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Appendix B from M. E. Orive et al., “Effects of Clonal Reproduction
on Evolutionary Lag and Evolutionary Rescue”
(Am. Nat., vol. 190, no. 4, p. 469)
Part A. Derivation of Recursions for Mean Genotype and Mean Phenotype

Recursion for Mean Genotype

We begin the derivation of the recursion for mean genotype given in equation (1) with �g 0
i p
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Focusing on each of the three terms in equation (B1) in turn, we note that equation (A1) in Barfield et al. (2011),
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Equation (A2) in Barfield et al. (2011) gives the distribution of g among parents of sexual offspring born into stage i,
which is Fi(g) p

P
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For the final term in equation (B1), we assume that the average genotype of stage i clonal offspring is equal to the
average genotype of their parents; this is equivalent to an assumption of no directional bias to the somatic mutations that
cause clonal offspring to differ in genotype from their parents. If this is true, the third term in equation (B1) is
(C0

i=N 0
i)
Ð
gΚi(g)dg, where Ki(g) is the distribution of genotypes among the parents of stage i clonal offspring. Following

similar reasoning as for equation (A2) in Barfield et al. (2011), we find that
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Substituting this into the last term of equation (B1) gives
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Combining all three terms and using aij(z) p tij(z)1 f ij(z)1 cij(z) leads to the following equation:
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Equation (B3) now has the same form as the middle line of equation (5) in Barfield et al. (2011), with the difference
in the definition of the total transition rate aij(z). We now define dij p �aijN j=N 0

i as the fraction of stage i individuals in the
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next time step contributed by stage j, where the overbar indicates the expected values over the distribution of stage j
(to avoid notational confusion, we note that this quantity was written as cij in Barfield et al. [2011], but here we are using
cij for the production of clonal offspring instead). Following the same derivation as given in Barfield et al. (2014)
allows equation (B3) to be written as
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which is equation (1). As in Barfield et al. (2011), ∇�z j
p (∂=∂�z1, ∂=∂�z2, ::: , ∂=∂�zm)

T is the gradient operator with respect
to trait means evaluated at �zj, the multivariate mean phenotype of stage j individuals. Here, the first sum of the last
expression in equation (B4) is a weighted average of stage-specific mean genotypes contributing to stage i, and the second
sum describes the combined effects of selection.

Recursion for Mean Phenotype

For the change in mean phenotype, we start with �z0i p
ÐÐ

zp0
i(g, z)dg dz and again use the equation for the next-generation

joint PDF given in equation (A3). This leads to
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We denote the three terms in equation (B5) as A, B, and C, respectively. Term A gives the contribution to the mean
phenotype of stage i individuals in the next generation arising from transitions, term B gives the contribution arising from
sexual reproduction, and term C gives the contribution arising from clonal reproduction. We note that A and B are identical
to A and B given in equations (A6) and (A9) of Barfield et al. (2014), allowing us to write them as
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where we use the definitions dt
ij p �t ijN j=N 0

i and d f
ij p �f ijN j=N 0

i (these were given as ctij and cijf in Barfield et al. [2014]).
Now turning to term C, we use the clonal offspring joint PDF ki(g, z) from equation (A4) in appendix A, part A

(with Sij(g, zjg*, z*) p X ij(gjg*)Y ij(zjg, g*, z*)) to write
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Rearranging and using equation (A7) from appendix A, part A, gives
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where once again Rij is a matrix whose diagonal entries are rijk and all other entries are 0. We rearrange the last
expression and use the assumption that the mean of X ij(gjg*) p g* (mean clonal offspring genotype equals that of
their parents, as is the case for eq. [A5]), leading to
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where I is the m# m identity matrix. (The integral in braces is the mean of X ij(gjg*) plus Rij(z* 2 g*) times the integral of
X ij(gjg*), which is 1 since this is a PDF.) Therefore, after rearranging and dropping the asterisks (since, in the last
expression for C above, g and z do not appear and g* and z* are dummy variables),
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We will focus on the two terms in equation (B7) separately and denote them as D (the first term) and E (the second), so
C p D1 E.

Note that pj(g, z) p pj(gjz)pj(z), where, for stage j, pj(gjz) is the conditional PDF of g given z and pj(z) is the marginal
distribution of z, which is given by
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from which it follows that ∇�z j
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Since g and z in stage j are jointly Gaussian with phenotypic covariance matrix Pj and covariance between components of
g and z given by matrix Gj, the term in brackets (the expected value of g given z) is equal to �g j 1GjP21

j (z2 �z j), and we
can write D as

D p
X

j

N j

N
0
i

(I2 Rij)

ð
cij(z)

�
�g j 1GjP21

j (z2 �z j)

�
pj(z)dz,

and, since �cij p
Ð
cij(z)pj(z)dz,

D p
X

j

Nj

N 0
i

(I2 Rij)

�
�g j�cij 1GjP21

j

ð
cij(z)(z2 �z j)pj(z)dz

�
: ðB8Þ

Using the expression for ∇�z j
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Substituting for this integral in equation (B8) gives D p
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Substituting equations (B9) and (B10) into equation (B7), which is C p D1 E, gives
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Finally, combining A, B, and C (eqq. [B6] and [B11]) gives
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which parallels equation (6) of Barfield et al. (2011), given the correction from Barfield et al. (2014). Recalling that ∇�z j
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which is equation (2).
Part B. Assumption of Gaussian Genotypic and Phenotypic Distributions

As mentioned in the section giving recursions for mean genotype (eq. [1]) and phenotype (eq. [2]) under the assumption
that the genotypic and phenotypic distributions are Gaussian with fixed covariances, this Gaussian assumption is likely
to become less accurate with increasing clonality. To examine this possibility, we compared the results of simulations
using the individual-based model with results using equations with the Gaussian assumption at various levels of clonality
(rcr). The results given here are for nonoverlapping generations and a step change in the phenotypic optimum.

The parameters we use (following Burger and Lynch [1995] and our previous work) have a random component of
phenotype (introduced during sexual reproduction and clonal reproduction with r p 0) that is high relative to the
expected genetic variance. Since this random component of phenotype is Gaussian and tends to dominate the phenotype,
the Gaussian assumption for the phenotype is likely to be met in most cases, the possible exception being when clonal
reproduction (rc) and r are high (with high r, the random part of the phenotype still has a relatively high value, but
most of it is determined by the parent’s random component, and therefore the new independent part is smaller). The
distribution of the genotype is more likely to be affected by clonality (with or without correlation), but since the genotypic
variance is lower, this deviation would be less likely to affect the accuracy of using the Gaussian assumption.

We compared the two methods at three levels of clonality, rcr p 0:25, 0.5, and 0.81, in figure B1 (in all cases, rc and r

were assumed to be equal, so each was 0.5, 0.707, and 0.9 for the three cases). There was fairly good agreement for
population size in all three cases, with the biggest deviation for the lowest clonality, probably due to the lower population
sizes reached (which could produce deviations from Gaussian distributions) as well as the fact that some simulated
populations became extinct and the population size is averaged only over populations that persisted. For genotype and
phenotype, there was quite good agreement for the lowest clonality used (which, note, was 50% clonality and correlation
and so was not low), there was reasonable agreement for the middle level of clonality, and there were large discrepancies
(slower increase in genotype and phenotype in the simulations) only at the highest clonality (90% clonality and
correlation).
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Figure B1: Comparison of analytical results using the assumption of Gaussian distributions for genotype and phenotype (solid lines)
with results from the individual-based model (IBM; dashed lines). Shown are mean phenotype and genotype (A) and population size (B)
for rcr p 0:25, for rcr p 0:5 (C, D), and for rcr p 0:81 (E, F). For the IBM, K p 256, f p 4, q2 p 1, n p 10, mg p 0:001, ms p
0:00001, a2 p 0:05, d p 1, v p 3, and rc p r (0.5 each for A, B; 0.7071 for C, D; and 0.9 for E, F). For the analytical results,
parameters were chosen to be comparable using the expected genetic variance (as in Burger and Lynch 1995) and were P p 1:07, G p
0:07, v p 3, f p 4, q2 p 2:07, tmax p 0:695, and, initially, �g p �z p 0, and the population size was 712 (with a maximum of 256
reproducing individuals).
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Part C. Relative Importance of Varying Some Parameters on Evolutionary Rescue

Using our individual-based model, we examined the effect of varying various parameters related to clonal reproduction
and stage structure on evolutionary rescue, which raises the question of the relative importance of each of these factors.
This will likely depend on detailed aspects of the life history in question and the exact conditions being considered,
and a thorough investigation is beyond the scope of this article. However, as a first step in this direction we performed
simulations with the individual-based model and a step change in the optimal phenotype in a baseline case and then
changed four parameters in turn by a modest, consistent amount (0.1). The parameters and their baseline values were the
association constant r (0.5), clonal fraction rc (0.5), relative effort for clonal offspring d (1), and adult survival ps (0).
The results are shown in figure B2. Increasing r, rc, or ps increased persistence, with a small increase for rc, a larger
increase for r, and the largest increase for ps (about twice the increase for increasing rc but only slightly larger than that
for increasing r). Increasing the effort for a clonal offspring, of course, decreased the probability of persistence, by an
amount approximately the same as the increase observed by increasing rc. Note, however, that baseline d was twice
the baseline rc, so the fractional change in d was only half as much. Therefore, in terms of fractional change the magnitude
of the change resulting from increased d is probably comparable to that seen when increasing r (we did not equalize
the fractional change because the baseline ps was 0).
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Figure B2: Comparison of the effect of changing various parameters on the probability of population persistence after a one-step
change in optimal phenotype as a function of the magnitude of the change (v), using the individual-based model with parameters K p
256, f p 4, q2 p 1, n p 10, mg p 0:001, ms p 0:00001, a2 p 0:05, and G p 1,000. The baseline (filled circles) was r p 0:5, rc p
0:5, d p 1, and ps (adult survival) p 0. Each parameter was then in turn increased by 0.1, with the others at their baseline values.
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