y

) (5
where D is the coefficient of molecular diffusion for the nutrient (xm? - day™'), r is the
equivalent spherical radius of the cell (um), and we assume nutrient transport to the cell
is largely via diffusion as opposed to cell motion through the medium. The Einstein-Stokes
equation gives

T
D ox —, (6)
Ui

where 7 is the dynamic viscosity of the medium. Aksnes & Egge (1991) realized that tem-
perature influenced D as described in this proportionality, and then in turn influenced v and
H,, as described in equations 5 and 2, however, they said “as the temperature-dependent
viscosity also influences diffusion, the overall influence of temperature on molecular diffusion
is not straightforward.” But the influence of T" on viscosity is known:

E
pocen (12). 7
where £, = 0.1781 (Appendix S1). Combining equations 5, 6 and 7, we have
—F
71/3T n 8
VXS exp(—kT>, (8)

so that dependencies on s and T of n, h, A and v have been modeled.
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Substituting the expressions for n, h, and v (equations 3, 4, and 8) into equations 1 and

2, we have
—F ELW(T — T,

Vinas X 523 exp (k;_Th> x s exp (}L(TTOO)) 9)

and
s'/3 exp <_i;”p ) s1/3 exp (—EHH£;§;T0)>

H,, x T x T (10)

where
Ey,, = B, — B, (11)

The cell-size scaling exponents predicted here (2/3 for V., and 1/3 for H,,) are similar to
the values obtained empirically by Edwards et al. (2012) (see their table 1, “common slope”
column); they got scaling exponent for V,,,, for N uptake equal to 0.82 (SE 0.077) and scaling
exponent for H,, for N uptake equal to 0.33 (SE 0.041). See also Litchman et al. (2007), who
obtained similar scaling exponents. The agreement of theory with empirical results on cell-
size scaling exponents lends credence to theoretical predictions for temperature dependence.

We tested the theoretically predicted functional form for the temperature dependence
of H,, and obtained an estimate for Epy, via a metastudy. We found in the literat-
ure 79 measurements of H,, for 16 different species or groups at temperatures ranging
from 1°C to 29°C; all data and references are in table S3. Cell-size measurements gen-
erally were not available. We fitted a linear mixed-effects model (Pinheiro & Bates, 2000),
Y = En,, Tr+b+0r+er, where k indexes unique species-study combinations in the data, [ in-
dexes measurements (at different temperatures) taken within a species-study combination, yy
represents log, (H,p) +log.(T) for the ki-th data point, and xy,; represents (Ty; —Tp)/ (kT 1o)
where Ty, is the temperature (°K) for the kl-th data point and Ty = 293.15°K. The random
factor 0, which takes an independent value for each species-study combination, is normally
distributed with a variance parameter determined in fitting. The ¢, account for differences
among species and methodological differences among studies. The ¢ term is a normally
distributed residual error term. The main result of this fitting was an estimate Ep,, = 0.277
(SE 0.084), but we also obtained estimates for the 05 and plotted y — 05, against Eg, xy +b,
using the estimated values of the parameters Ep,, and b, to demonstrate that linearity of the
fixed effect was supported (figure S1A). The package lme4 in the R programming language
was used to fit the model. The activation energy for V,,,, can be obtained from equation 11,
ie., By, . = FE,=FEy, +E,=0456. The standard error on this estimate is practically the
same as that for Ey, because the standard error for E, is very small (Appendix S1).

To assess the T dependence of @Q,.;,, we carried out another metastudy. We found in
the literature 41 measurements of ), for 7 different species or groups at temperatures
ranging from 3°C to 25°C; all data and references are in table S4. Cell-size measurements
generally were not available. We fitted a linear mixed-effects model (Pinheiro & Bates, 2000),
Y = Eq,,., T+ b+ + €, where k indexes unique species-study combinations in the data, [
indexes measurements (at different temperatures) taken within a species-study combination,
Y represents log,(Qmin) for the ki-th data point, and zy; represents (Ty — T0o)/(kTwTh).
The random factor d, and the residual error €, are conceptually the same as in the mixed-
effects model for H,, described above. The main result of this fitting was an estimate

3



115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Eqg,.. = —0.230 (SE 0.056), but we also obtained estimates for the J; and plotted yy — dj
against Eg . 40, using the estimated values of the parameters £, and b, to demonstrate
that linearity of the fixed effect was supported (figure S1B). Thus @, has the form

Eo (T —1T
Qmin X §°@min exXp ( QTMZ;;TO O)> ) (12)

with Eg . = —0.230, where the power-law cell-size dependence used here is supported by
the results of Edwards et al. (2012), with their value eg_, = 0.84 (SE 0.046).
Combining the dependencies for Hy,, Qumin, Vinaz, and fiyq, gives

SeHuP +6szn +eumam “CVmax eXp < (EHup +Eszn +E“ma-’ﬁ _EVmaz )(T_TO) )

kTTy
T )

ngo X (13)
where the value ey, = e, + €0, t €lma = CVinao = % +0.84 —-0.28 — % = 0.227 is close to
the value derived from the regressions of Edwards et al. (2012) (table 1 of the main text).

3 Appendix: derivative of G with respect to T’

The invasion fitness, G, of an invader of cell size s;, into a resident of cell size s, was derived
in the main text (main text equation 11). The derivative of G with respect to 7" was needed
to establish the effects of temperature on the relative competitive abilities of differently sized
plankton cells. The derivative is computed here:

% — 8%7%(” (Sirw T)gm(sm>5r:{9"’ (14)
oT D
Hmaz (Sinv T)gm(sre)srfgm Si:rgm 8;3% (Sma T)
- (15)
D2
where
D= gm<3re)3ifgm + Sfyljgm (,umaz(srea T) - gm(sre))~ (16)
Substituting 8“8% = EZ%” Imae and simplifying gives;
aG . ,Umaz (SiTH T) EZ?SI gm(8T€)285‘ngu <Sifgro - ;fgm ) (17)

ar D2
The denominator, D?, is strictly positive because m = g, is positive and fimaz (Sre) = Gm (Sre) >
0 is a condition for the resident to have become established in the first place. Therefore the
sign of 2% is the same as the sign of the numerator of equation 17, which is positive for

oT
Sre > Sin and negative for s, < sy, since ey, > 0.
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4 Appendix: R* for the case m = k,, s

In section "Phytoplankton: Model analysis and results" of the main text, the case in which
mortality is m = ¢,,(s) = ks is considered, and it is stated that an evolutionarily stable
size (ESS) exists under certain conditions. We here demonstrate this and compute the ESS.
Equation 12 of the main text is minimized with changes in s exactly when

SeHgTD +em

" Frman (T) 005 — Fiysem

R*

(18)

Eumam (T_TO)

KT ) . Taking derivat-

is minimized, where we use the shorthand f, . =£k,,... exp (
ives and simplifying gives
8R* SeHg"‘O +em71<<em + eHg'ro - 6/meaz )f,uma:n (T>S€Mmam - eH k:msem)

_ gro . 19
0s (frmas (1) sC1mas — ki, 56m )2 (19)

Cell size s is viable only if the denominator of this expression is greater than zero. The sign
of equation 19 is the same as the sign of its numerator, which in turn is the same as the sign

of
fﬂ/ma:ﬂ (T) Se/"‘milﬂi

Ky, 8™

(em + €CHyro — e,umaz) — CHypos (20)

since ks > 0 and %o Tem=1 > ).

If e,,,.. < em then equation 20 is always positive, because then e, +eq,,, — €., > €n
and we already know the quotient in equation 20 is greater than 1 for viable cell sizes, s. So
in that case, JR*/0s > 0 for all viable s and we have runaway selection to small sizes. There
is also a maximum viable size

gro?

1

b = (L) 1)

ife, .. <eén.

If ey < €ppuw — €H,» then ey, + e, — €p,.., < 0, and equation 20 is always negative
because eg,,, > 0. So in that case, OR*/Js < 0 for all viable s, and we have runaway selection
to large sizes. There is a minimum viable size

1

S = (f—(T)) (22)

if e < €ppan-
If €oe = €Hyro < €m < €pupa,» then equation 20 has a root,

1
€H km

gro

( )
SESS = .
(em T €Hyro ~ Cpimas )fumaz (T)

Because equation 20 is a monotonically increasing function of s fore,,... —en,,, < eém < €40,
it is negative for s < sggs and positive for s > sggg, 80 sggs is a local and global minimum
5

(23)
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of R* and therefore of R*.

5 Appendix: The equilibrium assumption

The use of R* and G made in the main text in analyzing the phytoplankton model depends
on the assumption that equilibria are stable. This seems likely because model nutrients are
supplied at a constant rate. Nevertheless, we tested the assumption numerically using a
Monte Carlo method, for a wide range of parameters encompassing biologically reasonable
values. Edwards et al. (2012) provide allometries of the form y = ks for y = Qumin, Mmaz,
Hyp, and Vp,4,, giving estimates and confidence intervals for log,,(k) and e in all cases. Con-
fidence intervals were converted to standard errors by dividing half their length by 1.959964.
Montagnes & Franklin (2001) provide an allometry for @Qq., with estimates and standard
errors for log,y(k) and e. See table S2 for all values taken from these references. On each
Monte Carlo run, the parameters log,,(k) and e for each allometry were drawn from nor-
mal distributions with mean equal to the estimated value from Edwards et al. (2012) or
Montagnes & Franklin (2001) and standard deviation equal to twice the standard error re-
ported in those references. Twice the standard error was used to add a buffer of additional
uncertainty. Cell sizes log,,(s) were drawn randomly and uniformly between 0 and 8 and the
allometries resulting from the randomly generated values of the k£ and e for each allometry
were used to generate values for Qumin, ftmazs Hup, Vimaz, and Qpee. When Qg was less
than @, the values were swapped. Input nutrient concentration Ry = 40 was used follow-
ing Litchman et al. (2009). Nutrient supply rates, d, were taken as a uniformly distributed
random variable between 0.05 and 0.95 divided by a uniformly distributed random variable
between 1 and 50. The first variable represents replacement fractions in mixing events and
the second represents mixing-event periods; both ranges are from Litchman et al. (2009).
Mortality, m, was a uniform random variable between 1 x 10~* and 0.02. The parameter
loo Was established by solving the fi,,,,; equation in equations 6 in the main text for ..
For each of 10,000 runs, equilibria were computed following the equations of Verdy et al.
(2009). When equilibria existed (9,464 runs), the system Jacobian was computed at the
equilibrium. In all cases, the real parts of the eigenvalues of the Jacobian were negative,
indicating stability. Temperature was not accounted for in this analysis because data are
not available on the temperature dependence of all model parameters; nevertheless it seems
unlikely model equilibria are ever unstable for biologically reasonable parameters given the
wide uncertainties incorporated above and the result that every simulated equilibrium was
stable. We find it plausible to expect that local stability is a mathematical necessity for any
equilibrium, but we do not know of a proof of this.

6 Appendix: Non-equilibrium dynamics

The R* and invasion-fitness approach as described here is valid only when the equilibrium

is stable, but in contrast to the phytoplankton model (Appendix S5), an equilibrium of the

Rosenzweig-MacArthur model need not be stable. A Hopf bifurcation occurs at a parameter

boundary given by Vasseur & McCann (2005); past the boundary, the model has a stable

limit cycle. Invasion fitness into a resident exhibiting limit-cycle oscillations can still be
6
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computed by averaging the growth rate of the putative invader over the limit-cycle resource
density driven by the resident (see, e.g., Klausmeier, 2008; Kooi & Troost, 2006; Litchman
et al., 2009). A non-equilibrium approach will require all model parameters to be written as
functions of s and T instead of just those appearing in expressions for R* and G, but this
should be possible for the Rosenzweig-MacArthur model if o and ¢}, can be described. Savage
et al. (2004) published theory and data on body mass and temperature dependence of r and
K, and Vasseur & McCann (2005) cover the body mass and temperature dependence of r as
well as m and fiyq,. An important direction for future work will be elucidating the thermal
dimension of non-equilibrial competitive interactions.
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= lables

Table 1 Viscosity of sea water at a range of temperatures. Data were taken
from the Chemical Hazards Response Information System of the U.S. Coast Guard
(www.chrismanual.com/Intro/prop.htm), and are for “standard" sea water containing 35g
salts per kg of solution.

Temp. (°F) Visc. (Centipoise) Temp. (°K) Visc. (kg-m~!-s71)
30 1.88 272.04 0.00188
40 1.61 277.59 0.00161
50 1.40 283.15 0.00140
60 1.21 288.71 0.00121
70 1.06 294.26 0.00106
80 0.92 299.82 0.00092
90 0.82 305.37 0.00082
100 0.73 310.93 0.00073

Table 2 Parameter estimates used in Monte Carlo simulations (see Appendix S5). Values
from Edwards et al. (2012) are from their table 1, using values fitted to pooled freshwater
and marine data. Values from Montagnes & Franklin (2001) are from their table 3.

Parameter  Estimate SE Source

€Qin 0.84 0.046 Edwards et al. (2012)
logyo(kg,...) -9.0 0.128 Edwards et al. (2012)

i -0.28 0.018 Edwards et al. (2012)
logyo(ky.. ) 0.65 0.059 Edwards et al. (2012)

CH., 0.33 0.041 Edwards et al. (2012)
log,(km,,) -0.61 0.138 Edwards et al. (2012)

eV 0.82 0.077 Edwards et al. (2012)
log,o(kv,...) -8.0 0.281 Edwards et al. (2012)

€Qan 0.809 0.011 Montagnes & Franklin (2001)
log(kg,.,) -8.03 0.039 Montagnes & Franklin (2001)
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Fig. 1 Plots of metastudy data, corrected for random effects; lines have fixed-effect slopes
and intercepts (see Appendix S2).
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Fig. 2 (A-D) Pairwise invasibility plots at different temperatures for m = 0.01 exp(E,,,(T —
Ty)/(kKTTp)) with E,,, = 0.1781. These plots are analogous to figure 4A-D of the main text,
but for a different model of m. (E-F) Ratios of pairwise invasibilities at different temperatures
for the same m. These plots are analogous to figure 4E-F of the main text. Plots show
G(Sin, Sre, 11)/G(Sin, Sre, To) for T1 = 20°C and T, = 10°C (E) and for T3 = 23°C and
T, = 20°C (F). The same result of accentuated invasion fitness of smaller invaders at warmer
temperatures was also true for k,, = 0.0001,0.001, and 0.02.
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