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Abstract: Conservation biology was founded on the idea that efforts to save nature depend on a scientific
understanding of how it works. It sought to apply ecological principles to conservation problems. We investigated
whether the relationship between these fields has changed over time through machine reading the full texts of
32,000 research articles published in 16 ecology and conservation biology journals. We examined changes in
research topics in both fields and how the fields have evolved from 2000 to 2014. As conservation biology matured,
its focus shifted from ecology to social and political aspects of conservation. The 2 fields diverged and now occupy
distinct niches in modern science. We hypothesize this pattern resulted from increasing recognition that social,
economic, and political factors are critical for successful conservation and possibly from rising skepticism about
the relevance of contemporary ecological theory to practical conservation.
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Relaciones entre la Biologia de la Conservacion y la Ecologia Mostradas a través de la Lectura Mediante Maquina
de 32,000 Articulos

Resumen: La biologia de la conservaciéon se fundo6 a partir de la idea de que los esfuerzos para salvar a la
naturaleza dependen del entendimiento cientifico de como funciona. La biologia de la conservacion buscaba
aplicar los principios ecolégicos a los problemas de conservacion. En este trabajo investigamos si la relacion entre
estos ambitos ha cambiado con el tiempo al realizar una lectura mediante maquina de 32,000 textos completos
de articulos de investigacion publicados en 16 revistas sobre ecologia y biologia de la conservacion. También
examinamos los cambios en los temas de investigacion en ambos dmbitos y como éstos han evolucionado desde
el afio 2000 hasta el 2014. Conforme ha madurado la biologia de la conservacion, su enfoque se ha movido de
los aspectos ecoldgicos de la conservacion a los aspectos politicos y sociales. La ecologia y la biologia de la
conservacion se han separado y ahora ocupan nichos distintos dentro de la ciencia moderna. Nuestra hipotesis
considera que este patron resulté de incrementar el reconocimiento de que los factores sociales, econémicos
y politicos son muy importantes para una conservacion exitosa. Posiblemente el patrén también proviene del
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creciente escepticismo acerca de la relevancia que la teoria ecolégica contemporanea tiene para la conservacion
en practica.

Palabras Clave: aplicaciones ecologicas, asignacion latente Dirichlet, bibliometria, interdisciplinario, teoria
ecologica
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Introduction

Conservation biology was born of a union between ecol-
ogy and the ethical impulse to preserve its object, the
world of living things. Pioneering ecologists (von Hum-
boldt & Bonpland 1819; Wallace 1869) and many oth-
ers since have seen its destruction clearly. Some became
public defenders of biodiversity; others ran organizations
devoted to doing so; many applied the lessons of their sci-
ence to conservation. Though the relationship between
science and advocacy has often been fraught (Worster
1994; Cafaro & Primack 2014; Kareiva et al. 2014), it is
clear to most ecologists that natural diversity demands
not merely curiosity, but protection. This is so in good
part due to Michael Soulé’s founding of a new academic
field, conservation biology (Van Dyke 2008). Soon after,
a new scholarly society and a new journal—this one—
were founded. Both have flourished. Like cancer biology,
he said, conservation biology should rest on scientific
and normative principles. It was about applying ecology
and evolutionary biology to the goal of conserving nature
(Soulé 1985). Underscoring the urgency of its task, he
spoke of conservation biology as a “mission-oriented,”
“crisis” science. The Society for Conservation Biology
now has thousands of members and chapters across the
globe (Meine et al. 2006). At least 24 journals are now
largely devoted to conservation biology (Bradshaw &
Brook 2016). Conservation biology education programs
proliferate.

Conservation biology is now a mature field. By some
metrics it is larger than ecology. Its parentage is visible in
the many conservation articles based on concepts from
ecology and evolutionary biology. Island biogeography
and metapopulation dynamics fueled discussions about
the design and size of nature reserves (May 1975; Hanski
1989); stochastic population dynamics models gave rise
to population viability analysis (Shaffer 1981); and popu-
lation genetics warned of the risks of inbreeding depres-
sion (Soulé & Simberloff 1986). But this list has an old-
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fashioned feel. The theory behind these examples dates
to the mid-20™" century; they are the founding principles
of the field (Soulé & Wilcox 1980) and remain the most
important ecological principles in conservation despite
the many theoretical advances and empirical results that
have transformed ecology over the last 40 years (e.g.,
May 1972; Chesson 200006; Bell 2001; Hubbell 2001). We
hypothesize that ecology’s role in conservation biology
has waned and that the vision of a science that applies
the latest ecological ideas to solving its pressing problems
has faded too.

We could have tried to test this hypothesis with a
traditional literature review. Instead, we did so through
primary research with text-mining tools. We applied ma-
chine reading to the full texts of articles published in
top ecology and conservation biology journals from 2000
to 2014. Using these data, we constructed a map to
identify research topics that are largely distinctive to
ecology and conservation biology and those they have
in common. We studied how attention to these topics
has changed over time, and by constructing a citation
network, we examined the topics in each field that have
most influenced the other. We also considered how con-
servation biology and ecology might strengthen their
relationship.

Methods

Topic Analyses

We used a class of unsupervised machine learning known
as topic analysis. Topic analysis rests on the idea that any
document in a corpus can be characterized by its mix
of topics that comprise groups of statistically associated
words. Specifically, we used latent Dirichlet allocation
(LDA) (Blei et al. 2003) as our topic model. This algorithm
estimates for each word the probability of belonging to
each topic and for each document the probability that
a random word originated from a given topic. Together,
these reveal what an article is about.
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As an example, we ran a 2-topic LDA model on our
corpus of 32,104 conservation and ecology articles. The
words found with the highest probabilities in each topic
are highlighted in Fig. 1b. Where the most probable
words in topic 1 related to conservation biology, and
those in topic 2 related to ecology. We did not ask the
algorithm to find these particular topics; rather, it discov-
ered them by itself. We did, however, tell it how many
topics to discover.

An LDA is technically identical to the finite admixture
model in STRUCTURE (Pritchard et al. 2000). The only
real difference between them is that one analyzes the
structure of words present in a population of documents,
whereas the other analyzes the structure of genetic vari-
ants in a population of organisms (similarity illustrated
in Fig. 1b). Although population geneticists generally
assume genetic structure depends on geography, we
began with the idea that lexical structure depends on
field (i.e., an abstract geography in the space of the
mind).

Constructing and Understanding the Corpus

We asked experts (workshop attendees) which journals
were most important in ecology and conservation biol-
ogy. Sixteen journals were identified (general journals,
such as Nature and Science, were excluded; Supporting
Information), nearly all of which are among the most
highly ranked in their fields (Bradshaw & Brook 2016).
We classified our journals as ecology or conservation biol-
ogy based on the opinions of attendees of the workshop
and some others, the aims-and-scope statements of the
journals, and SCOPUS keyword tags. These criteria con-
sistently identified our 16 journals as belonging primarily
to one or the other field.

We used GNU Wget version 1.17.1 to download the
full text of all available articles directly from the jour-
nal websites. The resulting database consisted of 32,104
articles distributed across the 16 journals. The corpus
contained 16,639 articles on ecology and 15,465 arti-
cles on conservation biology. Using Python text-mining
tools, we obtained the full text of each article, includ-
ing its abstract, publication year, and journal name,
but not bibliographies. Using the SCOPUS database as
an independent count of the number of articles in
each journal, we estimated that we obtained >95% of
the articles published in the 16 journals from 2000
to 2014.

To determine article topics, we constructed a vocabu-
lary. Using the Natural Language Toolkit in Python (Loper
& Bird 2002), we obtained a list of all words they con-
tained. We stemmed the words (reducing all inflected
words to a common root) and removed both rare (in
<0.1% of articles) and common (in >80% of articles)
words as uninformative. The remaining 7686 unique
words constituted the corpus’ vocabulary.
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Using this vocabulary, we modeled the structure of the
corpus with LDA (Blei et al. 2003), as implemented in
the Python package genism (Rehtifek & Sojka 2011). The
LDA model requires choosing the number of topics, k. To
determine the optimal number of topics, we ran models
with 5 < & < 300 and assessed their goodness of fit with
topic coherence (Roder et al. 2015). We used the optimal
model & = 50 (Supporting Information) in all subsequent
analyses. We labeled the topics by assessing the top 50
most common words and the most salient words for each
topic in the PyLDAvis package (Supporting Information).
Analysis steps are summarized in Fig. 1. To confirm that
our model described the corpus, we tested it with 2 of
the most cited articles in our corpus: Gotelli and Colwell
(2001) published in Ecology Letters (4978 citations in
Google Scholar) and Debinski and Holt (2001) published
in Conservation Biology (1,486 citations).

Exploring Topic Space

To understand the contents of our 16 journals, we com-
pared the average (median logo[topic probability]) dis-
tributions for each, clustering both topics and journals
with Hellinger distance. We constructed a landscape of
ecology and conservation biology by using #-distributed
stochastic neighbor embedding (#-SNE) to reduce the
50-topic dimensions to 2 (Maaten & Hinton 2008;
Pedregosa et al. 2011) and estimated the probability den-
sity of articles in this 2-dimensional space with a Gaussian
smoothing kernel. This map is a 3-dimensional landscape
in which the peaks and valleys represented the relative
number of articles found at any point. Each point was
a unique combination of topics, but peaks tended to be
formed from articles rich in particular topics. To visualize
the evolution of the fields, we divided articles a priori into
ecology and conservation biology fields and 3 periods
by publication date (2000-2004, 2005-2009, and 2010-
2014). We also estimated the Shannon diversity of topics
within the 2 fields as a function of time.

Identifying Field-Biased Topics

We identified the topics most prevalent in each field rel-
ative to the other (i.e., field-biased topics) from the full
distribution of topic probabilities of all the documents in
each field and from discretized topic probabilities based
on a threshold. Both methods gave similar results.

To determine the full distribution of topic prob-
abilities for each field, we calculated the median
log;o(probability) for each topic across all articles in
that field. We then calculated the differences in all me-
dian probabilities among fields. Ecology-biased topics
are those in which this difference 1is positive;
conservation-biased topics are those in which it is nega-
tive (Supporting Information).
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Figure 1. Topic modeling overview and example: (a) data-processing overview showing the structure of the data
set (corpus of articles published in ecology and conservation biology) and the methods applied to it (each article
reduced to word frequencies after filtering for very rare and very common words) and (b) the example topic
model assigns a probability that each of k topics is found in a given article and that each word is found in a given
topic. Topics are interpreted by examining the top n most probable words as represented by word clouds in which
the size of a word is scaled relative to its probability. This example shows the results of a 2-topic model in which
topic 1 represents a general conservation topic and topic 2 a general ecology topic. The nature of these topics is
reflected in their distribution among the individual articles in the 16 journals in the corpus.
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The precise probability of a topic in an article is not
always informative. This is because all topics have a
nonzero probability of appearing in all articles, but in
some it is very small. To determine whether an article
was about a topic, we discretized the probabilities by
setting a threshold of 0.05. Only if a topic exceeded this
probability was an article considered to be about that
topic. Because articles can be about many topics, we
estimated the probability that a random article from each
field was about each topic. We calculated the ratio of
these probabilities to get a relative risk (RR) of occurrence
for each topic. We defined ecology-biased topics as those
with a high RR and conservation biology-biased topics as
low RR (Supporting Information).

Trends in median topic probability were modeled as
a single quintile regression. Trends in discretized topics
were modeled as linear models with second- and third-
order polynomial terms, and the most appropriate model
was chosen with analysis of variance and Akaike informa-
tion criterion.

Obtaining and Mapping the Citation Network

Many of the full-text articles were poorly structured,
meaning we could not consistently obtain their titles,
DOIs (direct object identifier), or bibliographies. We
therefore obtained article titles, DOIs, and bibliographies
from SCOPUS and used these data to build a citation net-
work with the Diderot package (Vincenot 2017). Using
the full-text trained LDA model, we estimated the topic
distributions of their abstracts and reestimated the prob-
ability density distributions for each field in #SNE space.
When doing so, however, we weighted the densities by
their relative propensity to be cited by articles belonging
to the other field. Thus, we constructed separate land-
scapes for ecology and conservation articles whose peaks
represented areas in each cited by the other field.

Results

The highly cited test article Gotelli and Collwell (2001)
was mostly about the topics of macroecology (38.2%),
ecological research (13.1%), statistical inference (11%),
monitoring biodiversity (10.5%), and assessing and man-
aging extinction risk (8.2%). Debinski and Holt (2001)
was mostly about the topics of habitat fragmenta-
tion (29.6%), assessing and managing extinction risk
(10.2%), ecosystem function and response to change
(8.7%), experimental ecology (7.3%), and ecological
research (6.9%). We read the articles, and these de-
scriptions were consistent with our assessments of the
topics.

Our model indicated what we already knew about the
contents of particular journals. The most frequent topic
in The American Naturalist, home to many articles on es-
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timating natural selection and inferring adaptations, was
trait evolution (9%). The most frequent topics in Conser-
vation Biology and Biological Conservation were con-
servation and society (13%) and managing and assessing
extinction risk (10%), respectively.

Journals we tagged a priori as conservation biology had
high average probabilities for topics such as conservation
and society, assessing and managing conservation risk,
policy and conservation, and ecosystem function and re-
sponse to change, whereas in the journals we tagged as
ecology topics such as statistical inference, macroecol-
ogy, experimental ecology, and trait evolution (Fig. 2)
prevailed. Hierarchical clustering divided the journals
into 2 groups that, with 2 exceptions, corresponded to
our a priori classification. The 2 exceptions were Ecologi-
cal Applications and Biological Conservation, which we
assumed belonged in conservation biology but clustered
with ecology. This inconsistency may reflect their true
interdisciplinary nature.

The topographic map of the distribution of articles in
2-dimensional topic space (Fig. 3) showed, for example,
in the northeast a topic range for society and policy.
In the southwest, there was a central ecological range
that consisted of peaks corresponding to different kinds
of species’ interactions. Articles about habitat fragmenta-
tion and climate change appeared between these topic
areas.

This map must be read with care because #-SNE, like any
dimensionality reduction method, necessarily resulted in
loss of information. The #SNE algorithm accurately mod-
els local distances in 2-dimensional space at the cost of
accuracy over longer distances. Similar articles are placed
close together, but distances between very dissimilar ar-
ticles may not be meaningful. Even so, we could discern
the frontier between ecology and conservation based on
the location of points where the articles were evenly
distributed between the 2 fields (Supporting Informa-
tion). The boundaries ran, with some diversions, from
the northwest to southeast of our map, separating, for
example, mount “habitat fragmentation” from the central
ecological range. The boundary often followed valleys,
indicating that the high-elevation regions—those heav-
ily populated by articles—typically originated in a single
field. But the boundaries also sometimes traversed to-
pographical features, where ecologists and conservation
biologists have evidently found common ground, for ex-
ample, in regions such as in the “population and statistics”
massif and “bird” hill.

Of the 1,693,552 citations in our corpus, 136,946 were
to articles also included in our data set (just over 8%).
Of these, 76.7% of citations in ecology articles were to
other ecology articles, and 86.7% of citations in conser-
vation articles were to other conservation articles. But
26,476 citations crossed field boundaries: 23.3% of cita-
tions in ecology articles were to conservation articles,
and 13.3% of citations in conservation articles were to

Conservation Biology
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ecology articles (Fig. 4). When peaks in the topic land-
scape were made proportional to number of citations at-
tracted across the conservation—ecology boundary, the
map showed that ecology articles were most likely to be
cited in conservation biology articles when they were
about core conservation topics (e.g., extinction risk) or
when they were about topics that bordered the fields
(e.g., habitat fragmentation) (Fig. 4). The reverse was also
true. But there was also evidence of deeper cross-field
citation. For example, conservation articles also cited
ecology articles about plant pollinator interactions, even
though it is a core ecological topic. This may reflect a
recent interest of conservation scientists in ecosystem
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services provided by pollinators, a topic that draws on
knowledge of pollinator ecology. The layout algorithm
placed nodes with a high density of links together. In
general, this showed that although the citation networks
of the 2 fields form 2 clearly distinct networks (Fig. 4),
they were not completely isolated; a few areas of topic
space encourage crossfield citations and so a flow of
ideas.

But, disciplines evolve. We found that, while ecology’s
landscape has not changed much, conservation biology’s
has changed dramatically (Fig. 5). Peak society in the
northeast quadrant of Fig. 5 is new. It began to build
after 2005 and only arrived at its present form in the last
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Figure 3. Distribution of the entire ecology and
conservation biology corpus in t-SNE space (-SNE,
t-distributed stochastic neighbor embedding)
represented as a topographical map (peaks, where
many articles lie, labeled based on dominant topics in
the articles; valleys, where fewer areas articles lie;
dotted line, boundary between fields based on
mismatch in I-SNE space [Supporting Information]).

decade. Its relative height suggests conservation biology,
as measured by the distribution of topics, has become
more homogeneous and increasingly concerned with the
study of human behavior and the social factors and poli-
cies that influence it.

Thus, it seems conservation biology has become more
specialized. To confirm this trend, we examined the evo-
lution of field-biased topics, which are more prevalent in
one field than the other (e.g., trait evolution in ecology
and national parks in conservation). We identified the 10
most biased topics for each field (Supporting Informa-
tion) and examined the evolution of their summed prob-
abilities in each field from 2000 to 2014. We modeled
the data as a single linear quintile regression and found
a highly statistically significant 3-way interaction term
(field:bias:year [Supporting Information]). The contribu-
tion of conservation-biased topics to conservation articles
increased (Fig. 6a) as the contribution of ecology-biased
topics declined (Fig. 6b). A plot of Shannon diversity of all
topics in conservation biology articles showed a decline
in diversity since 2005 (Fig. 6€). Ecology articles also be-
came more homogeneous, but not as rapidly, indicating
increased specialization.

Both fields not only changed between 2000 and 2014,
but also grew. If our corpus is a good indication, then
the growth rates themselves also increased in that period
(Supporting Information). This growth means (despite
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the decline in contribution of ecology-biased topics to
conservation) the absolute number of conservation biol-
ogy articles with at least some ecological content may
have remained constant or increased. We modeled the
prevalence of ecological and conservation ideas in ecol-
ogy and conservation journals with discretized topics and
found that first-order linear models gave the best fit in all
cases except for the evolution of ecology-biased topics in
conservation. These were best described by a quadratic
model with an intermediate peak that showed the initial
rise and post-2005 decline of the absolute importance
of ecological ideas in conservation biology. This demon-
strates that although the number of conservation articles
with at least some ecology-biased content increased from
2000 to 2005, this number later decreased so that by 2014
there was about as much ecology in conservation articles
as a decade before (Fig. 6g) despite the growth in the field
overall. Had the prevalence of ecology in conservation
articles remained at its pre-2005 levels, then our conser-
vation journals would have contained about 1200 more
articles with ecology-biased topics than they actually did.
By contrast, the number of ecology articles with at least
some conservation-biased content rose steadily (Fig. 6h),
though at a lower rate than the number of articles with
ecology-biased content. Eight of the 10 ecology-biased
topics declined post-2005 in conservation biology; only
community ecology and trophic ecology kept pace with
the growth of the field as a whole (Supporting Informa-
tion). Ecology, then, has not just become relatively less
important to conservation biology, but absolutely so.

Discussion

With our text-mining techniques the vastness of the con-
servation and ecology literature, previously so daunting,
became an asset because it allowed us to formally test
hypotheses about the evolution of scientific ideas. Of
course, the cost of this wide view is loss of detail. Topic
analysis is a blunt tool: it reveals roughly what an article
is about but not whether its subject was commended
or criticized. To find that out, one would have to read.
Even so, we suggest that, from now on, review articles
will increasingly rely on quantitative data rather than im-
pression, however astute, and opinion, however wise.
The study of science has now, itself, become a science
(Fortunato et al. 2018).

Conservation biology was founded on the idea that
the principles of organismal science can and should be
applied to efforts to protect biodiversity (Soulé & Wilcox
1980; Soulé 1985). We found it has become much what
Michael Soulé envisioned it might be. Unsurprisingly,
community ecology and food webs have a place in its
literature, but even unconventional subjects such as sex-
ual selection do as well (e.g., Wedekind 2002). Our find-
ing that conservation biology has its own concerns and

Conservation Biology
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Figure 6. (a-d) Probability of topics favored (bias) in
conservation or ecology being covered in articles from
the otber field. (e) Change in topic diversity in ecology
and conservation biology over time (Shannon
diversity based on discretized topic distributions; 95%
ClIs estimated by bootstrapping). (f-i) Change in
absolute contribution of ecological and conservation
ideas to ecology and conservation.

citation network shows not that it is isolated from ecol-
ogy, but that it is mature.

Our results also show that from 2000 to 2014 the
contribution of the social sciences to conservation biol-
ogy became ever greater, even as ecology’s contribution
declined. The fields are drifting apart, with conservation
moving farther from ecology than the reverse (Fig. 5).
These trends are not just caused by the expansion of
conservation biology into new areas of research because,
over the last 10 years, there has also been an absolute
decline of the prevalence of ecological ideas in conser-
vation (Fig. 6). What has driven these changes? We esti-
mate that over 1000 ecology-rich articles have gone in a

729

way missing from conservation journals since 2005. One
possibility is that they were written and published, but
not in the journals we examined. Because new journals
are being founded all the time, we cannot eliminate this
explanation, but we think it is implausible. Our 9 con-
servation biology journals are the most important in the
field. Four of them were founded after 2000, none of
them has folded, and only one—discussed below—has
had an obvious (very recent) change in remit. It seems
most likely, then, that the missing articles were not writ-
ten. At the least, we can say that if the missing articles
were published, they were published in less highly re-
garded journals, thus still indicating a decline in interest
in ecology.

A more subtle possibility is that the observed trends are
the result of selection due to journal specialization. We
imagine authors deciding whether to send a manuscript
to the fictitious journals Open Ecology or to Current Con-
servation. They decide it is more likely to be accepted by
the latter and so rewrite it, soft-pedalling its implications
for ecology but emphasizing those for conservation. The
manuscript is accepted, is widely read and imitated, and
so a consensus emerges among authors, reviewers, and
editors that Current Conservation is not the place to sell
grand theory. If this process is at work, then it is journals,
not scientists, that have become more specialized, but
without analyzing articles by author, one cannot know
whether this is so. Either way, the result is the same:2
diverging literatures. And the question remains: given
that scientists and editors are rational agents who aim to
produce and publish the most exciting possible research,
if applying ecological theory to conservation is such a
great idea, then why are articles that do so declining in
the field’s major journals?

One answer is that the founding promise of conserva-
tion biology—that ecological theory could help us save
organic diversity—has not yet been fulfilled. The history
of ecological ideas in conservation biology provides abun-
dant evidence for this. Ecologists have often suggested
how their ideas might be applied to conservation prob-
lems only to discover that they are not that useful after
all. Take, for example, the power-law species-area rela-
tionship (SAR), which is so ubiquitous that many speak
of it as a law (Lawton 1999; Lomolino 2001). The SAR
has accordingly been used to predict the risk of species
extinction due to habitat loss (Desmet & Cowling 2004;
Axelsen et al. 2013; Rybicki & Hanski 2013). But its ability
to do so turns out to be very limited (Lewis 2006; He
& Hubbell 2011; Stein et al. 2014). It is, then, a shaky
foundation for a conservation strategy.

Even when ecological models are, in principle, appli-
cable to conservation, they can be cumbersome to apply.
Network and food-web theory, which aim to elucidate
how ecosystem stability depends on the diversity of and
pattern of interactions among species (May 1973; Tilman
et al. 2006; Jacquet et al. 2016), promised to predict the
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responses of ecosystems to perturbation (Urban et al.
2016). But it turns out ecological networks are hard to
build and quantify, much less apply to any particular con-
servation problem (Thompson et al. 2001; Tylianakis et al.
2008). Once again, the promise of theory has not been
fulfilled.

Such examples could be multiplied. Recent develop-
ments in ecology are no more promising. Modern coexis-
tence theory, for example, describes the mechanisms that
allow stable, diverse assemblages of coexisting species
(Chesson 2000a; Barabas et al. 2018). It seems that co-
existence theory might be useful in cases where the
population declines of particular species are not caused
directly by persecution, but rather by the indirect ef-
fects of other anthropogenic changes. Despite this—
and though it is nearly 20 years old—coexistence the-
ory barely features in conservation biology (Chapron &
Lopez-Bao 2016). We suspect this is because it is techni-
cally complex (Pasztor et al. 2016; Barabas et al. 2018)
and the equalizing and stabilizing factors upon which
the theory depends can scarcely be measured in the
wild.

Of course, it may be that modern ecological theories
will prove useful in the future. Theory is often far in
advance of empirical studies and they, in turn, often
precede practical use. Pauli postulated the existence of
neutrinos in 1930, yet they were only identified in 1956,
and only recently has anyone found a use for them (e.g.,
Stancil et al. 2012). Perhaps the time lag between ecolog-
ical theory and conservation is just as long. If so, it would
be good to shrink it.

Beyond the difficulty of applying particular theories,
there is a profound difference between the goals of ecol-
ogy and conservation. Ecology has traditionally sought to
understand the processes that govern populations, com-
munities, and ecosystems at or near equilibrium (Brussard
1991, but see Hastings et al. 2018). But conservation
biology is, by definition, concerned with those parts of
nature that are in a state of flux. Moreover, conserva-
tion strategies necessarily entail predicting the future,
and ecological forecasting is notoriously hard (Godfray &
May 2014; Petchey et al. 2015).

The goals of conservation and ecology differ in a less
abstract way too. While ecologists work at elucidating the
great patterns of biodiversity and their causes, conserva-
tion scientists are busy trying to preserve biodiversity
with the few resources they have (Bawa et al. 2004).
And conservation biologists need to balance conserving
species with human welfare. The importance of doing so
is behind the rise (that we document) of research con-
cerned with how humans affect nature and how those
interactions might be altered for the better. Social sci-
ence has been part of conservation biology since its birth
(Soulé 1985), but Bennett et al. (2017) recently captured
its increasing importance when they identified conser-
vation social science as a new subfield. This journal has

Conservation Biology
Volume 34, No. 3, 2020

Conservation Biology and Ecology

since offered its articles a home (Teel et al. 2018). Con-
servation is, after all, an argument among people.

These, we suggest, are some of the reasons conser-
vation scientists have recently turned from ecological
theory to research programs that promise more practical
results. We do not believe that ecology in the broadest
sense will go extinct in conservation biology. Ecologi-
cal studies of threatened species will always be needed
(Brussard 1991); new techniques, directly applicable to
particular problems, will continue to be used. Popula-
tion genomics, movement ecology, and infectious disease
ecology in particular seem to have obvious conservation
applications (Brannelly et al. 2018; Fraser et al. 2018;
O’Hanlon et al. 2018). Yet it seems to us that the decline
of general ecological ideas in conservation is both real
and worrying.

Ecologists often claim that the patterns in nature they
discover, and their explanations for them, are of vital
importance to conservation. They do so in their grant
proposals just as cell biologists assure reviewers that
their research will surely save lives. Cell biologists have
learned a lot about the molecular causes of disease. But
improvements in cancer survival rates have been mostly
due to more mundane things, such as incremental im-
provements in detection and surgical techniques and
smoking’s decline. In the same way, improvements in
conservation practice are less due to a deeper grasp of
ecological mechanisms than a better understanding of
which piecemeal conservation strategies actually work
(e.g., Sutherland 2018).

A cynic might suppose that because cancer still kills,
the resources devoted to cell biology research were
misspent. However, recent advances in immunotherapy
suggest cynics will be proved wrong. So, we remain op-
timistic that new kinds of ecological theory will even-
tually prove their practical worth. We are thinking, in
particular, of mechanistic models of biodiversity. Such
models are based on ecological principles, require little
data for parameterization, and may permit transparent,
general, and useful ecological forecasts (Harfoot et al.
2014; Petchey et al. 2015; Urban et al. 2016). They are
still new, but we think they are one reason among many
that ecology and conservation biology may find that they
need each other after all.
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