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Supplementary Materials and Methods 
 

BIOFRAG 
 

We used the BIOFRAG database (18) and software (13) to estimate fragmentation sensitivity of 

species populations (Fig. S4). While the BIOFRAG data and methodology have already been 

documented extensively (13, 18), here we present a brief overview of the parts that are relevant 

to our analysis. Running the BIOFRAG software requires making certain decisions (e.g., choice 

of percentage cover layer, standard deviation of smoothing kernel). The choices that we made for 

our analysis are also described in this section. 

 

We compiled existing primary biodiversity datasets containing abundance measurements at the 

plot level acquired in 109 datasets from 6 continents (the BIOFRAG database; (18)). As in 

Pfeifer et al. (13), each dataset contains a set of sample points within fragmented forest regions 

where the abundances of one or more species (generally true species, rather than morphospecies) 

were estimated. All regions encompassed anthropogenic forest edges and a mosaic of natural 

forests and other land uses. We only used datasets for which geographic coordinates of plots 

were provided by the authors of each dataset at high spatial accuracy. This is because the 

location of each plot in relation to the forest edges was important. All datasets in our analysis 

were from community-level surveys of a focal taxonomic group (rather than sampling for a 

target list of species).  

 

Since abundances are typically quantified at the level of species, we will refer to these taxonomic 

groups as ‘species’ throughout. The species in the database used in our analysis include 

vertebrates and invertebrates spanning four groups: arthropods, birds, herptiles, and mammals. 

Unless otherwise noted, we refer to the species within datasets as simply “species,” since these 

were treated as observations in our analysis. Thus, a single species that appears in two datasets 

would be treated as two species for purposes of our statistical analysis. We included species 

identity as a random effect to deal with this potential source of dependence (except for herptiles; 

see Statistical modeling section). We also conducted a version of our analysis where species 

duplicates were randomly dropped and found that results did not differ substantively (Figs. S7 & 

S9). 

 

The BIOFRAG software is a suite of tools that can be used to assess biodiversity responses to 

habitat fragmentation. In addition to a BIOFRAG dataset, a continuous (0-100) percent cover 

layer is required and a non-habitat mask layer may be used as well. For the percent cover layer, 

we used a global 30-m resolution remotely sensed tree cover map corresponding to the year 2000  

(35). To construct the non-habitat mask, we used the mapped land surface layer provided by 

Hansen et al. (35), which shows pixels where tree cover was mapped. For each dataset, we 

cropped the percent cover and mask layers to include only regions within 5 km of the minimum 

convex polygon associated with the dataset’s sample points. The layers were extracted and 

cropped using Google Earth Engine (36). To minimize distortion, for each dataset, we then re-

projected the sample points and percent cover and mask layers into an azimuthal equidistant 

(AEQD) projection at 30-m resolution with origin equal to the latitude/longitude centroid of the 

dataset’s sample points. 

 



 

 

 

We used these layers and the BIOFRAG software to derive edge influence maps, which quantify 

the local variation in percent cover. The edge influence (EI) of each point has magnitude equal to 

the maximum of the ‘landscape-scale’ standard deviation of the percent cover layer, and the 

difference between the point-scale percent cover (30-m pixel) and the landscape-scale average. 

We computed averages and standard deviations using a Gaussian smoothing filter with a 

‘landscape’ radius standard deviation. We used 1 km for the primary landscape radius (termed 

‘depth of edge influence’ in the BIOFRAG software) to maintain consistency across species and 

datasets, and because animal abundances have been shown to be sensitive to habitat within this 

distance (13, 37). However, to improve classifier performance, we made dataset-specific 

adjustments to the depth of edge influence as described in the next section. In contrast to a 

circular smoothing filter, the Gaussian filter puts reduced weight on points that are further away. 

This reflects our expectation that edge effects amplify with increasing proximity to a focal point. 

The sign of the edge influence at each point is equal to the sign of the difference between that 

point’s habitat cover value and the landscape average.  

 

Thus, EI in a grid cell i can be expressed as: 
 

𝐸𝐼𝑖 = max(𝜎𝐶 , |𝐶̅ − 𝐶𝑖|) × 𝑠𝑖𝑔𝑛(𝐶̅ − 𝐶𝑖) 
 

Where 𝐶̅ is the landscape average of habitat cover, 𝐶𝑖 is the point value of habitat cover (also 

called “point cover”; in our analysis, this is the percentage tree cover within a given 30-m pixel), 

and 𝜎𝐶 is the standard deviation of habitat cover at the landscape scale.  

 

After calculating EI maps for each region, we then calculated Edge influence sensitivity, S – a 

population-specific measure of fragmentation sensitivity that ranges from 0 (least sensitive) to 1 

(most sensitive) – for each species using the percent cover layer, the edge influence map, and the 

species abundance data using the formula: 

 

𝐸𝑑𝑔𝑒 𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 1 −  
∑ 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑃𝐶 𝑎𝑛𝑑 𝐸𝐼

∑ 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑃𝐶
 

 

If, for example, edge influence was not predictive of abundance after accounting for percent 

cover, then the two interpolated sums would be similar, their ratio would be near 1, and edge 

sensitivity would be near 0. Note that a high S does not imply negative impacts associated with 

edges since species that strongly prefer high edge influence regions would also have high edge 

influence sensitivity. Finally, for each dataset, a rating was computed that quantifies the extent to 

which sample points span low and high values of percent cover and edge influence and are at 

least partially found far (> 500 m) from habitat edges. These ratings range from 0 to 1, with 

higher values indicating datasets where edge influence sensitivity estimation is likely the most 

reliable. 

 

While edge influence sensitivity is sufficient to learn about where species are most fragmentation 

sensitive, it does not distinguish between species that prefer forest habitat and those that prefer 

matrix habitat. Additionally, it does not distinguish between species that strongly prefer edges 

and those that strongly avoid them. However, BIOFRAG also attempts to classify species 

according to habitat specialist type (Forest, Matrix, or Generalist) and edge influence preference 



 

 

 

(Edge, Core, or No preference) (13). This is done by treating abundance as a function of cover 

and edge influence. On the cover – edge influence graph, different patterns of abundances are 

matched with different classifications using a Naïve Bayes classifier-based approach where 

training datasets were constructed by simulating abundances as functions of point cover and edge 

influence for species in each category (13). Generally, species with estimated maximum 

abundance at low cover are classified as Matrix and those with estimated maximum abundance at 

high cover as Forest (others are classified as Generalist). Species with maximum abundance in 

low (near zero) edge influence regions tend to be classified as Core habitat users, in high 

(positive and/or negative) edge influence regions as Edge habitat users, and with uniform 

abundance across edge influence as having no preference. Because this classification approach 

distinguishes between edge-sensitive species that respond positively to edges and those that 

respond negatively to edges, we used it as our primary metric when modeling fragmentation 

sensitivity for forest species, treating Core species as those that are most (negatively) impacted 

by fragmentation (see Statistical modeling section). It is important to note that as with any 

statistical classifier, classification emerges solely from the datasets associated with the study, and 

some misclassifications undoubtedly occur due to Type I error, small sample size, and other 

sampling issues. Nevertheless, such misclassifications would result in error rather than bias with 

respect to testing our study hypotheses. It should also be noted that edge influence sensitivity (S) 

is not directly involved in the BIOFRAG classification of species. Rather, both S and the 

classification are developed using the edge influence maps (and abundance data, etc.), so they 

are only indirectly linked in the sense that they share common input. 

 

Depth of edge influence selection 

 

For some datasets, the 1-km main depth of edge influence that we initially selected resulted in 

sample points that did not fully span the point cover and edge influence plane.  This can lead to 

the Naïve Bayes classifier exhibiting bias toward certain categories. To mitigate this bias, for 

each dataset, we first simulated 100 artificial species abundances (at the actual sample point 

locations) – that is, species abundances were randomized across the existing spatial sampling 

structure. For sample points with at least 60% point cover (i.e., forest-associated species), we let 

abundances be uniformly distributed between 0 and 1, and for points with less than 60% point 

cover, we set abundances to zero. Under this null model, since simulated species are forest-

associated and their abundances are not dependent on edge influence, they should be categorized 

as “Forest No Preference.” However, in 39/94 datasets, simulated species were biased toward 

“Forest Core” or “Forest Edge.”  For those datasets, we dealt with the bias using a two-step 

procedure: (1) test whether the bias could be remedied by using a different finer (200 m) or 

broader DEI (2 km), (2) if adjusting DEI did not remedy the bias we removed the dataset entirely  

Of the 94 BIOFRAG datasets containing our focal taxa (mammals, birds, herptiles, and 

arthropods), we retained 73 datasets (55 at 1-km depth of edge influence, 17 at 200-m depth of 

edge influence, and 1 at 2-km depth of edge influence). 

 

The 73 datasets remaining span 35 regions and range in latitude from -42.6° to 51.8°.The Naïve 

Bayes classifier approach used by BIOFRAG can also classify species as “Absent,” 

“Nonabundant”, or “Unknown.” We omitted species with these classifications, focusing on those 

classified as Forest/Matrix/Generalist and Core/Edge/noPref. This yielded a total of 8 categories 

rather than 9, because there were no Generalist Core species. Our final dataset contained 3,275 



 

 

 

unique species and 4,747 combinations of datasets and species. Additional relevant sample sizes 

are provided in Tables S1 and S2. 
 

Predictor variables 
 

We used a number of spatial variables to predict whether or not Forest species were classified as 

“core” – an indicator of fragmentation sensitivity – and the likelihood of species being classified 

as Forest, Matrix, or Generalist. We used the approach described in Betts et al. (3), which we 

briefly outline here, to map long-term, anthropogenic historical forest loss, which we considered 

as a predictor of fragmentation sensitivity. Specifically, we assumed current tree cover within 

intact forest landscapes (IFLs) to be representative of historical tree cover there (38). We used a 

random forest model to link current tree cover to forest biome type and bioclimatic predictors 

(temperature, precipitation, etc.) within IFLs and then used this model to predict historical tree 

cover across all forest biome regions. We then computed historical forest loss, which we defined 

as the percentage of historical tree cover lost relative to tree cover in 2000, treating regions 

where year 2000 cover exceeded estimated historical cover as having 0% historical forest loss. 

The values range from 0% (no historical forest loss) to 100% (complete loss of historical forest). 

We treated regions outside of forest biomes as having 0% historical forest loss. To estimate 

(percent) historical forest loss for each BIOFRAG dataset, we first applied a 1-km buffer to each 

of the sample points (in AEQD projection). We then averaged historical forest loss (5-km 

resolution) across each of the resulting polygons to obtain one value per sample point. Finally, 

we averaged across sample points to obtain one historical forest loss estimate per dataset. 

Historical forest loss included any deforestation detected prior to 2000 that had not subsequently 

been afforested by 2000, but our results were robust to the redefinition of this variable to include 

only deforestation prior to 1960. This latter definition allows for the possibility that extinction 

debt (39) could result in an underestimation of the effect of forest loss on the proportion of forest 

core species. We acknowledge that it is not possible to quantify the complex process of forest 

loss and gain at evolutionary timescales. However, quantification of anthropogenic forest loss – 

albeit imperfect – is essential for testing extinction filter effects. 

 

Along with the anthropogenic historical forest loss variable described above, we used maps of 

forest fire type, glaciation, and storms to derive a set of binary “disturbance” variables (Fig. 1). 

We reasoned that the effect of glaciers on forest landscape structure is not just to the area 

covered by ice (which would not necessarily generate high edge). The land near the terminal part 

of the glacier undergoes disturbance and succession back into forest at different rates depending 

on topography, moisture, soil availability dispersal etc. (40, 41). This variation will therefore 

affect patchiness and edge effects in pre- and post-glacial landscapes. For each BIOFRAG 

dataset, we determined if its location was glaciated at the last glacial maximum (LGM) using 

Ray & Adams (20), if it experiences high intensity forest crown fires using Lavorel et al. (19), 

whether or not it experiences tropical storms using Met Office (21), and if it had experienced at 

least 50% historical forest loss. We created three binary disturbance variables: “any disturbance” 

(fires, glaciers, storms, or historical forest loss), “natural disturbance” (fires, glaciers, or storms), 

and “historical forest loss” (historical forest loss). This approach grouped high intensity 

disturbances into three categories: natural, anthropogenic (historical forest loss), and combined 

(“any disturbance”). As an alternative to explicitly using disturbance, we considered absolute 

latitude as another predictor of fragmentation sensitivity. 

 



 

 

 

Of course, the binary disturbance variables used in our analyses are limited in the sense that they 

do not account for many differences in disturbance nature, such as spatial pattern, length of 

disturbance, gradients in severity, or the time scale over which the disturbance has occurred. For 

historical forest loss in particular, spatial scale is important to consider because some broad-scale 

regions (e.g., the Atlantic Forest) may have experienced substantial deforestation, whereas 

BIOFRAG regions in these areas might have experienced less deforestation (because regions 

cannot be located in areas that are currently heavily deforested since in order to be included in 

the study then needed to span an edge/fragmentation gradient). The focus of our analysis is on 

general global patterns only, and thus more subtle relationships are better suited to being 

assessed with detailed landscape-specific analyses. 

 

We considered two potential predictors of fragmentation sensitivity based on species’ geographic 

ranges: geographic range size (km2; base 10 log transformed) and distance to edge of range (km; 

base 10 log(1+x) transformed). For this portion of the analysis, we used International Union for 

Conservation of Nature (IUCN) and BirdLife range maps, considering only polygons coded as 

Native and either Extant or Probably Extant (42, 43). We converted the polygon range maps to 

1,000 m resolution rasters in longitude/latitude format. When determining range sizes, we 

clipped the species range map rasters using species altitude limits given in their IUCN Red List 

fact sheet pages. For this step, we used the U.S. Geological Survey’s Global 30 Arc-Second 

Elevation map. Of the taxa in our analysis, the range map sets were comprehensive for 

mammals, amphibians, and birds. 
 

Biodiversity hotspots 
 

We determined which of the low- and high-disturbance BIOFRAG regions occurred in 

biodiversity hotspots because conservation in these regions is likely to be particularly important 

(33). To do this, we used a map of biodiversity hotspots, ‘biodiversity hotspots revisited’ by 

Mittermeier et al. (44, 45), that shows regions with 1,500 or more endemic, native plant species 

that have lost 70% or more of their native vegetation (33, 44, 45). Of the 35 BIOFRAG regions 

in our study, 24 (68.6%) were located within hotspots. Moreover, the proportion within hotspots 

was substantially greater in low disturbance (17/21; 81.0%) than in high disturbance (7/14; 

50.0%) regions. 

 

Statistical modeling 

 

We used mixed-effects logistic regression to test if the likelihood of forest specialist species 

being classified as Core varied with respect to the cumulative effect of these disturbance 

variables, absolute latitude, and the other predictors described in the “Predictor variables” 

section. As species within a dataset occurred in the same region and were therefore not 

independent, we included ‘dataset’ as a random effect. Each observation corresponds to a species 

within a dataset. We fit all models predicting core/non-core species using the ‘glmmTMB’ 

function in the glmmTMB R package (46, 47). We used dataset rating as the weighting variable. 

In addition to separate models for each of the focal taxa groups (Table S3), we fit combined 

model for all species together, including taxonomic group (mammals, herptiles, birds, or 

arthropods) as a random effect. Because some species occurred in multiple datasets, we included 

species identity as a random effect except for herptiles, where the species-level random effect 

prevented convergence. Since the majority of species appear only once in the dataset (Table S1), 



 

 

 

the within-species variance component can be difficult to estimate. While most models 

converged with the default settings of nlminb (the optimizer used by glmmTMB), we slightly 

relaxed the convergence criteria (by decreasing the relative tolerance from 10-10 to 10-7) to be 

able to fit a larger set of models. As a sensitivity analysis, we also report our main results when 

species-level duplicates are randomly dropped (i.e., each species is removed from all but one 

dataset, if needed; Figs. S7 & S9). For this sensitivity analysis, we used the default optimizer 

settings. 

 

We considered a number of different sets of predictor variables. Specifically, we fit models with 

[1] each of the three disturbance variables alone, [2] absolute latitude alone, [3] the “top” 

disturbance variable (based on AIC) together with absolute latitude (to test whether disturbance 

has an effect independent of latitude), and [4] range size and distance to edge of range together 

with each disturbance variable. All p-values were false discovery rate (FDR) adjusted to control 

the expected proportion of Type I errors (48). Coefficient confidence intervals and confidence 

bands for the mean response were derived under the assumption that the logit scale estimates are 

normally distributed. To compare the models within each group, we computed differences in 

AIC. We did not fit models in cases where a binary disturbance variable was included as a 

predictor and, in either low or high disturbance regions, all species in our sample were either 

core or non-core. In such cases (termed “complete separation” in logistic regression), the log 

odds of species being core cannot be estimated well for both low- and high-disturbance regions.  

 

We used a separate modeling approach – Bayesian multinomial regression – to estimate the 

likelihood of species being Forest, Matrix, or Generalist as a function of latitude and (separately) 

as a function of “any” disturbance. These models were fit using the ‘brms’ R package with 

default non-informative priors (49). As before, random intercepts by dataset identity, species 

identity, and taxonomic group for the “All species” model were included. Additionally, we 

included random slopes by class for the “All species” model here. This was not done for our 

other models because they did not converge with random slopes. The multinomial regression 

parameterization was based on treating Forest as the reference level and estimating the odds of 

Matrix and the odds of Generalist relative to Forest. Because of their complexity, we fit the 

models using variational Bayes with the mean field approximation. To regularize inferences, we 

used weakly informative priors: Normal(0,5) for intercepts and binary predictors, Normal(0,1) 

for standard deviations, and Normal (0,0.01) for slope parameters. The slope parameters are 

associated with absolute latitude. A value of 0.1 corresponds to an increase of 10.5% in the odds 

of, for example, a species being classified as Matrix versus Forest per one degree increase in 

absolute latitude. 

 

Phylogenetic relatedness 

 

We were not able to account for phylogenetic dependence among study species with 

phylogenetic comparative methods because comprehensive or well-resolved phylogenetic trees 

are not available for all species in our sample. Moreover, gaps in phylogenetic data are much 

more extensive in some groups, especially arthropods, potentially leading to taxonomic bias (50). 

Furthermore, Amphibia and Squamata taxonomy are unstable, making phylogenetic analyses 

with these taxa difficult (51–54). Instead, we conducted a sensitivity analysis for our primary 

disturbance model by including taxonomic family and order as random effects (i.e., with random 



 

 

 

intercepts). We determined taxonomic family and order for each species in our dataset using the 

Encyclopedia of Life (EoL), which includes taxonomic data from many references (55). We 

opted to use the EoL here because some BIOFRAG species names are recognized only by certain 

taxonomic authorities. Many disagreements between taxonomic sources are at the genus or 

species level, which would not impact our assignment of BIOFRAG species names to taxonomic 

families. We excluded species for which we were not able to determine taxonomic family (206 

arthropods, 1 bird, 2 herptiles, and 1 mammal). For the species with known taxonomic family 

and order, we fit our generalized logistic regression mixed models using “any” disturbance to 

predict the likelihood of species being classified as core with random intercepts by taxonomic 

family, species identity, and dataset identity; i.e., “(1 | order) + (1 | family) + (1 | species) + (1 | 

study)”. 

 

Migratory status 

 

We hypothesized that bird species in high disturbance areas are less likely to be fragmentation 

sensitive (classified by BIOFRAG as using core habitat) than bird species in low disturbance 

areas. However, it is possible that migrant bird species are both more likely to be found in high-

disturbance areas and more likely to be fragmentation insensitive (not core), making migratory 

status a potential confounding variable in our analysis. 

 

To assess this possibility, we refit our primary models for birds excluding migratory species 

(Table S5). To do this, we determined migratory status for each of the bird species in our 

analysis using BirdLife’s Data Zone species’ fact sheet pages (56). For “species” listed in 

BIOFRAG that were actually families or genera, we instead used the most common migratory 

status (breaking ties alphabetically) of the species within that taxon. Of the 1,260 unique species 

in our analysis, 21 are altitudinal migrants, 274 are full migrants, 26 are nomadic, and 939 are 

not migrants. We excluded only “full migrants” from this portion of our analysis. 

 

Rarefaction curves 

 

We used rarefaction curves to investigate whether changes in the apparent distribution of species 

with respect to latitude and incomplete sampling could be influencing our results. The curves 

show estimated diversity as a function of number of individuals observed. We determined the 

number of each species that was observed within each habitat type (Forest, Matrix, or Generalist) 

and disturbance level (Low or High) by pooling data across sample points and datasets and 

rounding non-integer abundance estimates. We then calculated the rarefaction curves (with 95% 

confidence bands) using the ‘iNext’ R package (57).  

Supplementary Text 

 

Species’ responses to landscape-scale fragmentation 

 

Our analysis is conducted from the perspective of sample points and surrounding 1-km buffers 

within regions. To illustrate the connection between our measure of fragmentation – edge 

sensitivity (S) – and landscape-scale fragmentation per se as a landscape-scale process (sensu 6), 

we conducted a simulation exercise. We repeatedly simulated landscapes of size 100 x 100 using 



 

 

 

the two-dimensional fractional Brownian motion neutral landscape model (58). We varied the 

fractional dimension in the model, which controls the level of fragmentation for each level of 

habitat amount. For each simulated landscape, we used a constant threshold to divide the 

landscape into habitat and non-habitat pixels with a given habitat amount. Thus, these simulated 

landscapes represent various degrees of fragmentation and habitat amount. We varied habitat 

amount from 0% to 100% in increments of 5% and let the fractal dimension (inversely related to 

fragmentation) take values of 0.05, 0.5, 1, and 1.5. For each combination, we generated 10 

separate landscapes. We then classified each habitat pixel in each landscape as either core or 

edge depending on whether at least one of the eight neighboring pixels occurred in the matrix 

(i.e., non-habitat). 

 

Using these simulated landscapes, we plotted the proportion of core habitat in each landscape 

versus the landscape-scale habitat amount (either core or edge). When fragmentation is very low 

(i.e., fractal dimension is high), there are few edge pixels and core habitat amount and total 

habitat amount (core or edge) are roughly equal. When fragmentation is high, the amount of core 

habitat declines rapidly with decreasing total habitat amount due to the rapid increase in edge 

habitat. This demonstrates that edge-sensitive (core) species exhibit non-linear responses to 

fragmentation occurring at the landscape scale. Therefore, ‘forest core’ species in our analysis, 

all other things being equal, will be sensitive to fragmentation per se at the landscape scale.  

 

Distinguishing the effects of habitat amount from fragmentation 

 

BIOFRAG automatically classifies species as Forest/Matrix/Generalist and Core/Edge/noPref 

using information about both tree cover and edge influence. Because forest usually needs to be 

lost to create edge, it can be argued that the Core/Edge/noPref designation may be partly driven 

by habitat (forest cover) amount, rather than purely associated with edge/fragmentation effects. 

This leads to the possibility that edge sensitivity, and in particular determination of species 

designated as ‘forest core’, could be explained as a forest cover amount effect (59); ‘forest core’ 

species could simply be species that are sensitive to landscape-scale forest loss (i.e., habitat 

amount). 

 

To explore this possibility, we compared the BIOFRAG classifications to an alternative 

Core/Edge/noPref classification derived from using forest amount (as represented by forest 

cover) alone. If the two classification methods produce similar results, it would suggest that 

forest amount is heavily involved in BIOFRAG’s determination of Core/Edge/noPref status, so 

we could not claim our findings about the proportion of forest species that require core habitat 

are solely related to fragmentation per se. 

 

For our alternative classification, we first computed the mean forest cover within 100 m and 

within the associated BIOFRAG depth of edge influence (generally 1 km) of each sample point, 

which we termed Cover_100 and Cover_landscape, respectively. We then modeled abundance 

for each species using multiple linear regression with Cover_100 and Cover_landscape as 

explanatory variables. The reasoning for using these predictors is that Cover_100 statistically 

accounts for the degree to which a species is associated with forest at fine scales. A positive 

relationship between Cover_landscape and abundance supports the hypothesis that species are 

sensitive to forest loss at broader scales [via influences to dispersal/mass effects etc. (60)]. 



 

 

 

 

We fit one model per species within each BIOFRAG dataset. We standardized the response and 

predictors to have mean 0 and standard deviation 1 to make coefficients comparable across 

species and datasets. Because our “probability of being core” models are for Forest species only, 

we restricted our attention to Forest species as determined by BIOFRAG. 

 

To obtain discrete categories, we classified species using the coefficient of Cover_landscape. 

Low (negative) values indicate forest species that tend to prefer low forest amounts (since 

abundance is negatively related to cover at 1 km after controlling for cover at 100 m), values 

near zero indicate species with no forest amount preference, and high values indicate high forest 

amount species. So, we classified species as High Forest Amount (the equivalent of Core), Low 

Forest Amount (the equivalent of Edge), or noPref if the coefficient was < -x, > x, or between –x 

and +x respectively. We chose the threshold x, which turned out to be 0.0494, so that the number 

of Forest noPref species in our classification system was equal to that reported in our BIOFRAG 

analysis. 

 

As a further and more stringent test, we asked whether species designated as “Forest Amount” 

sensitive in our new analysis would produce patterns similar to those described in the main text 

of our manuscript. In other words, (1) Does the proportion of Forest Amount species decline 

strongly with increasing latitude, and (2) Does historical disturbance (natural and anthropogenic) 

predict the proportion of Forest Amount species?  To assess this, we refit the latitude and 

disturbance models using, as the response variable, whether or not species were classified as 

“High forest amount” (analogous to Forest Core in BIOFRAG).  

 

The disturbance effect estimates were substantially smaller when modeling whether or not 

species were categorized as ‘High Forest Amount’ compared to when using BIOFRAG Forest 

Core status as the response (Table S3 versus S8). This indicates that forest amount cannot 

explain, on its own, the effects of either latitude or disturbance on the proportion of forest core 

species, as defined using the BIOFRAG approach. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
Fig. S1. BIOFRAG dataset locations for the species groups in our analysis. Sizes of circles 

indicate numbers of species in each region that were used in our analysis and numbers in panel 

titles indicate totals across all relevant regions. 



 

 

 

 
Fig. S2. Examples of simulated landscapes with different levels of habitat amount (either core or 

edge) and fragmentation (inversely related to fractal dimension). Edge-avoiding species show 

highly non-linear abundance declines as habitat is lost at high levels of fragmentation (left 

column) due to the rapid increase in edge pixels (Fig. S3). In contrast, when fragmentation is low 

(right column), the change in number of edge pixels is small, so the decline in core species 

abundances (or proportion of core habitat) is roughly linear. This demonstrates that edge 

sensitivity scales up to induce landscape-scale fragmentation effects for core species. 
 
 
 
 



 

 

 

 
Fig. S3. Change in population size (assuming constant species density in remaining habitat) as a 

function of habitat loss for four habitat fragmentation scenarios (measured as ‘fractal dimension’ 

with low values of fractal dimension reflecting high fragmentation. When fragmentation is high, 

the drop in core habitat is most extreme because of the rapid rise in edge pixels (Fig. S2). At 

lower levels of fragmentation, fewer edge pixels are present for a given amount of habitat, so the 

decline is closer to linear. The dashed isometric black line indicates the rate at which an edge 

insensitive species would decline with habitat loss. 



 

 

 

 
Fig. S4. Conceptual diagrams with examples of how Edge Influence (EI) and species’ sensitivity 

to edge (S) are calculated using the Biofrag method. For details, see user manual at: 

https://github.com/VeroL/BioFrag/blob/master/Edge_response_software_user_manual_2016082

7.pdf 

https://github.com/VeroL/BioFrag/blob/master/Edge_response_software_user_manual_20160827.pdf
https://github.com/VeroL/BioFrag/blob/master/Edge_response_software_user_manual_20160827.pdf
https://github.com/VeroL/BioFrag/blob/master/Edge_response_software_user_manual_20160827.pdf
https://github.com/VeroL/BioFrag/blob/master/Edge_response_software_user_manual_20160827.pdf


 

 

 

 
Fig. S5. Distributions of species across habitat types (Forest, Matrix, and Generalist) at low and 

high disturbance locations. Estimates with 95% credible intervals were derived using a 

hierarchical Bayesian multinomial regression model that accounts for variability associated with 

datasets (and taxonomic group for the “All species” model). The odds of species being classified 

as Matrix or Generalist (relative to Forest) tend to be greater in high disturbance areas than in 

low disturbance areas, although this is not true in all cases (Table S4). 

 

 

 



 

 

 

  
Fig. S6. Rarefaction curves (with 95% confidence bands) for low and high intensity disturbance 

regions. Each region type includes multiple BIOFRAG datasets, which in turn contain multiple 

sample points where abundances were measured. Species diversity is plotted as a function of the 

sample size in terms of number of individuals observed (rather than number of sample points). 

These curves indicate that species accumulation nearly saturates in high disturbance areas and 

for generalist species. 



 

 

 

 
Fig. S7. Sensitivity of our results to the method used to account for taxonomic/phylogenetic 

dependence. The plots show the estimated proportions (mean ± 95% CI) of forest species 

associated with core habitat at low and high disturbance sites according to mixed-effects logistic 

regression models where study identity is included as a random effect. The binary ‘disturbance’ 

variable indicates whether or not each of the 73 BIOFRAG datasets comes from a location that 

has had high severity disturbances of any type (glaciation, tropical storms, crown fires, or greater 

than 50% historical forest loss). In the “Duplicates” method, when a species occurs in multiple 

datasets, it is randomly dropped from all but one of the datasets, in the “Order+Family” method, 

random intercepts by taxonomic order and family were included. This approach accounts for 

potential statistical non-independence resulting from similar responses by species within the 

same family or order. Lastly, in the “Species” method (see also Table S3), all data are used and 

only random intercepts by species and study were included. Note the “Order+Family” herptiles 

model results are omitted because this model did not converge. 



 

 

 

 
Fig. S8. Distributions of species across Forest, Matrix, and Generalist habitat types as functions 

of absolute latitude. Lines show mixed multinomial regression model fitted probabilities with 

random intercepts by dataset and random slopes by class for “All species.”  In general, the 

likelihood of species being categorized as Forest decreases as latitude increase. This result could 

be expected under the hypothesis that low latitude-tropical regions have had reduced historical 

disturbance, thereby reducing the prevalence of species evolved for disturbed habitats. 

Conversely, high latitudes have a relatively high proportion of species adapted to ‘matrix’ 

(disturbed areas). Note that this result is not an artifact of incomplete sampling of forest or 

matrix species at high or low latitudes; rarefaction curves indicate that matrix species were well 

sampled across latitudes (see Fig. S6). 95% credible bands are shown around the fitted lines. 



 

 

 

 
Fig. S9. Logistic regression models used to estimate the proportion of core species as a function 

of absolute latitude when “duplicate” species are randomly dropped from the dataset as a form of 

sensitivity analysis (SI Methods; compare with Fig. 3). The response variable is whether or not a 

species was classified as preferring core habitat (e.g., forest core). Overall, the general pattern 

observed (decreasing relationship with latitude for forest species) is what one would predict if 

high-latitude species have evolved to cope with disturbance. Numbers of observations are shown 

next to each of the fitted lines. All p-values were false discovery rate (FDR) adjusted to control 

the expected proportion of Type I errors. 

 

 

 



 

 

 

Table S1. Numbers of populations and species in the BIOFRAG database and in our analysis. 

Species’ populations are specific to individual BIOFRAG datasets. Since the same species may 

appear in multiple datasets, the numbers of unique species (termed ‘Unique only’) are typically 

less than the corresponding numbers of populations. In some cases, a ‘species’ can represent a 

broader taxonomic unit (e.g., Family). For simplicity, we refer to populations as species in the 

text. For our statistical analysis, we further omitted species that could not be classified as Forest, 

Matrix, or Generalist and Core, Edge, or No Preference. 

 

 Our focal taxa Our statistical analysis 

 Populations Unique only Populations Unique only 

Arthropods 2,955 2,682 1,968 1,803 

Birds 3,145 1,260 2,150 997 

Herptiles 354 282 310 249 

Mammals 394 265 319 226 

Plants 0 0 0 0 

Other 0 0 0 0 

All species 6,848 4,489 4,747 3,275 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 

 

 

Table S2. Numbers of species in each habitat and type of edge preference category (“noPref” 

indicates no edge preference) that were included in our statistical analysis. We omitted species 

that could not be placed into this categorization system due to, for example, having extremely 

low abundances across all sample points (Supporting Methods). The final three columns show 

the proportions of species associated with each type of edge preference. 

 

  Number of species Proportion of species 

Group Habitat Core Edge noPref Sum Core Edge noPref 

All species 

Any habitat 1615 2504 628 4747 0.340 0.527 0.132 

Forest 1404 1383 482 3269 0.429 0.423 0.147 

Generalist 2 186 32 220 0.009 0.845 0.145 

Matrix 209 935 114 1258 0.166 0.743 0.091 

Arthropods 

Any habitat 742 1054 172 1968 0.377 0.536 0.087 

Forest 686 526 172 1384 0.496 0.380 0.124 

Generalist 0 46 0 46 0.000 1.000 0.000 

Matrix 56 482 0 538 0.104 0.896 0.000 

Birds 

Any habitat 609 1141 400 2150 0.283 0.531 0.186 

Forest 460 608 258 1326 0.347 0.459 0.195 

Generalist 0 137 30 167 0.000 0.820 0.180 

Matrix 149 396 112 657 0.227 0.603 0.170 

Herptiles 

Any habitat 125 158 27 310 0.403 0.510 0.087 

Forest 119 128 25 272 0.438 0.471 0.092 

Generalist 2 2 2 6 0.333 0.333 0.333 

Matrix 4 28 0 32 0.125 0.875 0.000 

Mammals 

Any habitat 139 151 29 319 0.436 0.473 0.091 

Forest 139 121 27 287 0.484 0.422 0.094 

Generalist 0 1 0 1 0.000 1.000 0.000 

Matrix 0 29 2 31 0.000 0.935 0.065 

 

 

 

 

 

 

 

 

  



 

 

 

Table S3. Table of model results for probability of Forest species being “Forest Core.”  

BIOFRAG classifies species as core if they prefer core habitat. Different models are separated by 

black lines beginning at the “Variable” column. Each row shows information on the effect of 

historical forest loss (a measure of anthropogenic disturbance), natural disturbance (tropical 

storms, fires, or glaciers), or any disturbance (either historical forest loss of natural disturbance) 

on the odds of a species being classified as core. The “Estimate” and “Std. error” columns are on 

the log odds scale. The p-values have been false discovery rate adjusted (with significant 

relationships highlighted in green). The columns with asterisks show the percentage effect (with 

95% CI) of being in a region with high disturbance or historical forest loss on the odds of species 

being classified as core. The estimates provide evidence that the fragmentation sensitivity of 

forest core tends to increase with latitude and decrease with disturbance. Δ AIC values are 

relative to the best fitting model in each group. Results are omitted for cases where models could 

not be fit due to non-convergence or separation (e.g., no core species in high disturbance 

regions). Parameters with p-values less than 0.05 are highlighted in green. 

Group Variable Estimate Std. error p-value Estimate* Lower* Upper* ∆ AIC 

All species 

(n=3,269) 

Natural disturbance -1.709 0.265 < 0.001 -81.9% -89.2% -69.5% 0.000 

Any disturbance -1.559 0.247 < 0.001 -79.0% -87.0% -65.9% 3.115 

Historical forest loss -0.299 0.438 0.494 -25.8% -68.5% 74.8% 34.62 

Arthropods 

(n=1,384) 

Any disturbance -1.351 0.39 0.002 -74.1% -87.9% -44.3% 0.000 

Natural disturbance -1.307 0.488 0.019 -72.9% -89.6% -29.5% 2.859 

Historical forest loss -0.799 0.773 0.439 -55.0% -90.1% 104.6% 7.462 

Birds 

(n=1,326) 

Natural disturbance -1.956 0.346 < 0.001 -85.9% -92.8% -72.1% 0.000 

Any disturbance -1.744 0.372 < 0.001 -82.5% -91.6% -63.7% 6.833 

Historical forest loss 0.595 0.726 0.442 81.3% -56.3% 651.9% 22.579 

Herptiles 

(n=272) 

Any disturbance -0.601 0.593 0.439 -45.2% -82.9% 75.5% 0.000 

Natural disturbance -0.601 0.593 0.439 -45.2% -82.9% 75.5% 0.000 

Historical forest loss -0.601 0.593 0.439 -45.2% -82.9% 75.5% 0.000 

Mammals 

(n=287) 

Any disturbance -2.032 2.318 0.439 -86.9% -99.9% 1132.1% 0.000 

Natural disturbance -2.032 2.318 0.439 -86.9% -99.9% 1132.1% 0.000 

Historical forest loss -2.032 2.318 0.439 -86.9% -99.9% 1132.1% 0.000 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table S4. Bayesian multinomial regression model results for the effects of absolute latitude and 

disturbance on the likelihood of species being classified as Forest, Matrix, or Generalist. Models 

are separated by black lines. In each case, the reference level is Forest. That is, each row shows 

the effect of either going from low to high historical disturbance intensity or a one-degree 

increase in absolute latitude on the odds of either Matrix or Generalist habitat type versus Forest 

habitat type. The “Estimate” and “Std. error” columns are on the log odds scale, while the 

columns marked with asterisks show the estimates with 95% credible intervals on the odds scale. 

The generally positive estimates and many credible intervals that do not contain zero provide 

evidence that the odds of being classified as Matrix and the odds of being classified as Generalist 

generally increase as absolute latitude and disturbance intensity increase. The models are 

hierarchical in that they account for variability associated with BIOFRAG dataset identity (and 

taxonomic group for the “All species” model). Because there were no high-disturbance generalist 

mammals and no low-disturbance generalist herptiles in our dataset and we used weakly 

informative priors, these estimates tended to diverge. 

Variable Group n Habitat Estimate Std. error Estimate* Lower* Upper* 

Absolute 

latitude 

All species 4,747 
Matrix 0.036 0.003 3.6% 3.1% 4.2% 

Generalist 0.096 0.005 10.1% 9.0% 11.2% 

Arthropods 1,968 
Matrix 0.010 0.003 1.0% 0.4% 1.7% 

Generalist 0.025 0.006 2.5% 1.2% 3.8% 

Birds 2,150 
Matrix 0.087 0.004 9.1% 8.2% 10.1% 

Generalist 0.112 0.007 11.8% 10.2% 13.4% 

Herptiles 310 
Matrix 0.020 0.023 2.0% -2.5% 6.7% 

Generalist 0.121 0.025 12.8% 7.3% 18.6% 

Mammals 319 
Matrix -0.022 0.023 -2.2% -6.5% 2.2% 

Generalist 0.132 0.040 14.1% 5.4% 23.4% 

Disturbance 

(any) 

All species 4,747 
Matrix 2.006 0.090 643.5% 522.7% 787.6% 

Generalist 3.273 0.157 2539.7% 1839.7% 3492.2% 

Arthropods 1,968 
Matrix -0.317 0.106 -27.2% -40.8% -10.4% 

Generalist 1.129 0.295 209.1% 73.5% 451.0% 

Birds 2,150 
Matrix 3.812 0.136 4422.2% 3362.7% 5805.8% 

Generalist 3.199 0.182 2351.4% 1615.1% 3403.8% 

Herptiles 310 
Matrix 0.706 0.396 102.6% -6.8% 340.4% 

Generalist 2.772 0.695 1498.6% 309.5% 6140.2% 

Mammals 319 
Matrix -0.011 1.241 -1.1% -91.3% 1025.6% 

Generalist -2.330 3.188 -90.3% -100.0% 4928.2% 

 

 

  



 

 

 

Table S5. Table of model results for probability of species being forest core for non-migratory 

birds only (compare with Table S3). Different models are separated by black lines beginning at 

the “Variable” column. Each row shows information on the effect of historical forest loss (a 

measure of anthropogenic disturbance), natural disturbance (storms, fires, or glaciers), or any 

disturbance (either historical forest loss of natural disturbance) on the odds of a species being 

classified as core. The “Estimate” and “Std. error” columns are on the log odds scale. The p-

values have been false discovery rate adjusted (with significant relationships highlighted in 

green). The columns with asterisks show the percentage effect (with 95% confidence interval) of 

being in a region with high disturbance or historical forest loss on the odds of species being 

classified as core. Parameters with p-values less than 0.05 are highlighted in green. The removal 

of migratory birds from the dataset did not substantially alter our primary results (Table S3). 

Group Variable Estimate Std. error p-value Estimate* Lower* Upper* ∆ AIC 

Non-migratory 

Birds 

(n=1,036) 

Natural disturbance -2.139 0.419 < 0.001 -88.2% -94.8% -73.3% 0.000 

Any disturbance -1.839 0.432 < 0.001 -84.1% -93.2% -62.9% 6.543 

Historical forest loss 0.808 0.944 0.392 124.5% -64.7% 1328.5% 20.305 

 

 

  



 

 

 

Table S6. Additional model results for probability of species being classified as forest core that 

incorporate distance to edge of range and/or range size. Different models are separated by black 

lines beginning at the “Variable” column. Each row shows information on the effect of natural 

disturbance (storms, fires, or glaciers), any disturbance (either historical forest loss or natural 

disturbance), distance to edge of species’ geographic range, or geographic range size on the odds 

of a species being classified as core. Δ AIC values are relative to the best fitting model in each 

group. The “Estimate” and “Std. error” columns are on the log odds scale. The p-values have 

been false discovery rate adjusted. The columns with asterisks show the percentage effect (with 

95% confidence interval) of either a 1 unit increase (continuous variables) or going from low to 

high (disturbance variables). Results are omitted for cases where models could not be fit due to 

non-convergence or separation. 

Group Variable Estimate Std. error p-value Estimate* Lower* Upper* Δ AIC 

All species 

(n=1,718) 

Natural disturbance -1.995 0.315 < 0.001 -86.4% -92.7% -74.8% 0.000 

Natural disturbance -1.887 0.322 < 0.001 -84.8% -91.9% -71.5% 
0.368 

Range size -0.237 0.184 0.319 -21.1% -45.0% 13.3% 

Natural disturbance -1.941 0.339 < 0.001 -85.6% -92.6% -72.1% 
1.563 

Distance to edge -0.151 0.213 0.564 -14.0% -43.4% 30.6% 

Any disturbance -1.824 0.313 < 0.001 -83.9% -91.3% -70.2% 5.151 

Any disturbance -1.713 0.327 < 0.001 -82.0% -90.5% -65.8% 
6.012 

Range size -0.209 0.196 0.439 -18.8% -44.7% 19.1% 

Any disturbance -1.848 0.306 < 0.001 -84.2% -91.3% -71.3% 
6.404 

Distance to edge -0.193 0.217 0.462 -17.5% -46.1% 26.3% 

Birds 

(n=1,318) 

Natural disturbance -1.964 0.351 < 0.001 -86.0% -92.9% -72.1% 0.000 

Natural disturbance -1.918 0.333 < 0.001 -85.3% -92.4% -71.8% 
0.098 

Distance to edge -0.358 0.246 0.292 -30.1% -56.9% 13.3% 

Natural disturbance -1.98 0.396 < 0.001 -86.2% -93.7% -70.0% 
1.992 

Range size 0.024 0.264 0.952 2.4% -38.9% 71.7% 

Any disturbance -1.721 0.326 < 0.001 -82.1% -90.6% -66.1% 
6.148 

Distance to edge -0.478 0.265 0.168 -38.0% -63.2% 4.3% 

Any disturbance -1.744 0.377 < 0.001 -82.5% -91.6% -63.4% 6.8 

Any disturbance -1.731 0.446 < 0.001 -82.3% -92.6% -57.5% 
8.797 

Range size -0.017 0.312 0.956 -1.7% -46.6% 81.0% 

Herptiles 

(n=167) 

Any disturbance -1.083 0.63 0.18 -66.1% -90.2% 16.4% 0.000 

Natural disturbance -1.083 0.63 0.18 -66.1% -90.2% 16.4% 0.000 

Any disturbance -1.201 0.654 0.168 -69.9% -91.6% 8.4% 
0.095 

Distance to edge 0.704 0.536 0.316 102.1% -29.3% 478.0% 

Natural disturbance -1.201 0.654 0.168 -69.9% -91.6% 8.4% 
0.095 

Distance to edge 0.704 0.536 0.316 102.1% -29.3% 478.0% 

Any disturbance -0.759 0.795 0.462 -53.2% -90.2% 122.5% 
1.569 

Range size 0.26 0.396 0.568 29.7% -40.3% 181.5% 

Natural disturbance -0.759 0.795 0.462 -53.2% -90.2% 122.5% 
1.569 

Range size 0.26 0.396 0.568 29.7% -40.3% 181.5% 



 

 

 

Mammals 

(n=233) 

Any disturbance -3.38 2.577 0.316 -96.6% -100.0% 431.5% 
0.000 

Range size -0.84 0.466 0.168 -56.8% -82.7% 7.6% 

Natural disturbance -3.38 2.577 0.316 -96.6% -100.0% 431.5% 
0.000 

Range size -0.84 0.466 0.168 -56.8% -82.7% 7.6% 

Any disturbance -2.049 2.339 0.462 -87.1% -99.9% 1162.4% 0.801 

Natural disturbance -2.049 2.339 0.462 -87.1% -99.9% 1162.4% 0.801 

Any disturbance -2.146 2.344 0.462 -88.3% -99.9% 1057.2% 
2.637 

Distance to edge -0.164 0.398 0.716 -15.1% -61.1% 85.1% 

Natural disturbance -2.146 2.344 0.462 -88.3% -99.9% 1057.2% 
2.637 

Distance to edge -0.164 0.398 0.716 -15.1% -61.1% 85.1% 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table S7. Classification of forest species into Core, Edge, and No Preference (noPref)  in our 

study compared to classification using the habitat amount method [see supplementary methods 

(17)]. In the habitat amount method, we used tree cover within 100 m and ‘landscape’ radius 

(generally 1 km) to model abundances. For each species, the coefficient associated with tree 

cover within 1 km was used to group species into high forest amount (large positive coefficient; 

analogous to Core), low forest amount (large negative coefficient; analogous to Edge), and forest 

noPref (coefficient near zero). The two-way table shows that these methods were in agreement 

53.0% of the time, which provides evidence that the original categories cannot be recovered 

using habitat alone, and thus provide information about sensitivity to fragmentation. 

 

  Habitat amount method category 

  

High For Amount 

(Core) 

Low For Amount 

(Edge) Forest noPref Sum 

O
ri

g
in

a
l 

ca
te

g
o

ry
 Forest Core 808 419 177 1,404 

Forest Edge 323 840 220 1,383 

Forest noPref 213 184 85 482 

Sum 1,344 1,443 482 3,269 

 

 
  



 

 

 

Table S8. Table of model results for probability of species being associated with “High Forest 

Amount.” This is the habitat amount method analogue of BIOFRAG “Core” classification [see 

supplementary methods (17)]. Different models are separated by black lines beginning at the 

“Variable” column. Each row shows information on the effect of historical forest loss (a measure 

of anthropogenic disturbance), natural disturbance (tropical storms, fires, or glaciers), or any 

disturbance (either historical forest loss of natural disturbance) on the odds of a species being 

classified as core. The “Estimate” and “Std. error” columns are on the log odds scale. The p-

values have been false discovery rate adjusted (with significant relationships highlighted in 

green). The columns with asterisks show the percentage effect (with 95% CI) of being in a 

region with high disturbance or historical forest loss on the odds of species being classified as 

‘High Forest Amount’ species. Δ AIC values are relative to the best fitting model in each group. 

Results are omitted for cases where models could not be fit due to non-convergence or separation 

(e.g., no core species in high disturbance regions). Parameters with p-values less than 0.05 are 

highlighted in green. The disturbance effect estimates for species categorized as ‘High Forest 

Amount’ associates tended to be substantially reduced than when using BIOFRAG Forest Core 

status as the response (compare with Table S3). This indicates that forest habitat amount alone 

cannot, by itself, explain the effects of either latitude or disturbance on the proportion of forest 

core species, as defined using the BIOFRAG approach. 

Group Variable Estimate Std. error p-value Estimate* Lower* Upper* Δ AIC 

All species 

(n=3,269) 

Natural disturbance -0.926 0.247 0.002 -60.4% -75.6% -35.7% 0.000 

Any disturbance -0.761 0.244 0.008 -53.3% -71.0% -24.7% 3.688 

Arthropods 

(n=1,384) 

Historical forest loss 0.863 0.653 0.522 137.0% -34.1% 752.9% 0.000 

Natural disturbance -0.58 0.482 0.534 -44.0% -78.2% 44.0% 0.306 

Any disturbance -0.077 0.442 0.862 -7.4% -61.1% 120.3% 1.648 

Birds 

(n=1,326) 

Any disturbance -1.287 0.402 0.008 -72.4% -87.4% -39.2% 0.000 

Natural disturbance -1.198 0.4 0.009 -69.8% -86.2% -34.0% 0.737 

Historical forest loss 0.693 0.681 0.617 100.1% -47.3% 659.9% 7.487 

Herptiles 

(n=272) 

Any disturbance -0.375 0.561 0.705 -31.3% -77.1% 106.3% 0.000 

Natural disturbance -0.375 0.561 0.705 -31.3% -77.1% 106.3% 0.000 

Historical forest loss -0.375 0.561 0.705 -31.3% -77.1% 106.3% 0.000 

Mammals 

(n=287) 

Any disturbance -0.402 1.662 0.862 -33.1% -97.4% 1638.0% 0.000 

Natural disturbance -0.402 1.662 0.862 -33.1% -97.4% 1638.0% 0.000 

Historical forest loss -0.402 1.662 0.862 -33.1% -97.4% 1638.0% 0.000 

 

 

 

 

 

 

 

 

 



 

 

 

Table S9. Model results showing effects of disturbance on the probability of a Forest species 

being “Forest Core” after statistically accounting for latitude. BIOFRAG classifies species as 

core if they are associated with core habitat. Different models are separated by black lines 

beginning at the “Variable” column. Each row shows information on the effect of absolute 

latitude on the odds of a species being classified as core. The “Estimate” and “Std. error” 

columns are on the log odds scale. The p-values have been false discovery rate adjusted (with 

significant relationships highlighted in green). The columns with asterisks show the percentage 

effect (with 95% confidence interval) of either a 1-degree increase in absolute latitude or being 

in a region with high disturbance (either natural or of any type) on the odds of species being 

classified as core. The estimates provide evidence that the fragmentation sensitivity of forest core 

tends to increase with latitude and decrease with disturbance. Δ AIC values are relative to the 

best fitting model in each group. Results are omitted for cases where models could not be fit due 

to non-convergence or separation. Parameters with p-values less than 0.05 are highlighted in 

green. The disturbance variable considered for each class is the best performing disturbance 

predictor (based on AIC for disturbance-only model – Table S3). Note that for herptiles and 

mammals, all disturbance variables were equivalent. 

Group Variable Estimate Std. error p-value Estimate* Lower* Upper* Δ AIC 

All species 

(n=3,269) 

Natural disturbance -0.819 0.307 0.023 -55.9% -75.8% -19.5% 
0.000 

Latitude -0.036 0.008 < 0.001 -3.5% -5.1% -1.9% 

Latitude -0.051 0.007 < 0.001 -5.0% -6.3% -3.7% 5.076 

Arthropods 

(n=1,384) 

Latitude -0.035 0.008 < 0.001 -3.4% -5.0% -1.9% 0.000 

Any disturbance -0.389 0.585 0.542 -32.3% -78.5% 113.2% 
1.569 

Latitude -0.028 0.013 0.061 -2.8% -5.3% -0.2% 

Birds 

(n=1,326) 

Natural disturbance -0.929 0.509 0.093 -60.5% -85.5% 7.1% 
0.000 

Latitude -0.048 0.019 0.033 -4.7% -8.2% -1.0% 

Latitude -0.076 0.012 < 0.001 -7.3% -9.4% -5.2% 1.562 

Herptiles 

(n=272) 

Latitude -0.098 0.041 0.037 -9.4% -16.4% -1.7% 0.000 

Natural disturbance 0.662 0.75 0.435 93.8% -55.4% 742.2% 
1.218 

Latitude -0.129 0.056 0.04 -12.1% -21.2% -1.9% 

Mammals 

(n=287) 

Latitude -0.081 0.042 0.083 -7.7% -15.0% 0.2% 0.000 

Natural disturbance -0.638 2.481 0.797 -47.1% -99.6% 6732.6% 
1.927 

Latitude -0.077 0.044 0.096 -7.4% -15.0% 0.8% 
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