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ABSTRACT
This paper introduces a novel partial differential equation immuno-
eco-epidemiological model of competition in which one species is
affected by a disease while another can compete with it directly and
by lowering the first species’ immune response to the infection, a
mode of competition termed stress-induced competition. When the
disease is chronic, and thewithin-host dynamics are rapid, we reduce
the partial differential equation model (PDE) to a three-dimensional
ordinary differential equation (ODE) model. The ODE model exhibits
backward bifurcation and sustained oscillations causedby the stress-
induced competition. Furthermore, the ODE model, although not
a special case of the PDE model, is useful for detecting backward
bifurcation and oscillations in the PDE model. Backward bifurcation
related to stress-induced competition allows the second species to
persist for values of its invasion number below one. Furthermore,
stress-induced competition leads to destabilization of the coexis-
tence equilibrium and sustained oscillations in the PDE model. We
suggest that complex systems such as this one may be studied by
appropriately designed simple ODE models.
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1. Introduction

Traditional epidemiology focuses on between-host transmission dynamics in single host
populations [1], where hosts are categorized into discrete states (e.g. susceptible, infected,
and recovered and resistant, as in classic SIR models). In recent years, epidemiological
theory and practice have been enriched in several ways. One is increasing recognition
that infectious disease processes occur over multiple nested scales of biological organi-
zation [4,26]. Infection of a susceptible host by a pathogen is akin to a ‘patch’ being
colonized in a metapopulation [13,14], and within individual hosts there can be sub-
stantial dynamics, as the pathogen waxes and wanes in response both to its exploitation
of host resources and to the host’s mounting labile defences against infection. Hosts are
coupled by between-host transmission, which reflects the pathogen load sustained within
individual infected hosts, among many other factors. Multi-scale models that allow for
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52 M. BARFIELD ET AL.

closed-form computation of threshold conditions are now widespread in infectious dis-
ease research [7,25]. There is a wide variety of modelling frameworks coupling different
types of dynamical models on the within-host and between-host scales [25]. We refer to
these as immuno-epidemiological models. The nested framework introduced by Gilchrist
and Sasaki [10] links an ODE within-host model, structured by time-since-infection, to
a between-host model, structured by chronological time and time-since-infection. The
linkage is achieved by expressing the between-host rates, such as transmission rate or
disease-induced mortality rate as functions of the within-host dependent variables. In this
respect, the linkage is unidirectional – the between-host model depends on the within-
host model but not vice versa. Making the within-host model depend on the between-host
variables (e.g. species abundances) has rarely been explored, and there aremany challenges
in making this linkage [9]. In some specific biological scenarios, linkage in this direc-
tion can be accomplished in a relatively natural way. For instance, the within-host model
has been previously linked to the pathogen in the environment for some environmentally
driven diseases [8,38]. When the within-host model depends on between-host variables,
and vice versa, the linkage is called bidirectional. Infectious disease models with bidirec-
tional linkage have to date been entirely ODEmodels; that is, both the within-host and the
between-host model are ODEmodels with chronological time being the only independent
variable.

Most frameworks that model infectious diseases in humans or in other species include
only species that are infected by or transmit the pathogens [20,22]. However, most natural
populations are subject to community interactions such as interspecific competition and
predation [19]. Community interactions and particularly their effects on infectious dis-
eases have been subjects of growing attention from scientists (see reviews in [12,18,27]).
These community interactions can drive infectious disease processes in multiple ways
[5,18]. For instance, many pathogens can be transmitted not only between individuals
of a focal species, but also between these individuals and those of other species. There
is now a substantial body of literature generalizing SIR and related models to multiple host
species (e.g. [16,29]), and multiple parasitic agents [5,15,18,31]. Also, predators can alter
infectious disease dynamics directly by changingmortality rates of infected and susceptible
hosts, and indirectly by altering the recruitment rate of susceptible hosts [17]. Predation
and the presence of alternative hosts can alter infectious dynamics in often complex ways
(e.g. [34]). Fromadynamical perspective, including ecological interactions in diseasemod-
els (eco-epidemiological models) has been found to cause oscillations [37] and even chaos
[21,35]. Most eco-epidemiological models are based on classical Lotka–Volterra models
that include intraspecific and interspecific interference competition.

Within-host infectious disease dynamics and community interactions can themselves
be intertwined in various subtle ways, because such interactions can alter internal host
states. Resource availability for hosts can affect the growth potential of pathogen popula-
tions within hosts [11,32,33], as well as the ability of hosts to defend themselves against
infections [30]. It is well known in the medical profession that nutrition is an impor-
tant dimension of immune responses, with malnutrition magnifying the susceptibility of
humans to infection [6]. This provides one causal avenue by which the community con-
text of a host could alter within-host pathogen dynamics. A competitor that reduces the
food supply of a focal host species might not only directly alter per capita growth rates, but
also indirectly diminish the ability of an infected host to effectively mount an immune
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response to an invasive pathogen. Competitors that exert interference (e.g. via aggres-
sion or allelopathy) on a focal species can also increase stress, which is known to hamper
immune responses [28]. Such competitive effects are likely to be increasing functions of
the density of the competing species.

In this paper, we combine nested immuno-epidemiological models with Lotka–
Volterra-type eco-epidemiological models of competition to understand the interplay
between the ecological interactions and within-host pathogen dynamics. Such a union of
immuno- and eco-epidemiology was first proposed in [3]. Here we go a step further and
allow the within-host immune responses in a species subject to a pathogen to be affected
by the population density of a competing species. We term this mode of competition
‘stress-induced’ competition. The dependence of thewithin-host systemon a between-host
variable makes the nested model bidirectionally linked, although our linking mechanism
is different from the one used in environmentally driven diseases. This type of interac-
tion and bidirectional linkage was first examined in [2]. Here we generalize the model and
examine more complex properties of the model than considered in [2]. Consistent with
what has been found in other bidirectionally linked models, we observe backward bifur-
cation occurring in the invasion number of the second species, allowing this species to
persist together with susceptible and infected individuals of the first species, even when
the second species’ invasion number is below one. Furthermore, we find oscillations that
we believe are the first example of oscillations occurring in a nested eco-epidemiological
model.

This paper is structured as follows.We introduce the PDE immuno-eco-epidemiological
model in the next section. In Section 3, we reduce the PDEmodel to a simple 3D immuno-
eco-epidemiological ODE model and we investigate the system in this simple context. In
Section 4, we investigate the equilibria of the full PDE model and we show that the PDE
model exhibits backward bifurcation. In Section 5, we study the stability of equilibria of the
PDE model and we show oscillations concurrent with coexistence of the pathogen, host,
and non-host species. Section 6 summarizes our results.

2. Themodel

Immuno-epidemiological models link a within-host pathogen model to a between-host
population-level model. These models are usually formulated for human diseases, but in
the context of diseases of natural populations, where organisms experience a wide range
of ecological interactions, these models are called immuno-eco-epidemiological models.
In this section, we introduce an immuno-eco-epidemiological model with a new mode of
competition. Typically in nested immuno-epidemiological models, the within-host model
is anODEmodel and does not depend on the between-host dependent variables or chrono-
logical time [25]. Here, however, we introduce a novel model with two competing species,
one of which (species 1 or the host) is affected by a pathogen, while the other (species 2 or
the competitor) is not. Species 2 not only directly competes with species 1, but also reduces
its ability to mount an immune response to the infectious disease. This necessitates casting
the within-host model in PDE form. So our model includes a mixture of distinct modali-
ties of competitive interactions – both direct competition (as in the classic Lotka–Volterra
model), and competition via suppression of immune defences in the host species.

We begin by first introducing the within-host model.
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54 M. BARFIELD ET AL.

2.1. Thewithin-hostmodel

A model for a pathogen with density V(τ , t) within a host that is controlled by immune
cells with density z(τ , t), where τ is the time-since-infection and t is chronological time, is
given by

Vt(τ , t)+ Vτ (τ , t) = rvV(τ , t)(1 − qV(τ , t))− aV(τ , t)z(τ , t),

zt(τ , t)+ zτ (τ , t) = b0V(τ , t)z(τ , t)
(pN2(t)+ D)(1 + b2V)

− μz(τ , t).
(1)

The system has the following initial and boundary conditions:

V(t, 0) = V0,

V(0, τ) = φ(τ),

z(t, 0) = z0,

z(0, τ) = ψ(τ),

(2)

where V0 > 0 is the pathogen density and z0 > 0 is the immune cell density at the time of
infection. Normally, φ(τ) and ψ(τ) would be given non-negative functions; however, for
this system, they are defined as follows: φ(τ) = V̂(τ ) andψ(τ) = ẑ(τ ), where V̂ and ẑ are
solutions of the following ODEs:

V ′(τ ) = rvV(τ )(1 − qV(τ ))− aV(τ )z(τ ),

z′(τ ) = b0V(τ )z(τ )
(pN2(0)+ D)(1 + b2V)

− μz(τ ),
(3)

with V(0) = V0 and z(0) = z0. These equations have no effect unless there are hosts that
become infected at t<0 and are still infected at t=0. If so, their internal dynamics are
assumed to be those resulting from N2 being fixed at its initial value (t=0) (otherwise, we
would need N2 for t<0).

In this system, in the absence of immune cells, the pathogen will grow logistically; rv is
the intrinsic growth rate of the pathogen and q is the reciprocal of its carrying capacity, a
is the attack rate of immune cells, and μ is the death rate of immune cells. The first term
of the second equation in Equation (1) is the immune cell activation rate, which saturates
with increasing V, with b2 being the reciprocal of the half-saturation value of V. In the
population model (detailed below), there are two competing species; the pathogen affects
species 1, and its maximum immune activation rate b0/D can be reduced by increasing
the density of species 2, which is N2. Parameter p is set to 1 to include the effect of N2 on
the immune response of species 1 or set to 0 to exclude this effect. The parameters and
variables of the within-host model are summarized in Table 1.

This within-host model is a PDE extension of the within-host model used in [2] if
q = 1/Kv and b2 = 0. To develop a simple ODE model for the within-host system, the
approach in [2] was to assume that the impact of N2 does not change during the entire
within-host infection and it is fixed at present time. We dispose of this assumption here
and use a more realistic model where the time-since-infection τ and chronological time t
progress simultaneously.
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Table 1. Summary of parameters and variables in model (1).

Parameter/variable Meaning

t Chronological time
τ Time-since-infection
V(τ , t) Pathogen density
z(τ , t) Immune cell density
rv Intrinsic growth rate of pathogen
Kv Carrying capacity of the pathogen
q 1/Kv
a Attack rate of immune cells
μ Death rate of immune cells
b2 Reciprocal of the half-saturation level of V
b0/D Maximum activation rate of the immune response
N2(t) Population numbers of species 2
p Controls whether the impact of species 2 slows

species 1’s immune response

We assume rv > 0, since if this is not true the pathogen can never increase, and b0 > 0,
as otherwise the immune cells can never increase. Also, the immune system has no effect
on the pathogen if a=0, so we assume a>0. Parameter b2 is non-negative; if positive,
immune activation saturates at high V. The other parameters (q,μ and D) can be either
0 or positive (but D cannot be 0 if N2 is 0 or if p is 0). For chronic infection, μ must be
greater than 0, but this model with μ = 0 can be used for acute infection with permanent
immunity.

2.2. The between-hostmodel

There are many ways to splice epidemiological models with species interaction models. As
a step towards greater realism, we will explore models in which the within-host model is
embedded in a classic two-species Lotka–Volterra competition model with the pathogen
specialized to one species [see Equations (4)]. We will address several questions. How does
pathogen reproduction rate alter prior coexistence/dominance relationships between the
species? If competition is expressed via weakening of the immune response (as above),
how does this alter equilibrial prevalence, conditions for disease spread, and potentially
unstable dynamics? Our goal is to study the interplay of within-host pathogen and immune
dynamics and basic ecological interactions. The species that can be infected, species 1, is
structured by time-since-infection and its immune status is tracked. The resulting novel
immuno-eco-epidemiological model can be used to study how competition influences the
interaction of the pathogen with the immune system and how this within-host dynamic
interaction in turn affects the population dynamics of the two species.

To introduce the model (see Table 2 for parameters and variables), let Ni(t) be the total
number of individuals in species i (i=1,2) at time t. Species 1 can be infected by a pathogen
and can contain susceptible hosts S(t), recovered hosts R(t), and infected hosts structured
by time-since-infection τ ; i(τ , t) is the density of infected hosts at time t that were infected
τ time units previously. The total population of species 1 is

N1(t) = S(t)+
∫ ∞

0
i(τ , t) dτ + R(t).
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56 M. BARFIELD ET AL.

Table 2. Summary of parameters and variables in model (4).

Parameter/variable Meaning

S Number of susceptibles of species 1
i(τ , t) Density of infectives in species 1
R Number of recovereds in species 1
Nj(t) Population size of species j
ri Intrinsic growth rate of species i
Ki Carrying capacity of species i
mi Intrinsic death rate of species i
β(τ) Transmission rate
α(τ) Disease-induced death rate
γ (τ) Recovery rate
αij Competition coefficient giving effect of species j

on species i

Table 3. Summary of linking functions.

Version β(τ) α(τ) Remarks

1 β(t) = cV∗(t) α(t) = ηV∗(t) Used in Section 3

2 β(τ) = β0V(τ )

V(τ )+ B
α(τ) = ηV(τ ) Used in Figure 7

3 β(τ) = β0V(τ ) α(τ ) = ηV(τ ) Used in Figure 6

Changes in these variables are described by the equations

S′ = r1
(
1 − N1 + α12N2

K1

)
N1 − S(t)

∫ ∞

0
β(τ)i(τ , t) dτ − m1S(t),

iτ (τ , t)+ it(τ , t) = −(m1 + α(τ)+ γ (τ)) i(τ , t),

i(0, t) = S(t)
∫ ∞

0
β(τ) i(τ , t) dτ ,

R′ =
∫ ∞

0
γ (τ) i(τ , t) dτ − m1R,

N′
2(t) = r2

(
1 − N2 + α21N1

K2

)
N2 − m2N2.

(4)

This model has initial conditions S(0) = S0, i(τ , 0) = ϕ(τ), R(0) = R0, N2(0) = N0
2 . We

assume that S0 and N0
2 are positive and ϕ(τ),R0 ≥ 0. Further, we assume that all hosts

reproduce and all offspring are born susceptible (i.e. no vertical transmission). The per
capita growth rate of each species is described by a logistic function where ri is the intrinsic
per capita growth rate and Ki the density of species i at which the growth rate is 0 in the
absence of the other species. There is a component of density-independent intrinsic per
capita death rates, represented as a constant, mi (ri,Ki,mi > 0). Each species can reduce
the growth rate of the other, withαij (both non-negative) giving the reduction of the growth
rate of species i due to an individual of species j relative to the reduction caused by an
individual of species i (so α11 = α22 = 1). The rate of infection of each susceptible host
(per infected host) is β(τ), and the disease-induced mortality rate is α(τ), both of which
are increasing functions ofV (and could also depend on z).We use the functions in Table 3.
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For the model with recovery, γ (τ) is the rate at which infected hosts recover, which
should be an increasing function of z and a decreasing function of V, such as assumed as
in [36]:

γ (τ) = κz
V + ε0

,

where ε0 is a small constant. The transmission rate β(τ) and the disease-induced death
rate α(τ) and recovery rate γ (τ) potentially depend implicitly on N2 and on t. Although
we will be suppressing this dependence below, it should always be kept in mind as they
provide mechanistic pathways by which a competing species could alter infectious disease
dynamics in a focal host species.

In Section 3, we assume that the within-host dynamics are fast enough that V and z
follow their within-host equilibria, and β and α are functions only of t. For equilibria of
the between-host system, such as those in Figure 6, there is no dependence on t so β and
α are functions of τ only. For the chronic infection case (next section),μ > 0 and infected
hosts do not recover, so κ = 0 (also R = 0). If μ = 0, there is recovery, so κ > 0.

3. Chronic infection with fast internal dynamics

To understand better the impact of species 2 on the immune system of species 1, we con-
sider model (1)–(4) in the case for which there is no recovery and the disease is chronic
(which requires μ > 0, in which case the within-host system goes to a stable equilibrium
with the pathogen present for constantN2). We assume that the dynamics of the pathogen
with the immune system are sufficiently rapid so that they can be assumed to always be at
their equilibrium. To simplify matters and gain more insight, we will also assume a linear
dependence of the transmission rate and disease-induced mortality on pathogen density:

β(t) = cV∗(t), α(t) = ηV∗(t),

where V∗(t) is the equilibrium pathogen density if N2 were fixed at N2(t). Note that this
is the within-host equilibrium. The between-host model need not be at equilibrium, and
N2(t) can vary with time, in which case V∗(t) and therefore β and α vary with time.
V∗(t) approximates the solution to Equation (1) if N2(t) changes slowly relative to the
time it takes for the equations to reach the within-host equilibrium (so we can neglect
the derivatives with respect to t). Furthermore, we assume b2 = 0. In this case V∗(t) =
μ(N2(t)+ D)/b0 and β(t) = β(N2), α(t) = α(N2) where

β(N2) = cμ(pN2 + D)
b0

, α(N2) = ημ(pN2 + D)
b0

.

Then system (4) becomes the following ODE model:

S′ = r1
(
1 − N1 + α12N2

K1

)
N1 − β(N2)SI − m1S,

I′ = β(N2)SI − (m1 + α(N2))I,

N′
2 = r2

(
1 − N2 + α21N1

K2

)
N2 − m2N2.

(5)
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58 M. BARFIELD ET AL.

Model (5) is a new type of eco-epidemiological model in which the competitor (species
2) affects the host (species 1) not only through competition for resources but also by affect-
ing the disease transmission and disease-induced death rates, both of which increase with
N2 as shown above. Setting p=0 eliminates this effect, and makes Equation (5) a classi-
cal eco-epidemiological model. Therefore, comparing Equation (5) with p=0 and with
p=1 allows us to compare this novel model to the corresponding classical model. To sim-
plify the notation, we can define β0 = cμ/b0 and α0 = ημ/b0. We note that species 2 both
facilitates pathogen spread in species 1, via boosting β , and hampers it, by increasing α.

3.1. Equilibria ofmodel (5)

System (5) has the extinction equilibrium E0 = (0, 0, 0), which always exists. Next, we
have the species-2-only equilibrium E2 = (0, 0, N̂2), where N̂2 = K2(1 − m2/r2), which
exists only if r2 > m2. Symmetrically, system (5) has the no-disease, species-1-only equilib-
rium E1 = (N̂1, 0, 0), where N̂1 = K1(1 − m1/r1). This equilibrium exists only if r1 > m1.
Define the reproduction numbers of species i in the absence of disease as

Ri = ri
mi

.

Proposition 3.1: Equilibrium E1 exists if and only if R1 > 1. Equilibrium E2 exists if and
only ifR2 > 1.

Assume R1 > 1 and R2 > 1. Then the system has another disease-free equilibrium:
the no-disease coexistence equilibrium E12 = (N̄1, 0, N̄2), where

N̄1 =
K1

(
1 − m1

r1

)
− α12K2

(
1 − m2

r2

)
1 − α12α21

,

N̄2 =
K2

(
1 − m2

r2

)
− α21K1

(
1 − m1

r1

)
1 − α12α21

.

(6)

Proposition 3.2: AssumeR1 > 1 andR2 > 1. Equilibrium E12 exists if and only if one of
the following two sets of inequalities are satisfied:

K1

(
1 − m1

r1

)
− α12K2

(
1 − m2

r2

)
> 0,

K2

(
1 − m2

r2

)
− α21K1

(
1 − m1

r1

)
> 0

(7)

or

K1

(
1 − m1

r1

)
− α12K2

(
1 − m2

r2

)
< 0,

K2

(
1 − m2

r2

)
− α21K1

(
1 − m1

r1

)
< 0.

(8)
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Note that the first set of inequalities implies 1 − α12α21 > 0. Similarly, the second set
of inequalities implies 1 − α12α21 < 0. In the former case, in the absence of the infectious
disease, given that coexistence is feasible, the equilibrium is locally stable (the coexistence
scenario of classical Lotka–Volterra competition). In the latter case, the equilibrium (if
feasible) is unstable, corresponding to a priority effect in the classical Lotka–Volterra com-
petition. Another equilibrium, E∗, has species 1 with the disease but without species 2. To
show the existence of equilibrium E∗, we define the reproduction number of the disease in
the absence of the competitor:

R0 = β(0)N̂1

m1 + α(0)
.

Proposition 3.3: Assume R1 > 1 and R0 > 1. Then the system (5) has a unique equilib-
rium E∗ = (S∗, I∗, 0).

This is not hard to demonstrate. We set N∗
2 = 0 in the equilibrial equations and solve

for S and I.

S∗ = m1 + α(0)
β(0)

,

I∗ = N∗
1 − S∗ and N∗

1 is the unique positive solution of the equation:

r1
(
1 − N1

K1

)
N1 − m1S = (m1 + α(0))(N1 − S).

This equation rewritten as a quadratic equation in N1 has a positive leading term and a
negative constant term, and therefore, a unique positive solution. To see that S∗ < N∗

1 so
that I∗ > 0, we notice that the condition R0 > 1 implies S∗ < N̂1. Using this inequality,
it is not hard to see that the solution of the above equation occurs in the interval (S∗,K1).
Finally, there is the coexistence equilibrium E∗∗. In principle, there are two ways in which
coexistence equilibria can be reached in this model. One is that the pathogen may invade
the state with coexistence of the two species without disease (if the equilibrium E12 exists).
This process requires thatR00 > 1, where

R00 = β(N̄2)N̄1

m1 + α(N̄2)

is the reproduction number of the disease in the presence of the competitor. The sec-
ond way a coexistence equilibrium may be reached is by species 2 invading species 1
with disease equilibrium E∗. This is regulated by the species 2 invasion number R̂2,
defined as:

R̂2 = r2
m2 + r2α21N∗

1
K2

.

For the coexistence equilibrium, we use the explicit dependence of α(N2) and β(N2)

on N2.

Proposition 3.4: Assume Ri > 1 for i=1,2. The coexistence equilibrium E∗∗ = (S∗∗, I∗∗,
N∗∗
2 ) of system (5) exists ifR00 > 1 or R̂2 > 1 and it is unique if p=0 and 1 − α12α21 > 0.
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60 M. BARFIELD ET AL.

Proof: For system (5) at the coexistence equilibrium, we can solve the second equation for
S∗∗ in terms of N2

S∗∗ = m1 + α0(pN2 + D)
β0(pN2 + D)

. (9)

Note that the number of susceptible hosts at equilibrium is a decreasing function of N2
for p>0. If p=0 species 2 does not affect species 1’s immune system, and the number of
susceptibles will be unaffected by species 2.

From the last equation of (5), we express N∗∗
1 in terms of N2:

N∗∗
1 = 1

α21

(
K2

(
1 − m2

r2

)
− N2

)
. (10)

This gives

I∗∗ = N∗∗
1 − S∗∗ = 1

α21

(
K2

(
1 − m2

r2

)
− N2

)
− m1 + α0(pN2 + D)

β0(pN2 + D)
.

I∗∗ can bemonotonically decreasing or have a hump-shaped formwhere it is increasing for
smallN2 and decreasing for largeN2 if p=1. In contrast, if p=0, I∗∗ is a strictly decreasing
function of species 2 numbers. Thus, species 2, through its impact on species 1’s immune
response, can indirectly increase the prevalence of the disease in species 1. With p=0,
the only species interaction is competition, so species 2 tends to decrease the numbers of
species 1. If this decrease is enough, it could prevent the pathogen from persisting. But if
the infectious disease can persist, the number of infected at equilibrium is reduced since the
number of susceptibles is fixed by the second equation in Equation (5). If p=1, in contrast,
there is the additional interaction through the effect on species 1’s immune system, which
causes β and α to increase. This can tend to make it easier for the infection to persist
and also to increase the number of infected. So with p=1, there are contrasting effects
of N2, and the net effect can be in either direction. Increasing N2 increases I∗∗ at low N2
if m1p/(β0D2) > 1/α21; the left side measures the effect of N2 due to the effect on the
immune systemwhile the right measures the direct competitive effect, and if the inequality
is true the former effect outweighs the latter.

We illustrate this situation in the dynamical behaviour of the model. Figure 1 shows
that increasing species 2’s reproductive rate r2 causes an increase in species 2 equilibrial
numbers and can increase the prevalence of the disease I(t) in species 1. In this case, it
furthermore increases the proportion of infected of species 1 I(t)/N1(t). This effect in
part is due to the impact species 2 has on the immune response of species 1. In most
eco-epidemiological models, typically the negative ecological interaction decreases the
prevalence in the focal species (as it does in themodel above with p=0); however, there are
exceptions where increase may occur [17]. To see the existence and the multiplicity of the
coexistence equilibria, we add the first two equations in Equation (5) at equilibrium, and
replace N∗∗

1 and I∗∗ with the expressions above. Thus, we arrive at the following equation
for N2:

r1
(α21)2K1

[
K2

(
1 − m2

r2

)
− N2

] [
α21K1

(
1 − m1

r1

)
− K2

(
1 − m2

r2

)
+ (1 − α12α21)N2

]
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Figure 1. For r2 = 2 the equilibrial numbers of species 2 N2(t) are higher than the equilibrium number
of species 2 for r2 = 0.1. Moreover, the equilibrial prevalence I(t) for species 1 is also higher. r1 = 0.5,
c= 0.01, μ = 1, p= 1, D= 5, m1 = m2 = 0.01, α12 = 0.5, α21 = 0.3, K1 = 300, b0 = 1000, η = 0.5,
K2 = 100.

= α0(pN2 + D)
[

1
α21

[
K2

(
1 − m2

r2

)
− N2

]
− m1 + α0(pN2 + D)

β0(pN2 + D)

]
. (11)

This equation is a quadratic equation in N2 so it has at most two positive solutions.

Case 1: Equilibrium E12 exists,α12α21 < 1;R1 > 1 andR2 > 1. IfN2 is set to be N̂2, then
the left-hand side is zero, while the right-hand side is negative. IfN2 is set to be N̄2,
then the left-hand side is zero, while the right-hand side is positive if and only if
R00 > 1. Thus, ifR00 > 1 the equation has a unique positive root in the interval
[N̂2, N̄2]. Because this root occurs for a positive value of the left-hand side, the
right-hand side evaluated at this root is also positive. Thus I∗∗ > 0 and this gives
a coexistence equilibrium. Equation (11) can have another positive root outside
that interval. However, at that root the left-hand side and the right-hand side are
both negative. Hence, such a root does not give a positive coexistence equilibrium.
IfR00 < 1 the equationmay have zero or two positive roots.We show an example
of two positive roots obtained through backward bifurcation in Figure 2. One can
be stable, the other unstable (as in the example of Figure 2).

Case 2: EquilibriumE12 exists,α12α21 > 1;R1 > 1 andR2 > 1. In this case similar argu-
ments suggest that if R00 > 1 the equation has a unique positive root in the
interval [N̂2, N̄2] and a unique positive root outside of the interval. I∗∗ > 0 for
the root outside the interval and I∗∗ < 0 for the root inside the interval. Hence
again there is a unique positive root. If R00 < 1 the equation may have zero or
two positive roots. We show in Figure 3 that there are parameter values for which
two roots are possible so that each root gives a positive coexistence equilibrium.
Simulations suggest that both positive equilibria in this case are unstable. For
the example shown in Figure 3, both equilibria are unstable and starting from
either, the system approaches an equilibrium with species 1 and the pathogen
(so N2 = 0 and S, I>0, in a stable equilibrium). Note that both equilibria are
at values of N1 and N2 for which species 1 would eliminate species 2 without
the disease; starting from higher N2, species 1 can be eliminated. In other cases,
one of the equilibria is locally stable, while the other one is unstable. An example
of this situation is given by the following parameter set: r1 = 0.2, c=0.00005,
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62 M. BARFIELD ET AL.

μ = 0.5, p = 1, D=0.01 m1 = 0.1, a12 = 1.1, a21 = 1.2, K1 = 30, b1 = 0.001,
η = 0.0005, r2 = 0.3, K2 = 20, m2 = 0.05. With this parameter set, the locally
stable equilibrium is S∗ = 11.29516, I∗ = 0.028373, N∗

2 = 3.078433, while the
unstable equilibrium is S∗ = 12.34955, I∗ = 0.128962, N∗

2 = 1.692455. Depend-
ing on the initial conditions, the system approaches either the stable equilibrium,
or the equilibrium with species 1 only (without disease).

Case 3: Equilibrium N̄2 < 0,α12α21 < 1;R1 > 1 andR2 > 1. Since N̄2 < 0,R00 is irrel-
evant. The equilibria here bifurcate from E∗ and that bifurcation is governed
by R̂2. If R̂2 > 1, then there exists a unique positive solution. First notice that
R̂2 > 1 implies

N∗
1 <

K2

α21

(
1 − m2

r2

)
= N̂2

α21
. (12)

Notice that if N2 = N̂2, then the left-hand side in Equation (11) is zero and the
right-hand side is negative. Thus, LHS> RHS. We will show that at N2 = 0, the
LHS<RHS and they are both positive. Thus, a unique intersection occurs in
the first quadrant which gives a unique positive coexistence equilibrium. To see
the inequality at zero, we start with the equation for N∗

1 :

r1
(
1 − N∗

1
K1

)
N∗
1 − m1N∗

1 = α0D
(
N∗
1 − m1 + α0D

β0D

)
.

Next, we divide by N∗
1 :

r1
(
1 − N∗

1
K1

)
− m1 = α0D

(
1 − m1 + α0D

N∗
1β0D

)
.

Using inequality (12), we have

α0D
(
1 − m1 + α0D

N∗
1β0D

)
< α0D

⎛
⎝1 − m1 + α0D

N̂2
α21
β0D

⎞
⎠ ,

r1
(
1 − N∗

1
K1

)
− m1 > r1

(
1 − N̂2

α21K1

)
− m1.

(13)

Thus, we obtain the following inequality:

r1

(
1 − N̂2

α21K1

)
− m1 < α0D

⎛
⎝1 − m1 + α0D

N̂2
α21
β0D

⎞
⎠ .

Multiplying both sides by N̂2/α21 and rewriting we obtain LHS<RHS atN2 = 0.
The left side of the inequality above is positive forR1 > 1, so the LHS and RHS
of Equation (11) are positive. This completes the proof in this case. In the case
R̂2 < 1, we may have zero or two solutions. The two solutions occur through
backward bifurcation. We exhibit such an example in Figure 4

�
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Figure 2. The left panel shows two intersections of the LHS and RHS of Equation (11). The right panel
shows backward bifurcation. Since these happen for positive values of the RHS, I∗∗ > 0 for each. Param-
eter values are r1 = 0.2, c= 0.00005, μ = 0.5, D= 0.01, m1 = 0.1, α12 = 0.1, α21 = 0.4, K1 = 49.5,
b0 = 0.001, η = 0.0005, r2 = 0.3, K2 = 12, m2 = 0.05, p = 1. The equilibria are S∗∗ = 10.7204, I∗∗ =
0.423355 and N∗∗

2 = 5.442499 (which is locally stable) and S∗∗ = 23.72301, I∗∗ = 0.573284 and N∗∗
2 =

0.281481 (which is unstable).m1 < r1 andm2 < r2 so R1, R2 > 1, N̄1 = 24.74 and N̄2 = 0.104167 soE12
exists with α12α21 < 1 and R00 = 0.549.

Figure 3. Two intersections of the LHS and RHS of Equation (11). Since these happen for positive values
of the RHS, I∗∗ > 0 for each. Parameter values r1 = 1, c= 0.015,μ = 1, p= 1,D= 35,m1 = m2 = 0.01,
α12 = 1.5,α21 = 1.5, K1 = 200, b0 = 40, η = 0.5, r2 = 2, K2 = 140. The equilibria are S∗∗ = 33.56201,
I∗∗ = 4.897679, N∗∗

2 = 81.61046 and S∗∗ = 33.77425, I∗∗ = 42.10605, N∗∗
2 = 25.47954. Simulations

suggest that these are both unstable.

3.2. Stability of equilibria ofmodel (5)

Model (5) is an ODE model so the local stability of equilibria is determined by examining
the eigenvalues of the Jacobian. The following proposition gives the stability of E0 and is
not hard to establish.

Proposition 3.5: If R1 < 1 and R2 < 1, then the extinction equilibrium E0 is locally
asymptotically stable. If either inequality is reversed, then the extinction equilibrium is
unstable.
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64 M. BARFIELD ET AL.

Figure 4. Two intersections of the LHS and RHS of Equation (11) (left panel). Since these happen
for positive values of the RHS, I∗∗ > 0 for each. Parameter values r1 = 0.5, c= 0.01, μ = 1, p= 1,
D= 35, m1 = m2 = 0.01, α12 = 0.5, α21 = 0.8, K1 = 300, b0 = 40, η = 0.5, r2 = 2, K2 = 100. The
equilibria are S∗∗ = 50.57192, I∗∗ = 30.12703, N∗∗

2 = 34.94085 and S∗∗ = 50.96722, I∗∗ = 65.46346,
N∗∗
2 = 6.35545. The two equilibria are obtained through backward bifurcation (right panel). Simulations

suggest that the lower one is unstable, while the upper one is locally stable.

The stability of E1 is determined by the eigenvalues of the Jacobian evaluated at E1.
This Jacobian has the eigenvalues λ1 = −(r1/K1)N̂1, λ2 = β(0)N̂1 − (m1 + α(0)) and
λ3 = r2(1 − α21N̂1/K1)− m1. The following proposition gives the stability of E1.

Proposition 3.6: Assume R1 > 1. Then, equilibrium E1 is locally asymptotically stable if
and only if the following two inequalities hold:

(1) R0 < 1,
(2) K2(1 − m2/r2) < α21K1(1 − m1/r1).

Similarly, we can obtain the stability of equilibrium E2. The Jacobian evaluated at the
equilibrium has the eigenvalues λ1 = r1(1 − α12N̂2/K1)− m1, λ2 = −(μ+ α(N̂2)) and
λ3 = −(r2/K2)N̂2. The following proposition gives the stability of E2.

Proposition 3.7: AssumeR2 > 1. If

K1

(
1 − m1

r1

)
< α12K2

(
1 − m2

r2

)
,

then the species 2 equilibrium E2 is locally asymptotically stable. If the above inequality is
reversed, then the species 2 equilibrium is unstable.

The stability of E12 resembles the stability in the classical Lotka–Volterra model (with
an additional condition related to invasion of infected). The following proposition gives
the stability of E12.
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Proposition 3.8: Assume E12 exists. Then, E12 is locally asymptotically stable if and only if
R00 < 1 and 1 − α12α21 > 0.

The stability of the species 1 disease equilibrium is given by the following proposition:

Proposition 3.9: Assume R1 > 1 and R0 > 1. Then equilibrium E∗ is locally asymptoti-
cally stable if and only if R̂2 < 1.

This result is also not hard to establish. The Jacobian has an eigenvalue λ1 = r2(1 −
α21N∗

1/K2)− m2 which is negative only if R̂2 < 1. The remaining two eigenvalues are
eigenvalues of a 2x2 matrix that has negative trace and positive determinant (see the Proof
of Theorem 3.10). Consequently, they have negative real parts. This implies that when
species 1 is alone with the pathogen, and the pathogen can persist, then they settle to a
stable equilibrium without persistent oscillations.

Next we turn to the stability of the coexistence equilibria. First we show that without
the impact of species 2 on the immune system of species 1, the coexistence equilibrium is
locally asymptotically stable.

Theorem 3.10: Assume p=0 and the coexistence equilibrium exists. If 1 − α12α21 > 0,
then the unique coexistence equilibrium is locally asymptotically stable. If p = 1, the coex-
istence equilibrium can become unstable and oscillations are possible.

Proof: If p=0 system (5) becomes

S′ = r1
(
1 − N1 + α12N2

K1

)
N1 − β0DSI − m1S,

I′ = β0DSI − (m1 + α0D) I,

N′
2 = r2

(
1 − N2 + α21N1

K2

)
N2 − m2N2.

(14)

Computing the Jacobian of the system, we obtain

J =

⎛
⎜⎜⎜⎜⎝

−b11 −b12 − r1α12N1

K1
β0DI 0 0

− r2α21N2

K2
− r2α21N2

K2
− r2N2

K2

⎞
⎟⎟⎟⎟⎠ , (15)

where

−b11 = r1
(
1 − S + I + α12N2

K1

)
− r1(S + I)

K1
− β0DI − m1

= 1
S

[
r1
(
1 − S + I + α12N2

K1

)
(S + I)− β0DSI − m1S

− r1(S + I)
K1

− r1
(
1 − S + I + α12N2

K1

)
I
]
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66 M. BARFIELD ET AL.

= − r1(S + I)
K1

− r1
(
1 − S + I + α12N2

K1

)
I
S
,

−b12 = − r1(S + I)
K1

−
[
r1
(
1 − S + I + α12N2

K1

)
− m1

]
S
I
. (16)

Thus, b11 > 0 and b12 > 0. The two are positive since from the equilibrium equation for
N1 we have: [

r1
(
1 − S + I + α12N2

K1

)
− m1

]
N1 = α0DI > 0.

The characteristic equation is given by

|λI − J| = λ(λ+ b11)
(
λ+ r2N2

K2

)
− βI

r1α12N1

K1

r2α21N2

K2
+ b12βI

(
λ+ r2N2

K2

)

− r1α12N1

K1

r2α21N2

K2
λ

= λ3 + a2λ2 + a1λ+ a0, (17)

where

a2 = b11 + r2N2

K2
> 0,

a1 = b11
r2N2

K2
− r1α12N1

K1

r2α21N2

K2
+ b12βI,

a0 = b12βI
r2N2

K2
− βI

r1α12N1

K1

r2α21N2

K2
.

(18)

Clearly a2 > 0 and if 1 − α12α21 > 0, then a1 > 0 (since b11 > r1N1/K1). To see that a0 >
0, we observe

a0 = βI
r2N2

K2

(
b12 − r1α12α21N1

K1

)
(19)

= βI
r2N2

K2

(
r1N1(1 − α12α21)

K1
+
[
r1
(
1 − N1 + α12N2

K1

)
− m1

]
S
I

)
> 0. (20)

Finally, we check the stability condition a2a1 − a0 > 0

a2a1 − a0 =
(
b11 + r2N2

K2

)(
b11

r2N2

K2
− r1α12N1

K1

r2α21N2

K2
+ b12β0DI

)

− β0DI
r2N2

K2

(
b12 − r1α12α21N1

K1

)

= b11
(
b11

r2N2

K2
− r1α12N1

K1

r2α21N2

K2
+ b12β0DI

)

+ r2N2

K2

(
b11

r2N2

K2
− r1α12N1

K1

r2α21N2

K2
+ b12β0DI

)
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Figure 5. Oscillations in system (5). Parameter values are: r1 = 0.01, c= 0.02, μ = 0.2, p= 1, D= 10,
m1 = 0.001, m2 = 0.3, α12 = 0.9, α21 = 0.9, K1 = 100, b0 = 30, η = 0.5, r2 = 0.4, K2 = 180, which
makes a2a1 − a0 equal to −3.5 ∗ 10−6. S(t) is in blue, I(t) is in red and N2(t) is in dashed
black.

− β0DI
r2N2

K2
b12 + β0DI

r2N2

K2

r1α12α21N1

K1

= b11
r2N2

K2

(
b11 − r1α12α21N1

K1

)

+ b11b12β0DI +
(
r2N2

K2

)2 (
b11 − r1α12α21N1

K1

)

+ β0DI
r2N2

K2

r1α12α21N1

K1
> 0. (21)

Since

b11 − r1α12α21N1

K1
= r1N1(1 − α12α21)

K1
+ r1

(
1 − N1 + α12N2

K2

)
S
I
> 0

must be positive at equilibrium if 1 − α12α21 > 0, because this makes the first term of the
last expression positive, while the second term is positive at equilibrium (this follows from
the equilibrium equations). Using this condition in Equation (21) proves that a2a1 − a0 >
0, which completes the proof in the case p=0.

For p �= 0, we illustrate a case giving oscillations in Figure 5. Although this figure was
initiated far from the equilibrium, the same final state is reached starting very close to the
equilibrium, and it can be shown that the Jacobian (with p=1) has eigenvalues with posi-
tive real parts, so the equilibrium is locally unstable. For these parameters, in the absence of
the disease, species 1 out-competes and eliminates species 2, but the presence of the disease
in species 1 reduces N1 to a level at which species 2 can invade. So, Figure 5 shows periods
of very low I during which S increases and N2 decreases due to the superior competitive
ability of species 1. However, eventually S gets high enough to cause a disease outbreak,
which leads to a decrease in N1 to a level that allows N2 to increase again. As N2 increases,
so does the parasite load in infected hosts, increasing the infection rate and infected death
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68 M. BARFIELD ET AL.

rate, decreasing S and ultimately I, which reaches a very low level again, and the cycle
repeats. The effect of species 2 on species 1’s immunity causes positive feedback when N2
is increasing, because this increase accelerates the decline in N1 due to infection (without
this effect, S, I and N2 reach a stable equilibrium) �

Figure 5 assumed that β and α were linear functions of V∗. If instead they were both
assumed to be saturating functions of V∗, then the oscillations in Figure 5 tend to be
reduced as the amount of saturation increases. This is not surprising, since if values of
V∗ are such that both β and α are completely saturated, then β and α are constant and the
system reduces to that of (5) with p = 0, which does not oscillate. We performed simula-
tions with the parameters of Figure 5 but with saturating functions for β(V∗) and α(V∗)
(each of the linear functions above was divided by 1 + uV∗). Oscillations were still present
with modest amounts of saturation (up to u=4, at which saturation reduced the values of
β and α to about half their linear values). If only α saturated, then very little saturation
(u=1) stabilized the dynamics, while if only β saturated, the system still oscillated at u=8
(but saturation in this case also decreased N∗

2 and therefore V∗). Saturation with differ-
ing strengths (stronger for β) could give oscillations with greater amounts of saturation
(e.g. u=8 for α and u=16 for β) than equal saturation or saturation of only one function.
Likewise, the backward bifurcation of Figure 2 occurred up to moderate amounts of satu-
ration (about u=0.003 with equal saturation, which reduced each function to 30% of its
linear value at the positive stable equilibrium), but was not present for greater degrees of
equal saturation. In this case, with saturation of only one function, backward bifurcation
persisted for much greater saturation of α (higher than u=0.05, which reduced α to less
than 5% of its linear value at the positive stable equilibrium) than of β (only up to about
u=0.001). In this case, saturation of α allowed bifurcation for higher saturation of β , but
not the reverse.

A summary of equilibria and their stability for system (5) is given in Table 4.

Table 4. Summary of equilibria and their stabilities for system (5).

Eq. Exists if Stable if Unstable if

E0 always R1 < 1 andR2 < 1 R1 > 1 orR2 > 1
E10 R1 > 1 R0 < 1 and R0 > 1 or

K2

(
1 − m2

r2

)
< α21K1

(
1 − m1

r1

)
K2

(
1 − m2

r2

)
> α21K1

(
1 − m1

r1

)

E2 R2 > 1 K1

(
1 − m1

r1

)
< α12K2

(
1 − m2

r2

)
K1

(
1 − m1

r1

)
> α12K2

(
1 − m2

r2

)

E12

⎧⎪⎪⎨
⎪⎪⎩
K1

(
1 − m1

r1

)
> α12K2

(
1 − m2

r2

)

K2

(
1 − m2

r2

)
> α21K1

(
1 − m1

r1

) R00 < 1 R00 > 1

E12

⎧⎪⎪⎨
⎪⎪⎩
K1

(
1 − m1

r1

)
< α12K2

(
1 − m2

r2

)

K2

(
1 − m2

r2

)
< α21K1

(
1 − m1

r1

) – always

E∗ R1 > 1 andR0 > 1 R̂2 < 1 R̂2 > 1
E∗∗ Ri > 1, R̂2 > 1 orR00 > 1 α(τ) = 0 or p= 0,

and α12α21 < 1
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4. Equilibria of the full model

In this section, we investigate the equilibria of the more complex model (1)–(4). Equilibria
are time-independent solutions. They solve the system:

Vτ (τ ) = rvV(τ )(1 − qV(τ ))− aV(τ )z(τ ),

zτ (τ ) = b0V(τ )z(τ )
(pN2 + D)(1 + b2V)

− μz(τ ),

V(0) = V0,

z(0) = z0,

0 = r1
(
1 − N1 + α12N2

K1

)
N1 − S

∫ ∞

0
β(τ) i(τ ) dτ − m1S,

iτ (τ ) = −(m1 + α(τ)+ γ (τ)) i(τ ),

i(0) = S
∫ ∞

0
β(τ) i(τ ) dτ ,

0 =
∫ ∞

0
γ (τ) i(τ ) dτ − m1R,

0 = r2
(
1 − N2 + α21N1

K2

)
N2 − m2N2. (22)

Note that this is the between-host equilibrium (in contrast to the within-host equilib-
rium of the previous section). At this equilibrium, the values of N2, S, R and number of
infected hosts are assumed constant (independent of t). However, susceptible hosts are
constantly becoming infected (balanced by death and recovery of infected hosts), and
the values of V and z within infected hosts are given by Equation (1) assuming N2 fixed
at its equilibrium. This gives the first two equations, which are now ODEs in terms of
time-since-infection τ .

In system above, we assume V0 > 0 and z0 > 0. This assumption is equivalent to the
assumption that thewithin-host equations describe the dynamics, given an infection. Thus,
the equilibrial values of V and z are positive, independently whether there are infected
individuals in the population. In reality, V0 is undefined if I=0 and V0 > 0 if I>0 but to
simplify matters we will always assume that V0 > 0.

System (22) has the extinction equilibriumE0 = (V(τ ), z(τ ), 0, 0, 0, 0)whereV(τ ), z(τ )
are the solutions of the within-host equations withN2 = 0. This equilibrium always exists.
(Since there are no hosts in this case, V and z are irrelevant, but they can still be defined
since they describe the within-host dynamics if there were an infected host.)

Next, we have the species 1-free equilibrium E2 = (V̂(τ ), ẑ(τ ), 0, 0, 0, N̂2) where
V̂(τ ), ẑ(τ ) are the solutions of the within-host equations computed with N2 = N̂2 and
N̂2 = K2(1 − m2/r2), which exists only if r2 > m2. Symmetrically, system (22) has a
no-disease, no-species-2 equilibrium E1 = (V(τ ), z(τ ), N̂1, 0, 0, 0) where N̂1 = K1(1 −
m1/r1). This equilibrium exists only if r1 > m1.

Proposition 4.1: Equilibrium E1 exists iff R1 > 1. Equilibrium E2 exists if and only
ifR2 > 1.
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70 M. BARFIELD ET AL.

Assume R1 > 1 and R2 > 1. Then the system has another disease-free equilibrium:
the no-disease coexistence equilibrium E12 = (V̄(τ ), z̄(τ ), N̄1, 0, 0, N̄2), where V̄(τ ), z̄(τ )
are solutions of the within-host equations with N2 = N̄2 and N̄1 and N̄2 are defined in
Equation (6). Equilibrium E12 exists under the conditions specified in Proposition 3.2.

Now, we turn to the existence of the endemic equilibria (those including the disease).
First, we consider the endemic equilibriumwithout species 2E∗ = (V∗(τ ), z∗(τ ), S∗, i∗(τ ),
R∗, 0), where V∗(τ ) and z∗(τ ) are the solutions of the first two differential equations in
Equation (22) for N2 = 0 [other quantities in this section with an asterisk are evaluated at
N2 = 0,V = V∗(τ ) and z = z∗(τ )].We define the probability of remaining in the infected
class τ units after infection as

π∗(τ ) = e−
∫ τ
0 (m1+α∗(η)+γ ∗(η)) dη. (23)

The solution of the third differential equation in system (22) is given by: i∗(τ ) =
i∗(0)π∗(τ ). Substituting this form in the equation for i(0), we obtain S∗. From the equation
for the recovered individuals, we have

S∗ = 1∫∞
0 β∗(τ )π∗(τ ) dτ

R∗ = i∗(0)
∫∞
0 γ ∗(τ )π∗(τ ) dτ

m1
. (24)

Denote by

�∗ =
∫ ∞

0
π∗(τ ) dτ �∗ = 1

m1

∫ ∞

0
γ ∗(τ )π∗(τ ) dτ .

Expressing i∗(0) from the equation for the total population size of species 1 N∗
1 = S∗ +∫∞

0 i∗(τ )dτ + R∗, we have

i∗(0) = N∗
1 − S∗

�∗ + �∗ . (25)

Substituting i∗(0) into the fifth equation of system (22), we obtain the following equation
for N∗

1 :

r1
(
1 − N∗

1
K1

)
N∗
1 = N∗

1 − S∗

�∗ + �∗ + m1S∗. (26)

We define the reproduction number, under the assumption thatR1 > 1, as follows:

R0 = K1

(
1 − m1

r1

)∫ ∞

0
β∗(τ )π∗(τ ) dτ .

Proposition 4.2: AssumeR1 > 1. Equation (26) has a unique solution N∗
1 > S∗ if and only

ifR0 > 1.

Proof: Rewriting Equation (26) as a quadratic equation, we have

r1
K1

N∗
1
2 +

(
1

�∗ + �∗ − r1
)
N∗
1 +

(
m1 − 1

�∗ + �∗

)
S∗ = 0.

Direct integration implies that

m1(�
∗ + �∗) < 1.
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Hence, the constant term in the above quadratic equation is negative. Therefore, the
quadratic equation for N∗

1 has exactly one positive root. Denote by p1(N∗
1 ) the left-

hand side in Equation (26) and by p2(N∗
1 ) the right-hand side. Assume first that R0 >

1. Then S∗ < K1(1 − m1/r1) < K1. Hence, p1(S∗) > p2(S∗) and p1(K1) < p2(K1). Thus,
Equation (26) has a unique solution in the interval (S∗,K1). Thus, there exists a unique
N∗
1 > S∗. Now, assume R0 < 1. Then S∗ > K1(1 − m1/r1). Hence, p1(S∗) < p2(S∗) and

p1(K1) < p2(K1). Thus, Equation (26) does not have a root in the interval (S∗,K1). We
conclude that there exists a unique N∗

1 > S∗, at which i∗ > 0. �

Finally, we consider the coexistence equilibrium E∗∗ = (V∗∗(τ ), z∗∗(τ ), S∗∗, i∗∗(τ ),R∗∗,
N∗∗
2 ), where V∗∗(τ ) and z∗∗(τ ) are the solutions of the first two differential equations

in Equation (22) for N2 = N∗∗
2 [other quantities in this section with two asterisks are

evaluated at N2 = N∗∗
2 , V = V∗∗(τ ) and z = z∗∗(τ )].

We define the reproduction number of the disease, where the disease-free population
consists of both competitors

R00 = N̄1

∫ ∞

0
β̄(τ )π̄(τ ) dτ , (27)

where β̄(τ ) = β(τ , N̄2), ᾱ(τ ) = α(τ , N̄2), γ̄ (τ ) = γ (τ , N̄2). From the last equation in
Equation (22), we express N∗∗

2 in terms of N∗∗
1 :

N∗∗
2 = K2

(
1 − m2

r2

)
− α21N∗∗

1 .

We have

S∗∗ = 1∫∞
0 β(τ)π(τ) dτ

R∗∗ = i∗∗(0)
∫∞
0 γ (τ)π(τ) dτ

m1

and π(τ), �, � and i∗∗(0) are defined as in the previous section. However, we note that
S∗∗ �= S∗ as S∗ is computed at N2 = 0, while S∗∗ is computed at the yet unknown N∗∗

2 .
The same is true for R∗∗,�, � and i∗∗(0). Note also that β(τ) = β(τ ,N∗∗

2 ) and γ (τ) =
γ (τ ,N∗∗

2 ). Thus, from the first equation in Equation (22), we obtain the following equation
for N1:

r1

⎛
⎜⎝1 −

(1 − α12α21)N∗∗
1 + α12K2(1 − m2

r2
)

K1

⎞
⎟⎠N∗∗

1 = N∗∗
1 − S∗∗

�+ �
+ m1S∗∗. (28)

We subtract m1N∗∗
1 from both sides of that equation and obtain the equation p1(N∗∗

1 ) =
p2(N∗∗

1 ) where

p1(N∗∗
1 ) = r1

K1
(1 − α12α21)(N̄1 − N∗∗

1 )N
∗∗
1 ,

p2(N∗∗
1 ) =

(
1

�+ �
− m1

)
(N∗∗

1 − S∗∗(N∗∗
1 )).

(29)

Since S∗∗ is a function ofN∗∗
2 , it varies withN∗∗

1 as well; hence, S∗∗(N∗∗
1 ) is the value of S

∗∗
computed for the specified value of N∗∗

1 (using the equation above for N∗∗
2 as a function
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72 M. BARFIELD ET AL.

of N∗∗
1 ; similarly for � and �). Thus, Equations (28) and (29) can be put in terms of N∗∗

1
only.

The following proposition specifies conditions for the existence of equilibrium E∗∗.

Proposition 4.3: AssumeR1 > 1,R2 > 1 and 1 − α12α21 > 0.

• Assume equilibrium E12 exists. IfR00 > 1, then Equation (28) has a solution N∗∗
1 > S∗∗.

• Assume equilibrium E12 does not exist but equilibrium E∗ exists and S is a decreasing
function of N2. If R̂2 > 1, then Equation (28) has a solution N∗∗

1 > S∗∗.

Proof: We notice that p1(N∗∗
1 ) is a quadratic polynomial in N∗∗

1 and N̄1 is fixed (see
Equation (6)), while p2(N∗∗

1 ) is an unknown function ofN
∗∗
1 . As in Proposition 4.2, we can

show that Equation (28) has a positive solution N∗∗
1 . First, we notice that p1(0) > p2(0),

which is true for both cases listed in the proposition. To obtain the other inequality, we
need to consider the cases one by one. Another useful observation valid for both cases is
that

1
�+ �

> m1.

Hence, the coefficient of p2 is positive.
Case 1: E12 exists. First, we notice that p1(N̄1) = 0. On the other hand, if N∗∗

1 = N̄1
S∗∗(N̄1) = S∗∗(N̄2) = 1/

∫∞
0 β̄(τ )π(τ) dτ = S̄. Hence,

N̄1 − S̄ = S̄(N̄1/S̄ − 1) = S̄(R00 − 1) > 0.

We conclude that p2(N̄1) > 0 and therefore p1(N̄1) < p2(N̄1). This shows existence of
N∗∗
1 ∈ (0, N̄1). It remains to show that N∗∗

1 > S∗∗ where S∗∗ = S∗∗(N∗∗
1 ). We observe that

p1(N∗∗
1 ) = p2(N∗∗

1 ). Since 1 − α12α21> 0 andN∗∗
1 ∈ (0, N̄1), this implies that p1(N∗∗

1 )> 0.
Hence p2(N∗∗

1 ) > 0 or N∗∗
1 > S∗∗. This concludes the proof in that case.

Case 2: E12 does not exist. In this case there are two subcases N̄1 > 0, N̄2 < 0 or N̄1 <

0, N̄2 > 0. We note that R̂2 > 1 implies that

N∗
1 <

N̂2

α21
.

We use the same p1(N1) and p2(N1) as before. We consider first the subcase N̄1 > 0,
N̄2 < 0.

p1(N∗
1 ) = r1

K1
(1 − α12α21)(N̄1 − N∗

1 )N
∗
1

= r1
K1
(N̂1 − α12N̂2 − (1 − α12α21)N∗

1 )N
∗
1

= r1
K1
(N̂1 − N∗

1 )N
∗
1 − r1

K1
α12α21

(
N̂2

α21
− N∗

1

)
N∗
1

<
r1
K1
(N̂1 − N∗

1 )N
∗
1 =

[
1

�+ �
− m1

]
(N∗

1 − S∗), (30)
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where in the last equation we use the equation for the equilibrium N∗
1 . In that equation

S∗ = S(N̂2/α21). We assume that

S

(
N̂2

α21

)
> S(N∗

1 ).

In other words, we assume that S is a decreasing function ofN2 and sinceN2 is a decreasing
function of N1, S is an increasing function of N1. This may or may not be true, depending
on the assumptions for α(τ). Continuing from the above, we have

p1(N∗
1 ) < p2(N∗

1 ).

Hence, there exists N∗∗
1 ∈ (0,N∗

1 ) which satisfies equation p1(N1) = p2(N1). We still need
to show that N∗∗

1 > S∗∗. First, we notice that since N̄2 < 0 and 1 − α12α21 > 0 we have
N̂1 > (N̂2/α21). Furthermore, N∗∗

1 > S∗∗ if and only if

(N̂1 − N∗∗
1 ) > α12α21

(
N̂2

α21
− N∗∗

1

)
,

which always holds because N̂1 > N̂2/α21 and 1 − α12α21 > 0.
Assume now that N̄1 < 0 and N̄2 > 0. If 1 − α12α21 > 0, p1(N1) is negative for allN1 >

0, so even if a solution N∗∗
1 exists, it satisfies N∗∗

1 < S∗∗. Hence, there is no viable solution.
If 1 − α12α21 < 0, p1(N1) > 0 for all N1 > 0. Similar deliberations show that p1(N∗

1 ) <

p2(N∗
1 ). Hence, there exists N∗∗

2 that solves the equation. Also since p2(N∗∗
1 ) > 0, then

p2(N∗∗
1 ) > 0 which implies that N∗∗

1 > S∗∗. �

Proposition 4.3 establishes conditions for the existence of coexistence equilibria but
does not address their uniqueness. Indeed, the coexistence equilibrium does not have to be
unique or exist only under the specified conditions.Wefind that there exist backward bifur-
cation and multiple coexistence equilibria with respect to species 2 invasion number R̂2.

Building a specific example of backward bifurcation in model (1)–(4) is not a trivial
task as the right-hand side of equation (28) is a very implicit function of N2. Methods
for finding backward bifurcations in age-structured models are scarce (but see [24]). We
took a different approach here.We used an appropriately designed simple ODEmodel (see
Section 3), found first the backward bifurcation in that model and then using the same
parameters and adjusting the initial conditions of the within-host model, we obtained the
backward bifurcation in Figure 6. The backward bifurcation in Figure 6 is a solution of the
following modification of Equation (28), derived from rewriting Equation (28) in terms of
N2 rather than N1

r1

(
1 − (1 − α12α21)(N̂2 − N2)+ α12α21N̂2

α21K1

)(
N̂2 − N2

α21

)

= N̂2 − N2

α21�
− S∗∗

�
(1 − m1�).

We note that the backward bifurcation in Figure 6 is a lot deeper that the one obtained in
the ODE case, suggesting that this phenomenon is enhanced by the age structure.
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74 M. BARFIELD ET AL.

Figure 6. Backward bifurcation inmodel (1)–(4) with respect to parameterβ0. The linking functions are
as in Table 3, case 3. Parameters are: μ = 0.2, rv = 1, q= 0.0001, a= 1, r1 = 0.5, p= 1, D= 35, m1 =
0.01,m2 = 0.01, α12 = 0, α21 = 0.8, K1 = 300, b0 = 40, η = 0.5, r2 = 2, K2 = 100, b2 = 0.0.

5. Stability of equilibria of the full system

In this section, we investigate the local stability of equilibria in the above section. Stabil-
ity analysis helps determine which equilibria are biologically significant (mathematically
stable or unstable through Hopf bifurcation) and under what conditions on the parame-
ters. We linearize the equations in Equations (1)–(4) around a generic equilibrium E =
(V∗(τ ), z∗(τ ), S∗, i∗(τ ),R∗,N∗

2 ). The corresponding perturbations are denoted, respec-
tively, by u, w, s, y, r, and n2, while n1 is the total perturbation of species 1. The generic
system of perturbations for the within-host model takes the form:

ut(τ , t)+ uτ (τ , t) = rvu(τ , t)(1 − qV∗(τ ))− rvqV∗(τ )u(τ , t)− aV∗(τ )w(τ , t)

− au(τ , t)z∗(τ ),

wt(τ , t)+ wτ (τ , t) = b0(V∗(τ )w(τ , t)+ u(τ , t)z∗(τ ))
(pN∗

2 + D)(1 + b2V∗(τ ))
− b0V∗(τ )z∗(τ )pn2(t)
(pN∗

2 + D)2(1 + b2V∗(τ ))

− b0V∗(τ )z∗(τ )b2u(τ , t)
(pN∗

2 + D)(1 + b2V∗(τ ))2
− μw(τ , t). (31)

The generic form for the perturbation for the between-host model takes the form:

s′ = r1
(
1 − N∗

1 + α12N∗
2

K1

)
n1 − r1

K1
(n1 + α12n2)N∗

1

− S∗
∫ ∞

0
β(τ)y(τ , t) dτ − s(t)

∫ ∞

0
β(τ)i∗(τ ) dτ − m1s(t)

− n2(t)S∗
∫ ∞

0

∂β(τ)

∂N2
i∗(τ ) dτ ,

yτ (τ , t)+ yt(τ , t) = −(m1 + α(τ)+ γ (τ))y(τ , t)

−
(
∂α(τ)

∂N2
i∗(τ )+ ∂γ (τ)

∂N2
i∗(τ )

)
n2(t)
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−
(
∂α(τ)

∂V
i∗(τ )+ ∂γ (τ)

∂V
i∗(τ )

)
u(τ , t) (32)

−
(
∂α(τ)

∂z
i∗(τ )+ ∂γ (τ)

∂z
i∗(τ )

)
w(τ , t),

y(0, t) = S∗
∫ ∞

0
β(τ)y(τ , t) dτ + s(t)

∫ ∞

0
β(τ)i∗(τ ) dτ

+ n2(t)S∗
∫ ∞

0

∂β(τ)

∂N2
i∗(τ ) dτ ,

r′ =
∫ ∞

0
γ (τ)y(τ , t) dτ − m1r +

∫ ∞

0

∂γ (τ)

∂N2
i∗(τ ) dτn2(t),

n′
2(t) = r2

(
1 − N∗

2 + α21N∗
1

K2

)
n2 − r2

K2
(n2 + α21n1)N∗

2 − m2n2.

We begin by looking at the stability of the within-host equations, given that species 2 is
at equilibrium. There are four potential equilibrial values for species 2: N2 = 0, N2 = N̂2,
N2 = N̄2 and N2 = N∗∗

2 . We will not consider the stability of the last equilibrium as it is
very complicated. In the remaining cases n2 = 0. The stability of the within-host system
with the other three equilibriumvalues ofN2 is given by the stability of the following system

ut(τ , t)+ uτ (τ , t) = a(τ )u(τ , t)+ b(τ )w(τ , t),

wt(τ , t)+ wτ (τ , t) = c(τ )u(τ , t)+ d(τ )w(τ , t),

u(0, t) = 0,

w(0, t) = 0,

u(τ , 0) = φ∗(τ ),

w(τ , 0) = ψ∗(τ ),

(33)

where

a(τ ) = rv(1 − qV∗(τ ))− rvqV∗(τ )− az∗(τ ),

b(τ ) = −aV∗(τ ),

c(τ ) = b0z∗(τ )
(pN∗

2 + D)(1 + b2V∗(τ ))2
,

d(τ ) = b0V∗(τ )
(pN∗

2 + D)(1 + b2V∗(τ ))
− μ.

(34)

Proposition 5.1: The within-host system (33) is locally asymptotically stable in the sense
that

u(τ , t) → 0 w(τ , t) → 0 t → ∞
if the principal eigenvalue of the epidemiological system has negative real part.

We continue here with the stability of the equilibria of the full system. We start by
looking at stability of the extinction equilibrium E0. We have the following proposition.
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76 M. BARFIELD ET AL.

Proposition 5.2: If R1 < 1 and R2 < 1, then the extinction equilibrium E0 is locally
asymptotically stable. If either inequality is reversed, then the extinction equilibrium is
unstable.

Proof: The within-host system is given by Equation (33) with N∗
2 = 0 and it is stable by

Proposition 5.1. We next investigate the conditions for stability arising from the between-
host model:

λs = r1n1 − m1s,

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = 0,

λr =
∫ ∞

0
γ (τ)y(τ ) dτ − m1r,

λn2 = r2n2 − m2n2.

(35)

Solving the equation for y(τ ), we obtain y(τ ) = 0. The eigenvalues of system (35) are
λ1 = r1 − m1, λ2 = −m1, λ3 = r2 − m2, which are negative if R1 and R2 < 1. �

Next, we look at global extinction results.

Proposition 5.3: If R1 < 1, then N1(t) → 0 as t → ∞. If R2 < 1, then N2(t) → 0 as
t → ∞.

Proof: The rate of change of species 1 satisfies the following differential inequality:

N′
1 ≤ r1

(
1 − N1 + α12N2

K1

)
− m1N1 ≤ (r1 − m1)N1.

If R1 < 1, r1 < m1 so if both signs are equal signs,N1 exponentially drops to 0; inequalities
make the drop faster. Similarly, one can show the same for species 2. �

Remark 5.4: From the above proposition, it follows that ifR1 < 1 andR2 < 1, then the
extinction equilibrium is globally stable.

Next, we investigate the stability of the equilibrium E2.

Proposition 5.5: AssumeR2 > 1. If

K1

(
1 − m1

r1

)
< α12K1

(
1 − m2

r2

)
,

then the species 2 equilibrium E2 is locally asymptotically stable. If the above inequality is
reversed, then the species 2 equilibrium is unstable.
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Proof: The linearization of the between-host system is given by

λs = r1

(
1 − α12N̂2

K1

)
n1 − m1s(t),

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = 0,

λr =
∫ ∞

0
γ (τ)y(τ , t) dτ − m1r,

n′
2(t) = r2

(
1 − N̂2

K2

)
n2 − r2

K2
(n2 + α21n1)N̂2 − m2n2.

(36)

As before y(τ ) = 0. Hence, the eigenvalues are λ1 = −m1, λ2 = r1(1 − α12N̂2/K1)− m1
and λ3 = −(r2/K2)N̂2. λ1 < 0 and λ3 < 0. λ2 < 0 if the inequality in the statement of the
proposition holds. As before, the within-host system is locally asymptotically stable. �

Next, we investigate the equilibrium of species 1 alone with no disease, E1.
Proposition 5.6: Assume R1 > 1. Then, equilibrium E1 is locally asymptotically stable if
and only if the following two inequalities hold:

(1) R0 < 1.
(2) K2(1 − m2/r2) < α21K1(1 − m1/r1).

Proof: System (32) takes the form:

λs = r1

(
1 − N̂1

K1

)
n1 − r1

K1
(n1 + α12n2)N̂1 − N̂1

∫ ∞

0
β(τ)y(τ ) dτ − m1s,

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = N̂1

∫ ∞

0
β(τ)y(τ ) dτ , (37)

λr =
∫ ∞

0
γ (τ)y(τ ) dτ − m1r,

λn2 = r2

(
1 − α21N̂1

K2

)
n2 − m2n2.

Solving the differential equation, we have

y(τ ) = y(0)π(τ) e−λτ .

Substituting this into the expression for y(0), we obtain the following characteristic
equation:

1 = N̂1

∫ ∞

0
β(τ)π(τ) e−λτ dτ .
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Let G(λ) denote the right-hand side of the above equation. If R0 > 1, then since G(0) =
R0 we have thatG(0) > 1. Furthermore, for real λG(λ)monotonically decreases and→ 0
as λ → ∞. Hence, the equation G(λ) = 1 has a unique real positive root λ∗ > 0 and the
equilibrium E1 is unstable (infected increase when rare).

IfR0 < 1, then G(0) < 1, so the equation above has no real non-negative solution. To
satisfy the equation, G(λ)must be real, so if λ = ξ1 + iξ2 and ξ1 ≥ 0, e−λτ in the equation
can be replaced by e−ξ1τ cos(ξ2τ), in which case

|G(λ)| < G(ξ1) < G(0) = R0 < 1.

Hence, the equality G(λ) = 1 does not have any roots with non-negative real parts. The
stability of E1 in this case depends on the remaining eigenvalues. The remaining eigen-
values are: λ1 = −m1, λ2 = r2(1 − α21N̂1/K2)− m2 and λ3 = −r1(N̂1/K1). The second
inequality in the statement of the theorem gives λ2 < 0. This completes the proof. �

Next, we consider the stability of the coexistence equilibrium E12. The following
proposition gives this result.

Proposition 5.7: Assume E12 exists. Then, E12 is locally asymptotically stable if and only if
R00 < 1 and

K1

(
1 − m1

r1

)
− α12K2

(
1 − m2

r2

)
> 0,

K2

(
1 − m2

r2

)
− α21K1

(
1 − m1

r1

)
> 0.

(38)

Proof: The system for the perturbations of the E12 equilibrium becomes

λs = r1
(
1 − N̄1 + α12N̄2

K1

)
n1 − r1

K1
(n1 + α12n2)N̄1

− N̄1

∫ ∞

0
β(τ)y(τ ) dτ − m1s,

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = N̄1

∫ ∞

0
β(τ)y(τ ) dτ ,

λr =
∫ ∞

0
γ (τ)y(τ ) dτ − m1r,

λn2 = r2
(
1 − N̄2 + α21N̄1

K2

)
n2 − r2

K2
(n2 + α21n1)N̄2 − m2n2.

(39)

Using the equilibrium equations

0 = r1
(
1 − N̄1 + α12N̄2

K1

)
N̄1 − m1N̄1,

0 = r2
(
1 − N̄2 + α21N̄1

K2

)
N̄2 − m2N̄2,

(40)
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this simplifies to:

λs = r1
(
1 − N̄1 + α12N̄2

K1

)
n1 − r1

K1
(n1 + α12n2)N̄1

− N̄1

∫ ∞

0
β(τ)y(τ ) dτ − m1s,

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = N̄1

∫ ∞

0
β(τ)y(τ ) dτ ,

λr =
∫ ∞

0
γ (τ)y(τ ) dτ − m1r,

λn2 = − r2
K2
(n2 + α21n1)N̄2.

(41)

To find the eigenvalues, we first solve the differential equation giving

y(τ ) = y(0)π(τ) e−λτ

and substitute that into the initial condition. Canceling y(0), this leads to the characteristic
equation.

1 = N̄1

∫ ∞

0
β(τ)π(τ) e−λτ dτ .

The right side with λ = 0 isR00. Using the same steps as in the previous proposition, we
obtain that if R00 > 1 equilibrium E10 is unstable, while if R00 < 1, the stability of E12
depends on the remaining eigenvalues. These are λ1 = −m1, and the eigenvalues of the
matrix

J =

⎛
⎜⎝ − r1

K1
N̄1 −α12 r1K1

N̄1

−α21 r2K2
N̄2 − r2

K2
N̄2

⎞
⎟⎠ .

Since Tr(J) < 0 and Det J = (1 − α12α21)(r1/K1)N̄1(r2/K2)N̄2, the equilibrium is locally
asymptotically stable if 1 − α12α21 > 0 which is satisfied under the conditions of the
proposition. The other E12 equilibrium for which this inequality is not satisfied is unstable.
This completes the proof. �

Now, we turn to the stability of the endemic equilibria. We first begin with E∗. The
stability of E∗ depends on the species 2 invasion number at the equilibrium of species 1:

R̂2 = r2
m2 + r2α21N∗

1
K2

, (42)

where N∗
1 is the unique solution of Equation (26). The conditions for stability of E∗ are

given by the following proposition, where σ = r1(1 − 2N∗
1/K1).
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80 M. BARFIELD ET AL.

Proposition 5.8: Assume R1 > 1 and R0 > 1. The species 1 endemic equilibrium E∗ is
unstable if R̂2 > 1. If R̂2 < 1, the species 1 endemic equilibrium E∗ satisfies:

• if γ (τ) = 0 and m1 > σ > 0, then E∗ is locally asymptotically stable;
• if α(τ) = 0 and σ < m1, then E∗ is locally asymptotically stable.

Proof: The proof is relegated to Appendix 1. �

Stability in some cases for the coexistence equilibrium E∗∗ is given by the following
proposition, where σ1 = r1(1 − (2N∗∗

1 + α12N∗∗
2 )/K1).

Proposition 5.9: Assume E∗∗ exists. Assume σ1 < m1. The coexistence equilibrium E∗∗ is
locally asymptotically stable in the following two cases:

• If γ (τ) = 0,α12α21 = 0, p = 0 and 0 < σ1.
• If α(τ) = 0.

Proof: The proof is relegated to Appendix 2. �

Motivated by the oscillations of the simple ODE immuno-eco-epidemiological model
in Section 3, we searched for oscillations in model (1)–(4). The presence of oscillations
in the ODE model does not imply oscillations in the PDE model as the ODE model is
not a special case of the PDE model. In single-scale time-since-infection structured mod-
els, the endemic equilibrium is usually destabilized by choosing a simple step function as
the transmission rate. This cannot be done with multi-scale models where the transmis-
sion rate comes from the solution of the within-host model and is not arbitrary. Hence, in
multi-scale models, a stabilization of the population-level equilibrium may occur [23]. If
stabilization does not occur, showing loss of stability and oscillations is not a trivial task.
The complexity of the characteristic equation and the implicit dependence on within-host
parameters obstruct analysis for finding parameter values that give roots with positive real
parts. We approached the problem numerically, and obtained oscillations for some param-
eter combinations such as those in Figure 7, although there is no guarantee that these are
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Figure 7. Oscillations in system (1)–(4). Linking parameters are as version 2 in Table 3. Parameter values
are: r1 = 0.1, μ = 0.25, p= 1, D= 5,m1 = 0.01,m2 = 0.1, α12 = 0, α21 = 0.5, K1 = 100, b0 = 0.005,
η = 0.001, r2 = 1, K2 = 100, γ (τ) = 0, rv = 2, q= 0.0001, a= 1, b0 = 0.1, b2 = 0.0002, V0 = 100,
z0 = 1, β0 = 0.2, ε0 = 0.5, B= 1000.

D
ow

nl
oa

de
d 

by
 [

64
.2

38
.1

66
.2

34
] 

at
 0

4:
57

 2
3 

N
ov

em
be

r 
20

17
 



JOURNAL OF BIOLOGICAL DYNAMICS 81

indeed sustained oscillations. To obtain the oscillations, we use α (or η) as a bifurcation
parameter. Increasing α leads to oscillations. We were also able to produce oscillations in
the case in which γ (τ) = 0 and α12 = 0 but p �= 0, suggesting that the effect of species
2 on species 1’s immunity plays the main role in the destabilization. The parameters that
produce the oscillations in Figure 7 also give instability in the corresponding ODE model
considered in Section 3. However, if m1 is increased to 0.035, the ODE model is stable
while the full model is unstable. The full model introduces a delay in the increase in V
(and therefore β and α) relative to the ODE model, which tends to destabilize the system.

6. Discussion

Understanding infectious disease ecology increasingly involves on one hand linking pro-
cesses at different scales (in particular, within-host pathogen dynamics, and between-host
transmission), and on the other embedding infectious disease processes in a broader
community context, where species compete and are embedded in a wide range of food
web interactions. In this article, we introduce a novel nested time-since-infection eco-
epidemiological model of competition with a within-host model including an immune
response in disease-affected species 1. Species 2 competes not only directly for resources
with species 1 but also by affecting negatively species 1’s immune response to the infection.
We term this mode of competition stress-induced competition. The model involves bidi-
rectional linkage of the within-host and between-host systems. This necessitates casting
the within-host model in PDE form. We also present a related ODE model.

We find that stress-induced competition is capable of producing backward bifurcation
with respect to the species 2 invasion number. Backward bifurcation of competitor inva-
sion allows the competitor to persist alongside species 1 for values of its invasion number
below one. In the age-structured case (the PDE model), we find that the backward bifur-
cation is very pronounced, allowing species 2 to persist alongside species 1 for values of its
invasion number very close to zero. In the case of this backward bifurcation, two coexis-
tence equilibria of species 1 and species 2 exist, and one equilibrium in which species 2 is
not present. If species 2’s invasion number is below one, species 2 may persist only in the
case in which its initial numbers are sufficiently large.

Furthermore, we find that in the PDE case, the coexistence equilibrium of species 1
and species 2 may become destabilized and we sometimes observed numerically sustained
oscillations. We show that the coexistence equilibrium is locally stable in the absence of
disease-inducedmortality or in the absence of recovery and competition (both interspecific
and stress-induced) of species 2 with species 1. This destabilization occurs as a result of
the disease-induced mortality and stress-induced competition of species 2 with species 1.
Hence, the interplay of competition and pathogen dynamics can generate large-magnitude
oscillations, when neither process on its own leads to instability (see Figure 5 and 7 for
examples).

The age-structured immuno-eco-epidemiological model exhibits significant mathe-
matical complexity. There can be alternative equilibria, with all species present at each
equilibrium, for instance. In producing examples of the backward bifurcations and oscilla-
tions in the PDE model, we were guided by an appropriately designed three-dimensional
ODE immuno-eco-epidemiological model, obtained under the assumption that the dis-
ease is chronic and within-host dynamics are fast. This simple ODE model is not a special
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82 M. BARFIELD ET AL.

case of the PDE model but exhibits both the backward bifurcation in the invasion number
of species 2 and the oscillations we found in the PDE model. We surmise that specially
designed simple ODE models may be used to study these types of complex systems and
derive conclusions about their behavior.

Using the ODE model, we further observe that stress-induced competition leads to a
lower number of susceptible individuals at equilibrium when the population of species
2 increases. In contrast, in the absence of stress-induced competition, species 2 numbers
do not affect the number of susceptibles in the population of species 1. A more surprising
result is that although single-scale eco-epidemiological models generally suggest that com-
petition (and predation) lead to lower disease prevalence in the focal species, we find that
stress-induced competition may increase the prevalence in species 1 when the population
of species 2 is small. This occurs in a chronic disease without recovery. So stress-induced
competition can enhance disease prevalence in a focal host species.

The interplay between within-host immune dynamics and ecological interactions is just
beginning to be studied. There are many interesting questions yet to be addressed. Our
observation that the dynamics of complex nested immuno-eco-epidemiological models
can sometimes be obtained by a simple, related ODE model opens the door for further
investigations and analysis. Our PDE and respective ODE models could be extended, for
instance, so that the pathogen infects both hosts. This can add an immune dimension to
apparent competition interactions and could lead to complex feedbacks. For instance, if
species 2 weakens the immune response in species 1, and boosts disease prevalence in the
latter, this could ‘spill back’ to boost disease levels in species 2. Another interesting avenue
is to examine how the within-host immune dynamics affect predator–prey interactions.
Two types of scenarios may be considered here: one with disease in the prey and the other
with disease in the predator. Predation can alter immune responses, directly and nega-
tively because prey experience stress or spend less time feeding, or indirectly because lower
prey numbers boost resources available per prey, increasing resource acquisition rates
and permitting stronger immune responses to infection. Coupling such responses with
predator–prey and host–pathogen dynamics could potentially lead to complex dynamics.
Likewise, also, immune responses in predators to their own pathogensmay depend on how
rapidly they can feed and garner resources to use in mounting such responses. We suggest
that examining such effects of interspecific interactions on within-host pathogen dynam-
ics, with consequent impacts on among-host disease transmission, provides a rich avenue
for future theoretical and empirical investigations.
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Appendix 1: Stability of E∗

Proof: The system for the perturbations in this case becomes:

λs = r1
(
1 − N∗

1
K1

)
n1 − r1

K1
(n1 + α12n2)N∗

1 − S∗
∫ ∞

0
β(τ)y(τ ) dτ

− s
∫ ∞

0
β(τ)i∗(τ ) dτ − m1s − n2S∗

∫ ∞

0

∂β(τ)

∂N2
i∗(τ ) dτ ,

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ )−
(
∂α(τ)

∂N2
+ ∂γ (τ)

∂N2

)
i∗(τ )n2,

y(0) = S∗
∫ ∞

0
β(τ)y(τ ) dτ + s

∫ ∞

0
β(τ)i∗(τ ) dτ + n2S∗

∫ ∞

0

∂β(τ)

∂N2
i∗(τ ) dτ ,

λr =
∫ ∞

0
γ (τ)y(τ ) dτ − m1r + n2

∫ ∞

0

∂γ (τ)

∂N2
i∗(τ ) dτ ,

λn2 = r2
(
1 − α21N∗

1
K2

)
n2 − m2n2.

(A1)

The first eigenvalue is λ1 = r2(1 − α21N∗
1 /K2)− m2 < 0 if and only if R̂2 < 1. Hence if R̂2 > 1,

equilibrium E∗ is unstable. If R̂2 < 1 the stability of E∗ depends on the eigenvalues of the remaining
system:

λs = σn1 − S∗
∫ ∞

0
β(τ)y(τ ) dτ − Bs − m1s

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = S∗
∫ ∞

0
β(τ)y(τ ) dτ + Bs,

λr =
∫ ∞

0
γ (τ)y(τ ) dτ − m1r.

(A2)

where σ = r1(1 − 2N∗
1 /K1) and B = ∫∞

0 β(τ)i∗(τ ) dτ .
Case 1: First, we assume that the disease leads to no recovery, that is γ (τ) = 0. Assume also

0 < σ < m1.
Solving the differential equation and substituting in the other equations, we have

λs = σn1 − m1s − y(0),

y(0) = S∗y(0)
∫ ∞

0
β(θ)π(θ) e−λθ dθ + Bs,

n1 = s + y(0)ρ(λ)+ r,

r = y(0)�(λ),

(A3)

where

�(λ) =
∫∞
0 γ (τ)π(τ) e−λτ dτ

λ+ m1
ρ(λ) =

∫ ∞

0
π(τ) e−λτ dτ . (A4)

Replacing r in the third equation, we obtain

λs = σn1 − m1s − y(0),

y(0) = S∗y(0)
∫ ∞

0
β(θ)π(θ) e−λθ dθ + Bs,

n1 = s + y(0)(ρ(λ)+ �(λ)).

(A5)
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Replacing n1 from the last equation into the first equation and solving for s, we obtain

s = −y(0)(1 − σρ(λ)− σ�(λ))

λ+ m1 − σ
. (A6)

Substituting s into the initial condition and canceling y(0), we obtain the following characteristic
equation for λ:

1 + B
(1 − σρ(λ)− σ�(λ))

λ+ m1 − σ
= S∗

∫ ∞

0
β(θ)π(θ) e−λθ dθ . (A7)

Denote byL(λ) the left-hand side of the equation above and byH(λ), the right-hand side. Next, we
show that if σ < m1 the characteristic equation (A7) does not have a real positive root. In this case,
both sides of Equation (A7) are defined for all real and positive λ, and,

1 + B
(1 − σρ(λ)− σ�(λ))

λ+ m1 − σ
> 1 + B

(1 − σρ(0)− σ�(0))
λ+ m1 − σ

> 1. (A8)

This last inequality follows from the fact that

1 − σρ(0)− σ�(0) > 0.

On the other hand,

S∗
∫ ∞

0
β(θ)π(θ) e−λθ dθ < S∗

∫ ∞

0
β(θ)π(θ) dθ = 1.

Now, we show that if γ (τ) = 0 and 0 < σ < m1, then E∗ is locally asymptotically stable. This result
is analogous to the result in [2]. Since the characteristic equation cannot have real non-negative
roots, we then show that the characteristic equation (A7) cannot have purely imaginary roots. To
see that, we take λ = ηi. Then

S∗
∫ ∞

0
β(τ)π(τ) e−iητ dτ = S∗

∫ ∞

0
β(τ)π(τ) cos(ητ) dτ − iS∗

∫ ∞

0
β(τ)π(τ) sin(ητ) dτ

= 1 + B
(1 − σ
ρ − σ
� + iσ�ρ + iσ��)(m1 − σ − iη)

(m1 − σ)2 + η2
(A9)

Equating the real and the imaginary parts, we have the following system:

1 + B
(1 − σ
ρ − σ
�)(m1 − σ)− η(σ�ρ + σ��)

(m1 − σ)2 + η2

= S∗
∫ ∞

0
β(τ)π(τ) cos(ητ) dτ ,

B
(1 − σ
ρ − σ
�)y + (m1 − σ)(σ�ρ + σ��)

(m1 − σ)2 + η2

= S∗
∫ ∞

0
β(τ)π(τ) sin(ητ) dτ , (A10)

where


� =
∫∞
0 γ (τ)π(τ) cos(yτ) dτ(m1)− y

∫∞
0 γ (τ)π(τ) sin(yτ) dτ

(m1)2 + y2
,

�� = −
∫∞
0 γ (τ)π(τ) sin(yτ) dτ(m1)+ y

∫∞
0 γ (τ)π(τ) cos(yτ) dτ

(m1)2 + η2
,


ρ =
∫ ∞

0
π(τ) cos(ητ) dτ ,

�ρ = −
∫ ∞

0
π(τ) sin(ητ) dτ .

(A11)
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First, we notice that 1 − σ
ρ − σ
� > 1 − σ� > 0. Then, we notice that −�ρ > 0. Hence
with γ (τ) = 0 and σ > 0, we have that

B
(1 − σ
ρ − σ
� + iσ�ρ + iσ��)(m1 − σ − iη)

(m1 − σ)2 + η2
> 0

and the left-hand side in the first equation in Equation (A10) is bigger than one. On the other hand,
the right-hand side is smaller or equal to one. Hence, there is no y> 0 that satisfies that equation.
Hence in this case, the characteristic equation has rootswith only negative real parts, andE∗ is locally
asymptotically stable.

Case 2: Assume the disease is non-fatal, α(τ) = 0.
Integrating the second equation in system (A2) and adding the equations in Equation (A2), we

obtain the equation of the total population size:

(λ+ m1 − σ)n1 = 0.

From here it follows that λ1 = σ − m1. Thus if σ − m1 < 0 the stability of the system depends on
the remaining eigenvalues. If σ > m1 the equilibrium is unstable. Assume σ − m1 < 0, then the
stability of E∗ depends on the eigenvalues of the system

λs = −m1s − y(0),

y(0) = S∗y(0)
∫ ∞

0
β(θ)π(θ) e−λθ dθ + Bs,

λr = y(0)�̂(λ)− m1r,

(A12)

where �̂(λ) = ∫∞
0 γ (τ)π(τ) e−λτ dτ . Adding the equations for s and r, we have

s + r = −y(0)[1 − �̂(λ)]
λ+ m1

.

Since

r = y(0)�̂(λ)
λ+ m1

and s= s+r−r, we have that

s = −y(0)
(λ+ m1)

.

The characteristic equation becomes:

(λ+ m1 + B)/(λ+ m1) = S∗
∫ ∞

0
β(τ)π(τ) e−λτ dτ . (A13)

The left-hand side of this equation is (λ+ m1 + B)/(λ+ m1). The absolute value of this expression
for λ with non-negative real part is greater than one. On the other hand, the absolute value of the
right-hand side satisfies:∣∣∣∣S∗

∫ ∞

0
β(τ)π(τ) e−λτ dτ

∣∣∣∣ ≤ S∗
∫ ∞

0
β(τ)π(τ) dτ = 1.

Hence, there are no solutions with non-negative real part and E∗ is locally asymptotically stable.
This completes the proof. �

Appendix 2. Proof of stability of coexistence equilibrium

Proof: When p= 0 all derivatives of β , α and γ with respect to N2 are zero. When α(τ) = 0,
the equation for n1 becomes (λ− σ1 + m1)n1 = 0. Hence, if λ �= σ1 − m1, n1 = 0. From the last
equation of Equation (32), we have another eigenvalue λ = −r2N∗∗

2 /K2 or n2 = 0. Thus again, all
terms with the derivatives of β , α and γ with respect to N2 are zero. This simplifies the system for
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the perturbations significantly. Using the equations for the coexistence equilibrium, the system for
the perturbations takes the form:

λs = r1
(
1 − N∗∗

1 + α12N∗∗
2

K1

)
n1 − r1

K1
(n1 + α12n2)N∗∗

1

− S∗
∫ ∞

0
β(τ)y(τ ) dτ − Bs − m1s,

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = S∗
∫ ∞

0
β(τ)y(τ ) dτ + Bs,

λr =
∫ ∞

0
γ (τ)y(τ ) dτ − m1r,

λn2 = − r2
K2
(n2 + α21n1)N∗∗

2 ,

(A14)

where B = ∫∞
0 β(τ)i∗(τ ) dτ . From the last equation, we express n2 in terms of n1:

n2 = −D(λ)n1, (A15)

where

D(λ) =
α21

r2
K2
N∗∗
2

λ+ r2
K2
N∗∗
2

.

Furthermore, as before, r = y(0)�(λ). Substituting n2 and r in the first three equations, we obtain

λs = (σ1 + D1(λ))n1 − S∗
∫ ∞

0
β(τ)y(τ ) dτ − Bs − m1s,

yτ (τ )+ λy(τ ) = −(m1 + α(τ)+ γ (τ))y(τ ),

y(0) = S∗
∫ ∞

0
β(τ)y(τ ) dτ + Bs,

(A16)

where D1(λ) = (r1N∗∗
1 /K1)α12D(λ). Solving the differential equation and substituting y(τ ), and

using the boundary condition, we can express s in terms of y(0):

s = −1 − (σ1 + D1(λ))ρ(λ)− (σ1 + D1(λ))�(λ)

λ+ m1 − σ1 − D1(λ)
y(0). (A17)

Substituting this into the equation for the initial condition and canceling y(0), we obtain the
characteristic equation of the coexistence equilibrium

1 + B
1 − (σ1 + D1(λ))ρ(λ)− (σ1 + D1(λ))�(λ)

λ+ m1 − σ1 − D1(λ)
= S∗

∫ ∞

0
β(τ)π(τ) e−λτ dτ . (A18)

First we show that if σ1 + D1(0) < m1, then the characteristic equation of the coexistence equi-
librium does not have real non-negative roots. Denote byL(λ) the left-hand side of Equation (A18)
and byH(λ) – the right-hand side. For λ real and non-negativeH(0) = 1 and limλ→∞ H(λ) = 0.
Next, we show that L(0) > 1. To show that, we first notice that differentiating equation (28) with
respect to N1 we have

σ1 + D1(0) <
1

�+ γ
.

Hence, L(0) > 1. Furthermore, the numerator and the denominator in L(λ) remain positive for
all real positive λ. Hence, L(λ) > 1 for all non-negative λ. On the other hand, H(λ) ≤ 1 for all
non-negative λ. So, the characteristic equation does not have real non-negative roots.

The local asymptotic stability of the coexistence equilibrium in the two cases can be established
as the local stability of E∗. �
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