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Habitat loss and fragmentation has long been consid-

ered the primary cause for biodiversity loss and

ecosystem degradation worldwide, and is a key

research topic in landscape ecology (Wu 2013).

Habitat fragmentation often refers to the reduction of

continuous tracts of habitat to smaller, spatially

distinct remnant patches, and habitat loss typically

occurs concurrently with habitat fragmentation (Col-

linge 2009). Although some habitats are naturally

patchy in terms of abiotic and biotic conditions (Wu

and Loucks 1995), human actions have profoundly

fragmented landscapes across the word (Haddad et al.

2015), altering the quality and connectivity of habitats.

Therefore, understanding the causes and conse-

quences of habitat fragmentation is critical to preserv-

ing biodiversity and ecosystem functioning.

From May 4th to 10th, 2015, an International

Workshop on Habitat Fragmentation and Biodiversity

Conservation, held at the Thousand Island Lake,

Zhejiang, China, discussed threats to biodiversity in

fragmented landscapes and how fragmentation

research can identify and help mitigate these threats.
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To meet these challenges, the Workshop had three

goals. The first was to synthesize key findings in

fragmentation science. Second was to identify impor-

tant remaining research questions concerning the

relationships between habitat fragmentation, biodi-

versity, and ecosystem functioning at local, regional,

and global scales. Finally, we examined the unique

roles of field-based fragmentation experiments in

addressing these questions. The Workshop’s findings

are relevant to the broader ecological community, and

we present them here to stimulate research that will

advance landscape ecology and conservation biology.

Key findings concerning habitat loss

and fragmentation

• While habitat fragmentation ultimately derives from

habitat loss, three broadly defined mechanisms

mediate the ecological consequences of fragmenta-

tion. First, there are those attributable directly to the

loss of habitat area. Second, there are those

attributable directly to changes in the spatial config-

uration of the landscape, such as isolation. Finally,

there are those attributable to indirect or interaction

effects of habitat loss and changes in spatial config-

uration (Didham et al. 2012), and to the interaction of

fragments with the matrix (e.g., spillover effects). A

review of the literature found that when one ignores

indirect and interaction effects, the impacts of habitat

loss are far greater than changinghabitat configuration

(Fahrig 2003); however, newer research suggests that

indirect and interaction effects may be the dominant

driver of the ecological changes often attributed to

habitat loss alone (Didham et al. 2012).

• Species richness often changes significantly with

fragmentation (MacArthur and Wilson 1967; Dia-

mond 1975). Nonetheless, other measures of com-

munity structure, such as community composition,

trophic organization, species persistence, and spe-

cies residency, may better inform how fragmenta-

tion affects biotic communities, even when species

richness per se is not altered by fragmentation

(Robinson et al. 1992; Haddad et al. 2015).

• As habitat loss results in changes in both the

amount and configuration of habitat (e.g.,

decreased patch size, increased patch isolation,

and increased edge area), fragmentation-mediated

processes cause generalizable responses at the

population, community, and ecosystem levels.

These include decreased residency within and

movement among fragments, reduced species

richness across taxonomic groups, and decreased

nutrient retention (Haddad et al. 2015). By com-

paring findings across multiple landscape-scale

fragmentation experiments, one can partition

effectively the relative influence of increasing

habitat loss, patch isolation, and edge influence on

different community and ecosystem attributes

(Haddad et al. 2015), and potentially distinguish

generalizable consequences of fragmentation from

more idiosyncratic, system-specific responses.
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• Area and isolation effects encompass a variety of

ecological processes that can complicate our

understanding of fragmentation. For example,

reductions in patch size and increases in edge-

affected area can influence local ecosystem pro-

cesses indirectly through microclimatic effects. To

make results more generalizable, studies should

decompose area and isolation effects into direct,

ecologically relevant, mechanistic drivers such as

microclimate, local matrix quality, and vulnera-

bility to stochastic events (e.g., Laurance et al.

2011).

Remaining questions and challenges

Despite the progress made in formalizing fragmenta-

tion science, significant questions remain.

Local community-level dynamics

How do conditions at the time of fragmentation impact

community structure and dynamics?

Historically the term fragmentation has been used to

describe the ecological changes arising from two

different landscape contexts. The first of these are

relaxing systems—those intact at the time of frag-

mentation and which are now relaxing to few species

and diminished ecosystem function (e.g., Laurance

et al. 2011). In contrast, assembling systems are those

in which successional processes occur within spatially

distinct patches across a denuded landscape (e.g.,

Cook et al. 2005). Most studies have focused on

communities that were intact at the time of fragmen-

tation, losing species following the fragmentation

event. Relatively few studies have focused on the

impacts of habitat fragmentation on community

assembly (e.g., Simberloff and Wilson 1970; Robin-

son et al. 1992). For instance, priority effects (Fukami

2015) and a combination of deterministic and stochas-

tic processes may influence the trajectory of commu-

nity assembly in fragmented systems (Norden et al.

2015). Patterns of beta diversity can be altered by

fragmentation overlaying successional dynamics

(Alexander et al. 2012). While the processes of

assembly and relaxation do share some generalizable

effects (Haddad et al. 2015, discussed above), we do

not fully understand the ways in which these systems

converge and diverge from each other, creating a

primary source of confusion within the study of

fragmentation.

What factors affect the relative balance between top-

down and bottom-up processes in fragmented

landscapes?

Community ecologists have long recognized that both

top–down (predator–mediated) and bottom–up (pro-

ducer–mediated) processes can influence community

composition. However, our understanding of how top-

down and bottom-up dynamics might interact across

geographic space is limited (Gripenberg and Roslin

2007), although it is clear that spatial factors such as

patch size could potentially impact the strength of

trophic cascades (Terborgh 2010). Fragmented habi-

tats present an excellent platform for examining the

interaction between these forces over a variety of

spatial scales.

How do the processes of dispersal and ecological

filtering—exclusion due to the effects of environmental

and biotic conditions—interact to structure

biodiversity?

Although both dispersal- and niche-mediated mecha-

nisms affect community assembly, the importance of

the interaction between these processes in high-

diversity communities is still largely unknown (Myers

and Harms 2011). Fragmentation studies can be used

to address this issue as well, especially when frag-

mentation eliminates some of the key players in biotic

interactions such as mutualism and competition.

How does fragmentation predictably and consistently

alter the variability of local biophysical conditions?

Large-scale experiments show that fragmentation has

significant, unexpected effects on local biophysical

conditions. For example, the Biological Dynamics of

Forest Fragments Project of Manaus, Brazil finds that

relatively unimportant drivers in intact systems can

come to dominate fragmented systems. Examples

include increased wind shear in tropical forest frag-

ments (Laurance et al. 2011), and reduced fire

frequency, in prairie systems (Leach and Givnish

1996). We need further work on altered disturbance
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regimes, especially focusing on the integration of

patch shape and matrix characteristics, to generalize

these results across landscapes and disturbance

regimes. The inclusion on micro-climatic changes in

studies of fragmented landscapes may also provide

new insights into the mechanisms behind changes in

community composition.

How quickly does evolutionary adaptation

in fragmented habitats occur? How does this

evolutionary adaption affect species coexistence

and community assembly in fragmented habitats?

Recent work has shown that evolutionary changes can

operate on ecological time scales. Local adaptations,

whether in the form of evolutionary change or

phenotypic plasticity, may alter the environmental

selective pressures that control community assembly

(Schoener 2011). Fragmentation research should play

a key role in quantifying the speed of this adaptation to

local conditions and how these adaptations alter

species coexistence and community assembly.

Do smaller patches become ‘‘stuck’’ in successional

stasis? If so, does this successional heterogeneity

between larger and smaller patches alter the ability

of biodiversity to recover from further perturbations

at the landscape scale?

From the early twentieth century, ecologists have

suspected that habitat fragmentation can alter succes-

sional trajectories, with smaller patches affected more

greatly than larger ones (Clements 1936). Cook et al.

(2005) report that succession towards woody vegeta-

tion occurs more slowly on small fragments, and

Connell and Slatyer (1977) suggest that succession

should reflect the interaction of disturbance intensity

and size of the area being disturbed. Yet understanding

the relationship between fragmentation and succession

is largely unexplored.

How quickly and effectively can management actions

mitigate declining numbers of species and diminished

ecosystem functions following fragmentation?

The effects of habitat fragmentation on populations,

communities, and ecosystems can take years to

decades before becoming apparent, suggesting that

patches will continue to lose species and see declines

in ecosystem functions for considerable time periods

(e.g., Brooks et al. 1999; Collins et al. 2009). Our

ability to reduce the loss of species and functions

during this period of decline merits investigation.

How does fragmentation impact population dynamics

at the species level? How do these dynamics alter

the relative probabilities of extirpations

and recolonization?

Though traditional island biogeography is based on the

probability of species extirpations and colonizations, it

does not make predictions about how habitat fragmen-

tation will affect the population dynamics of individual

species. Therefore, metapopulation models based upon

occupancy (presence/absences) have provided the

frameworks generally used to study the impacts of

fragmentation at the species level. From their very

inception (Levins 1969, 1970), these frameworks have

largely ignored the details of intra-patch population

dynamics (Gilpin and Hanski 1991). Yet, such local

population dynamics underlie the local extirpations

and (to a lesser extent) recolonizations of individual

specieswithin and among patches. Thus, they represent

a critical, if largely unstudied, component in applying

fragmentation research at the species level. For

instance, do time-series of abundances for a focal

species typical show clear signals of population decline

in fragments, long before extinction actually occurs?

Landscape-scale dynamics

How do edge contrast and matrix quality change

metacommunity dynamics?

The relative similarity or dissimilarity between habitat

and non-habitat areas (‘‘edge contrast’’) and matrix

quality in an absolute sense can affect both individual

organisms and material fluxes (Ricketts 2001; Pre-

vedelo and Vieira 2010). Further, fragmented land-

scapes can allow for the persistence of a

metacommunity, or a set of local communities that

are connected through the processes of dispersal and

extirpation (Gilpin and Hanski 1991; Wilson 1992;

Holyoak et al. 2005). Studies have not considered how

the interaction of these mechanisms affects metacom-

munity dynamics in terms of patch-specific dispersal,

colonization, and extirpation probabilities of species,

particularly in the context of fragmentation.
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How does habitat fragmentation alter relationships

between biodiversity and ecosystem functioning

across multiple scales?

There is broad recognition that fragmentation affects both

biodiversity and ecosystem functioning (Haddad et al.

2015). Our knowledge of biodiversity-ecosystem func-

tioning relationships suggests that local loss of biodiver-

sity causes a local loss of function. These expectations

extrapolate from a research base in which community

biodiversity was experimentally altered in a randomized

design (Loreau et al. 2001; Hooper et al. 2005), rather

than altered by the non-random species losses that

fragmentation causes (e.g., Ewers and Didham 2006).

The effects of fragmentation on relationships between

biodiversity and functioning merit further study.

How will the local microclimatic effects

of fragmentation interact with climate change

on the individual, population, community, ecosystem,

and landscape levels?

Fragmentation can change the microclimate at both

local and regional scales (e.g., Young and Mithchell

1994; Didham and Lawton 1999; Laurance et al.

2011). These fragmentation-based climatic changes

may interact with other types of anthropogenic climate

change, further influencing biodiversity through

unstudied interactions between the two drivers.

What is the appropriate spatial scale for studying

the ecological impacts generally attributed to habitat

fragmentation?

The ecological impacts of fragmentation occur across

a variety of spatial scales. For example, edge effects

affect populations and communities on within-patch

scales. Dispersal acts on both within-patch and

between-patch scales, and changes in ecosystem

services occur across multiple scales. The literature

does not well establish these scaling relationships as

fragmentation studies have rarely taken a hierarchical,

multiple-scale approach (Didham et al. 2012).

The role of fragmentation experiments

Field-based fragmentation experiments are critical in

expanding our understanding of habitat fragmentation.

Ranging in spatial scale from 2 9 10-7 ha to 100 ha,

the most commonly recognized fragmentation exper-

iments cover a broad range of ecological communities

(Fig. 1; Haddad et al. 2015). In contrast to observa-

tional studies, these projects have careful, a priori,

experimental designs with significant levels of repli-

cation and known initial conditions, allowing for

powerful inferences. Few however approach the scale

at which contemporary land management and conser-

vation planning must address fragmentation.

One challenge is to bridge the gap between scales

feasible for direct experimental manipulation, and

larger scales which are the domain of conservation,

restoration, and management. Large-scale infrastruc-

ture projects can at times provide inadvertent,

unplanned experiments which can be utilized to fill

this gap in scales. For example, in Venezuela,

Professor John Terborgh creatively utilized the cre-

ation of Lago Guri, a large ([4000 km2) man-made

hydroelectric lake dotted with hundreds of forested

islands, to demonstrate the dramatic importance of

trophic cascades in tropical forest (Terborgh et al.

2001). Unfortunately, the draining of the lake

destroyed the integrity of the study, and combined

with political uncertainties, research there is not

ongoing.

Another promising large-scale, unplanned experi-

ment, comparable in some ways to Lago Guri, which

can fill the gap between standard fragmentation

experiments and large spatial scales is the ongoing

project at Thousand Island Lake (TIL). Formed in

1959 TIL is a large, man-made lake in Chun’an

County of Zhejiang Province, China. TIL has total

water surface of approximately 580 km2 and 1078

land-bridge islands when the maximum water level

(108 m.a.s.l.) (Figure 1; Wang et al. 2009). During

dam construction, primary forests in the region were

selectively or clear-cut with organized logging during

the ‘‘Great Leap Forward.’’ This resulted in near

complete deforestation before the lake’s inundation.

Airplanes then sowed native pines, possibly affecting

soil pH or causing allelopathy that could have lasting

effects on regional biotas. This region is now pro-

tected as one of the largest national parks in China.

The majority of the islands (erstwhile hilltops) have

not experienced significant human disturbance since

1962. In concert, these reasonably consistent initial

conditions combined with a history of ecological

monitoring and the opportunity for very high levels of
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replication, allow the TIL system to avoid many of the

pitfalls that plague other ‘‘natural’’ fragmentation

experiments. This history also ensures that TIL will

combine aspects of relaxing and assembling ecosys-

tems, in that the original understory community was

not directly removed, and the removal of trees would

set into motion successional dynamics as recoloniza-

tion occurs from external seed sources.

Studies at TIL have already provided the building

blocks necessary to answer many of the questions

Fig. 1 Map of long-term fragmentation experiments as iden-

tified in Haddad et al. (2015) with the addition of Thousand

Island Lake, clockwise from top-left: 1 Kansas Fragmentation

Project (KFP). Located in Kansas, USA, KFP is an experimen-

tally fragmented prairie ecosystem, focusing on the impacts of

fragmentation on community assembly and successional pro-

cesses. 2Moss fragmentation experiments (MFE). Consisting of

a wide range of projects carried out simultaneously in both the

UK and Canada, MFE includes both field and laboratory

experiments, which have focused on a broad array of processes,

including fragmentation per se, corridor effectiveness, and the

interactions between fragmentation and climate change. 3
Metatron. Perhaps the most technically complex and flexible

fragmentation experiment, Metatron, located in south central

France, consists of independent patches which can be connected

or disconnected via experimentally controlled corridors, allow-

ing for the study of multiple landscape configurations. 4
Thousand Island Lake (TIL). Described in detail in the text,

TIL combines both community assembly and relaxation

processes across more than 1000 remnant islands. 5 Wog Wog

Habitat Fragmentation Experiment (WWHFE). Located in

Southeastern Australia, WWHFE was designed to study the

effects of habitat fragmentation on biological diversity in an

Eucalyptus forest. 6 Stability of Altered Forest Ecosystems

(SAFE) Project. Located in the rainforests of Malaysian Borneo,

SAFE is composed of multiple projects that investigate how

forest modification gradients (e.g., land use and cover patterns)

and forest fragmentation affect biodiversity, ecological pro-

cesses, and waterways. 7 Biological Dynamics of Forest

Fragments Project (BDFFP). Located in the Brazilian Amazon,

BDFFP is the world’s largest and longest-running habitat

fragmentation experiment, conducting a wide range of forest

fragmentation effects on biodiversity and ecosystem processes.

8 Savannah River Site Corridor Experiment (SRSCE). Located

in South Carolina, USA, SRSCE was designed to study the

effects of corridors on plant and animal dispersal, population

persistence, and biodiversity in a managed forest
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proposed above, providing insights into the recovery

patterns of avian, mammalian, reptilian, and plant

communities in fragmented landscapes. A suite of

studies, focusing on both plant and animal communi-

ties, have shown that island area plays the dominant role

in controlling community recovery onTIL’s islands.On

the species and gene levels, plant, bird, snake, and small

mammal communities have clear relationships with

island area, but not island isolation (Wang et al. 2010,

2011, 2012b; Hu et al. 2011; Zhang et al. 2012; Ding

et al. 2013; Si et al. 2014, 2015a; Su et al. 2014; Yuan

et al. 2015). There are some notable exceptions to the

trend of area effects dominating isolation effects (e.g.,

Wang et al. 2012a; Yu et al. 2012; Peng et al. 2014).

That said, when taken as a whole these results suggest

that patch area may be a more significant factor in

community assembly than patch isolation in this

system. Ongoing research is underway to dissect the

specific mechanisms by which this process occurs (e.g.,

Hu et al. 2015; Si et al. 2015b).

The opportunity for comparison between TIL to

other large scale fragmentation experiments is promis-

ing. Because the communities of TIL are primarily

assembling, direct comparisons to other assembling

communities such as the Kansas Fragmentation

Experiment (e.g., Cook et al. 2005) could provide

insights into whether successional processes in frag-

mented landscapes are consistent across biomes. Used

together, systems in which matrix quality remains

constant can compare to large-scale experiments in

which matrix quality varies, such as the Biological

Dynamics of Forest Fragments Project (e.g., Laurance

et al. 2011), to address questions concerning edge

contrast. Naturally, there are many other opportunities

for comparison. We expect the TIL project to play a

critical role in fragmentation research over the coming

decades, while also proving a platform for interna-

tional collaborations.

Fragmentation studies in the past have enabled us to

understand a wide range of effects of habitat loss and

fragmentation on biodiversity and ecological pro-

cesses, but fundamental questions remain. These

questions span spatial, temporal, and organizational

scales, and they necessitate new approaches and

techniques. With a focus on identifying ecologically

relevant drivers, we are confident that answering these

questions will provide scientists and practitioners with

the scientific basis and tools necessary to promote

biodiversity and landscape sustainability.
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