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Appendix S1 
 
Supporting Methods 

Field data methods 

We used mark-recapture techniques to estimate mouse and chipmunk densities on 

three permanent trapping grids, each consisting of 242 Sherman traps arranged in pairs in 

an 11-by-11 grid covering approximately 2.25 ha. Each grid was trapped for two 

consecutive nights every 3-4 weeks between April or May and October or November, 

depending upon the year, from 1994 through 2012. Upon first capture, white-footed mice 

and eastern chipmunks were given numbered metal ear-tags for individual identification. 

While holding the animals by the scruff of the neck, we exhaustively counted the number 

of larval and nymphal I. scapularis on their heads (entire head including under the chin, 

cheeks, and top of head and ears). 

To estimate the density of questing larvae and nymphs in each plot and year, we 

dragged 1 m2 white corduroy drag cloths along 450 m of transect approximately every 3 

weeks from April through November each year. We counted and removed all ticks in 30 

m intervals. For each plot and year, we estimated larval and nymphal abundance as the 

peak density (ticks encountered per 100 m2
 during the drag session with highest 

abundance). 

 



Parameterization with field data 

Emergence 

The timing of larval emergence, which is governed by b in eqn (2), was determined 

based on 19 years of data from a small-mammal trapping program at the Cary Institute of 

Ecosystem Studies in Dutchess County, southeastern New York (see above; Ostfeld et al. 

2006). We ignored the modest early (spring) larval activity corresponding to 

overwintering larvae from the previous cohort. Based on our trapping data, we 

determined that the larval peak occurs approximately 20 days after the trough of larval 

activity in mid-summer, leading to a value of b = 1/20 in eqn (2), which characterized 

both the increase and tail of larval activity (Fig. 2B). The quantity H influences the total 

density of larvae, which in turn influences DIN, but its value does not influence the 

fractional change in DIN when a host species is removed. As such, its value is irrelevant 

to our inference about whether hosts are dilution or amplification hosts, which is 

measured as a fractional change in the density of infected nymphs. The estimation of the 

parameter H and the predicted values of DIN are presented in the Supporting Information 

(Fig. S1).  

Host specific encounter and mortality rates 

We determined host-specific encounter and mortality rates using field data, 

experiments, and the literature. Bi is the number of larvae successfully feeding on an 

individual of host species i during the larval peak, Si is the proportion of attached larvae 

that survive to successfully feed, and Di is the population density (ha-1) of species i 

(Table 1). Bi has been determined for most hosts by bringing wild-caught animals into the 

lab during the larval peak and counting engorged larvae that fall off the animal (see 



LoGiudice et al. 2003, Table 1). Si has been determined experimentally by placing 100 

larvae on each host and counting the number that successfully feed to repletion (see 

Keesing et al. 2009, Table 1). Di is taken from the literature and field data (Table 1). The 

probability of larval survival while feeding has not been determined for all hosts. For 

hosts lacking this data, we used both higher and lower values of larval survival. We 

assumed that short-tailed shrews (Blarina brevicauda) and masked shrews (Sorex spp.) 

might groom similarly to mice (high survival) or chipmunks (moderate survival), that 

raccoons and skunks would groom similarly to chipmunks (moderate) or opossums (very 

low survival), and that larvae would have high survival on deer similar to that on mice. 

Larval survival on deer may be higher if deer are especially poor groomers, but 

increasing the survival probability to Si = 0.8 did not change our results (Table 1). We 

used two values of questing larvae mortality (μ𝑄𝑄 = 0.01, 0.1; see below). 

We convert the survival probability, Si, into the mortality rate μ𝑖𝑖, using 

𝑒𝑒−μ𝑖𝑖𝜏𝜏 = 𝑆𝑆𝑖𝑖 → μ𝑖𝑖 = −𝑙𝑙𝑙𝑙(𝑆𝑆𝑖𝑖)
𝜏𝜏

.       (eqn S1) 

In our model, the body burden of each host species (the number of attached ticks per host 

individual) is a dynamic outcome of the model. We solved for the encounter rate ai by 

considering the steady state peak body burden  (total density of larvae attached to 

host species i divided by the population density of species i) when the density of questing 

larvae is assumed to be constant, Q(t)=Q*. Setting eqn (3) to zero and solving for 𝑎𝑎𝑖𝑖 

yields 

𝑎𝑎𝑖𝑖 = 𝐴𝐴𝑖𝑖
∗

𝐷𝐷𝑖𝑖
� μ𝑖𝑖
𝑄𝑄∗(1−𝑒𝑒−μ𝑖𝑖𝜏𝜏)�.         (eqn S2) 

* /i iA D



The peak body burden is equivalent to the post-grooming body burden divided by 

probability of surviving, , assuming that Q* is near the peak questing larval density 

(since Bi was measured on animals captured near this peak). Substituting our observed 

parameters into eqn (S2) yields the formula for ai, 

𝑎𝑎𝑖𝑖 = −𝐵𝐵𝑖𝑖𝑙𝑙𝑙𝑙(𝑆𝑆𝑖𝑖)
𝑄𝑄∗𝑆𝑆𝑖𝑖(1−𝑆𝑆𝑖𝑖)𝜏𝜏

.         (eqn S3) 

Previous research using removal sampling found mean density of questing larvae during 

the peak, Q*, of 115,000 ha-1 (Daniels, Falco & Fish 2000). Q* is an important parameter 

because it influences the calculated value of the encounter rate ai, which is a key 

parameter determining whether ticks that would have fed on host A instead redistribute to 

feed on host B when host A is removed. We therefore ran our model for values of Q* 

from 10,000 to 200,000 (equivalent to a range of densities of 1-20 larvae per m2) in 

intervals of 5000. 

Mortality rate of questing larvae 

The relationship between host diversity and Lyme disease risk is influenced by 

the mortality rate of questing larvae. If mortality while questing is high, then the 

probability of encountering any host before death becomes low and removing even poor 

hosts leads to more tick deaths before feeding (when assuming additivity). If mortality 

while questing is low, then larvae are increasingly likely to encounter a competent host 

should a poor host be removed from the community. In a field experiment, Lindsay et al. 

(1998) found no noticeable decline in the abundance of unfed larvae held in the field 

from mid-July through mid-November, suggesting low mortality. The fraction of unfed 

larvae surviving winter was dependent on the year and habitat type, but overwintering 

larvae were frequently active beginning in April of the subsequent year; however, nearly 
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all unfed overwintering larvae died by July (Lindsay et al. 1998). We assumed that on 

average larvae survive a season ~100 days long, from mid-July to late October, leading to 

a mortality rate of μ𝑄𝑄 = 0.01 day-1. We also ran the model at the extreme value of

μ𝑄𝑄 = 0.1 day-1, corresponding to an average life span of 10 days, to illustrate how the

results change if larvae are unlikely to encounter a host before death. 

Parameterizing H 

H in eqn (2) is unknown, so we ran the model using values of H from 300 to 4000, 

which correspond to an emergence rate of 2207 to 29430 larvae per day during the peak 

(i.e. when t=1/b in eqn 2). We determined the value of H that best fit the model output of 

both the peak body burden (i.e. the maximum of Ai(t) / Di) and the density of questing 

larvae during the peak, which Daniels et al. (2000) estimated to be 115000 ha-1 with 

removal sampling. The value of H does not influence our inference about whether hosts 

are dilution or amplification hosts, which is measured as a percent change in the density 

of infected nymphs, but H does impact the absolute densities of questing larvae, attached 

larvae, and infected nymphs in our numerical output.We obtained a value of H = 2200 by 

fitting this unknown parameter to maximum body burdens output from the model (Fig. 

S1 shows the body burdens are a function of H and Q*; the dashed lines are the estimated 

values of H and Q* and their crossing is at the peak body burden for each host).  

Analytical solution to differential equations 

These differential equations can easily be solved numerically, but with a little 

work they can also lead to analytical solutions that we derive below. 



𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻𝑒𝑒−b𝑡𝑡 − ∑ 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑄𝑄 − µ𝑄𝑄𝑄𝑄.𝑁𝑁
𝑖𝑖=1  (eqn S4) 

𝑑𝑑𝐴𝐴𝑖𝑖
𝑑𝑑𝑑𝑑

=  𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑄𝑄 − µ𝑖𝑖𝐴𝐴𝑖𝑖 − 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑒𝑒−µ𝑖𝑖𝜏𝜏𝑄𝑄(𝑡𝑡 − 𝜏𝜏). (eqn S5) 

𝑑𝑑𝐹𝐹𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑒𝑒−µ𝑖𝑖𝜏𝜏𝑄𝑄(𝑡𝑡 − 𝜏𝜏). (eqn S6) 

First, solve for Q(t) using the method of undetermined coefficients. 

Rearrange eqn (S4) into the inhomogeneous differential equation 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑚𝑚𝑄𝑄𝑄𝑄 − 𝐻𝐻𝐻𝐻𝑒𝑒−b𝑡𝑡 = 0    (eqn S7) 

where 

 𝑚𝑚𝑄𝑄 = ∑ 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖 +  µ𝑄𝑄𝑁𝑁
𝑖𝑖=1  (eqn S8) 

Recall that the general solution is the sum of the complementary solution and the 

particular solution. The complementary solution to this differential equation is the 

solution to , which is simply the exponential 

𝑄𝑄𝑐𝑐(𝑡𝑡) = 𝑐𝑐1𝑒𝑒−𝑚𝑚𝑄𝑄𝑡𝑡. (eqn S9) 

The form of the particular solution for 𝐻𝐻𝐻𝐻𝑒𝑒−b𝑡𝑡is 

𝑄𝑄𝑝𝑝(𝑡𝑡) = (𝛼𝛼 + 𝛾𝛾𝛾𝛾)𝑒𝑒−𝑏𝑏𝑏𝑏.  (eqn S10) 

Plugging Q = Qc + Qp into eqn (S7) and solving for the coefficients leads to the general 

solution 

𝑄𝑄(𝑡𝑡) = 𝑄𝑄𝑐𝑐(𝑡𝑡) + 𝑄𝑄𝑝𝑝(𝑡𝑡) = 𝑐𝑐1𝑒𝑒−𝑚𝑚𝑄𝑄𝑡𝑡 + 𝐻𝐻
𝑚𝑚𝑄𝑄−𝑏𝑏

�𝑡𝑡 − 1
𝑚𝑚𝑄𝑄−𝑏𝑏

� 𝑒𝑒−𝑏𝑏𝑏𝑏 .  (eqn S11) 

We solve for c1 using the initial value Q(0)=0, leads to 

𝑄𝑄(𝑡𝑡) = 𝐻𝐻

�𝑚𝑚𝑄𝑄−𝑏𝑏�
2 (𝑒𝑒−𝑚𝑚𝑄𝑄𝑡𝑡 − 𝑒𝑒−𝑏𝑏𝑏𝑏) + 𝐻𝐻𝐻𝐻𝑒𝑒−𝑏𝑏𝑏𝑏

𝑚𝑚𝑄𝑄−𝑏𝑏
(eqn S12) 

/ 0c Q cdQ dt m Q+ =



for t > 0. Q(t) can now be plugged into eqns (S5) and (S6) (noting that Q(t) is 0 for t < 0) 

to solve for Ai(t) and Fi(t). Fed larvae begin to be produced after 𝜏𝜏 time units (i.e. after a 

full blood meal), leading to the integral solution for Fi(t) 

𝐹𝐹𝑖𝑖(𝑡𝑡) = ∫ 𝑑𝑑𝐹𝐹𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡

𝜏𝜏 = 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑒𝑒−µ𝑖𝑖𝜏𝜏 ∫ 𝑄𝑄(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
𝜏𝜏 . (eqn S13) 

This integral is tedious, but not difficult, to solve, leading to 

( )( ) 2 2( ) { [ ( )( ) 2 ] ( ) }Qm tb t
i Q Q Q QF t K m b b m t b m e b e m bttt − −− −= − − + − − + −      (eqn S14) 

where 2 2= / [ ( ) ]i
i i Q QK a D He b m b mm τ− −  and t t>  (before that Fi is 0). Because questing 

larvae fall off to zero, this can be simplified by solving at 𝑡𝑡 = ∞, (𝑡𝑡 = ∞ and 𝑡𝑡 > 150 

yield nearly identical results; Fig. 2), which leaves only the last term in eqn (S11), 

2
2( ) ( )

i
i i

i Q
Q

a D HeF K b m
b m

m τ−

∞ = − = . (eqn S15) 

By substituting eqn (S8) for mQ, eqn (S15) can be written as 

𝐹𝐹𝑖𝑖(∞) = 𝐻𝐻
𝑏𝑏2

𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑒𝑒−µ𝑖𝑖𝜏𝜏

∑ 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖+ µ𝑄𝑄𝑁𝑁
𝑖𝑖=1

. (eqn S16) 

This is a very intuitive result. H/b2 is the total abundance of larvae, which can be obtained 

by integrating the emergence function, 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖
∑ 𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖+ µ𝑄𝑄𝑁𝑁
𝑖𝑖=1

 is the probability that host i is 

encountered, and 𝑒𝑒−µ𝑖𝑖𝜏𝜏 is the probability of surviving on host i to reach the fed class. 

Ai(t) can be solved using a similar approach. First, note that the delay differential 

equation for Ai(t) is linear. Therefore, its solution is the sum of the solution to  𝑑𝑑𝐴𝐴𝑖𝑖/𝑑𝑑𝑑𝑑 +

µ𝑖𝑖𝐴𝐴𝑖𝑖 =  𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑄𝑄   and  𝑑𝑑𝐴𝐴𝑖𝑖/𝑑𝑑𝑑𝑑 + µ𝑖𝑖𝐴𝐴𝑖𝑖 =  𝑎𝑎𝑖𝑖𝐷𝐷𝑖𝑖𝑒𝑒−µ𝑖𝑖𝜏𝜏𝑄𝑄(𝑡𝑡 − 𝜏𝜏). However, the right sides of 

these equations are the same except for the constant term and a time delay. Therefore, the 

solution to the second is just a scaled, delayed version of the solution to the first. The first 

equation can be solved in the same way as Q(t) was found above, except that the form of 



the particular solution will also include an exp{-mQt} term. The resulting equation for 

larvae attached to host i is 

1 2

1 2 2

( ) ( )         for  

         = [ ( ) ( )]                 for  i

iA t C C t t

C C t e C t tµ t

t

t t−

= <

− − >
  (eqn S17) 

where 

1 2 2( ) ( ) ( )
i i

i Q i Q

Ha DC
b m b mm m

=
− − −

and 
2 2

2

2

( ) ( ) ( )

( ){[ ( ) ] 2 }

Q im t t
i Q

bt
i Q Q i i Q Q i

C t b e m b e

m b b m m t b m e

mm

m m m m

− −

−

= − − −

+ − − + + + − −
. 



Table S1. Data, variables and parameters used in the model 

Data Interpretation 

𝐷𝐷𝑖𝑖  
Population density of host species i 

𝑅𝑅𝑖𝑖 
Realized reservoir competence of species i: Proportion of 
nymphs that were infected after feeding as larvae on host i  

𝑆𝑆𝑖𝑖 
Probability a tick survives on host species i: Proportion of 100 

larvae that were experimentally placed on hosts that successfully 
engorged and detached 

𝐵𝐵𝑖𝑖  
Post-grooming body burden: Cumulative number of larvae 

dropped off of species i when brought into laboratory. 
Parameter Interpretation 

𝑎𝑎𝑖𝑖 
Per-capita encounter rate with host species i 

μ𝑖𝑖 
Per-capita death rate when attached to host species i 

𝜏𝜏 Days of attachment 

𝑄𝑄∗ Mean density of questing larvae during the peak 

𝐻𝐻 
Initial slope of the function defining emergence of larvae through 
time, 𝐸𝐸(𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑒𝑒−b𝑡𝑡, the total size of the larval cohort is 𝐻𝐻/𝑏𝑏2  

b 
1/b determines the timing of the peak of larval through time 

𝐸𝐸(𝑡𝑡) = 𝐻𝐻𝐻𝐻𝑒𝑒−b𝑡𝑡 

Variable Interpretation 

𝑄𝑄(𝑡𝑡) Density of questing larvae at time t 

𝐴𝐴𝑖𝑖(𝑡𝑡) Density of larvae attached to host species i at time t 

𝐹𝐹𝑖𝑖(𝑡𝑡) Density of larvae that have successfully completed feeding on 
host species i at time t 



Figure S1. Scatterplots relating mouse density and chipmunk density to total rodent density. 

Because mice are much more abundant than chipmunks, and are highly correlated with 

chipmunks (Pearson’s test p < 0.0001, r = 0.52), mouse density is nearly perfectly correlated with 

total rodent (mouse + chipmunk) density (r = 0.98, p < 10-16). 



A 
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Figure S2. (A) Parameterizing the emergence function using model output. The parameter H in 

eqn (2) is unknown. While H does not influence the percent change in DIN, it does influence the 

maximum body burden of hosts and the total resulting density of infected nymphs. We fit H so 

that the maximum number of attached larvae per host derived from model output (max(Ai) / Di) 

equaled the maximum number of attached larvae per host derived from data (Bi / Si) at our 

estimate of the density of questing larvae at the peak, Q* (115,000). The solid lines are the peak 

body burdens; the dashed lines are the estimated Q* and H, which intersect at the peak body 



burdens determined from the data. (B) Prediction of the total density of infected nymphs by the 

complete vertebrate community as a function of H. 
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