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Appendix to Peniston JH, Barfield M, Gonzalez A, Holt RD. Environmental Fluctuations 

can promote evolutionary rescue in high-extinction-risk scenarios. Proceedings of the Royal 

Society B: Biological Sciences. (doi:10.1098/rspb.2020.1144) 

 

Generating autocorrelated Gaussian sequences 

Equations (2.2) and (2.3a) were used to generate autocorrelated Gaussian sequences. Equation 

(2.2) is 

. 

If θt is a Gaussian with mean  and variance , the right side is the sum of two Gaussians and 

is therefore Gaussian. The expected value of θt + 1 is 

, 

because and . The variance of θt + 1 is  

. 

Finally, the correlation coefficent between θt + 1 and θt  is  

. 

Therefore, if θt  is Gaussian with mean  and variance , so is θt + 1, with a correlation 

coefficient between them of ρ. This can be assured by starting the sequence (θ1) with a Gaussian 

with mean  and variance .  The same derivation of course applies to equation (2.3a). 
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However, for our simulations, we started the sequence with the mean value . We made this 

choice because the effects of the initial degree of environmental change are well known and we 

were focused on the effects of variation afterwards. If the starting value is a random value drawn 

from a Gaussian, some of the effects of environmental variation could be just because there was 

variation in the degree of enviornmental change populations were exposed to. The drawback of 

our assumption is that equations (2.2) and (2.3a) no longer have the proper statistics. By starting 

the sequence at , the initial variance of the sequence is 0. One generation later, the variance is 

 and t generations later, the variance is . The sequence is Gaussian with the 

proper mean, and this shows the variance approaches ; it can also be shown that the 

correlation coefficient approaches  at the same time. So eventually the process has the statistics 

indicated, but if ρ is close to 1, it will take some time.  

Starting the sequence with  or with a Gaussian random variable with mean  and 

variance  does not seem to change the qualitative conclusions of our results. Therefore, as 

mentioned above, we decided to focus on the case with the sequence starting at  because we 

believe it more accurately reflects the effect of variation after the environmental change. Figure 

A13A–B shows results of the population-level polygenic simulations with the sequence starting 

with a Gaussian variable, which can be compared to the results in figure 2. The one case where 

this assumption does change results is that the benefits of increasing autocorrelation for high-

extinction-risk populations no longer go away at very high levels of autocorrelation (compare 

figure A5 to A13C–D). 

 

Polygenic individual-based simulations methods 
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 These simulations kept track of individuals in a population exposed to an abrupt 

environmental change. Each individual had a genotypic value that was determined by 10 freely 

recombining, additive diploid loci. An individual’s phenotype  was the sum of these loci plus a 

random environmental component drawn from a zero-mean, unit-variance Gaussian distribution. 

An individual with phenotype  survived to adulthood with probability , 

where θt is the optimal phenotype and  determines the strength of selection. Population size 

was regulated by the number of available mating sites (‘ceiling’ density dependence). If more 

than K individuals survived to adulthood, K adults were randomly selected (without replacement) 

to occupy mating sites. For each individual occupying a mating site, a mate was randomly 

selected (with replacement) from all surviving adults (selfing was possible). Each mating pair 

produced   offspring. If fewer than K individuals survived to adulthood every individual 

occupied a mating site. After reproduction, all adults died. 

 Each locus in the offspring’s genotype was determined by randomly choosing one allele 

from each parent at that locus. A mutation occurred on each haplotype with probability 0.01. 

When a mutation occurred, a random value drawn from a zero-mean Gaussian distribution with 

variance 0.05 was added to the previous value at a randomly selected allele on the haplotype. 

 As with the population-level simulations, we varied either the optimal phenotype or the 

mean population fecundity over time following equations (2.2) and (2.3a–b), respectively. 

Because each mating pair must produce an integer number of offspring, we had to round non-

integer values. For any given mating pair, with probability , where trunc(Ft) 

is the largest integer ≤ Ft, the number of offspring produced was the mean population fecundity 

rounded up, and with probability , it was rounded down. Therefore, if , with 

probability 0.2 the mating pair would produce 5 offspring and with probability 0.8 it would 

z
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produce 4 offspring. This method kept the expected number of offspring produced per mating 

pair each generation equal to , while adding the minimum amount of additional demographic 

stochasticity.  

 Simulations were initiated with 1,000 offspring in the population. Initial genotypes were 

assigned by randomly selecting allelic values from a zero-mean Gaussian distribution with a 

variance equal to the stochastic house-of-cards approximation given by equation (14) in Bürger 

and Lynch (1995). We first simulated dynamics for 1,000 generations with a fixed optimal 

phenotype of 0 and fixed fecundity of . At generation 1,000, the optimal phenotype switched 

to . The simulation then continued for another 1,000 generations during which either θt or Ft 

was varied. Finally, to evaluate whether or not the population was adapted, there was then a 200 

generation assay period during which θt and Ft  were fixed at  and , respectively. If the 

population persisted at the end of this period, we considered it adapted. 

 

Monogenic simulation methods 

Simulations were started with N* non-mutants and no mutants, and the number of each 

type was tracked each generation. To generate the per capita fecundity each generation, a 

Gaussian random sequence was generated using equation (2.3a–b). The number of births to each 

adult had a Poisson distribution with this mean, so the number of births of each type (mutants 

and non-mutants) was determined by drawing a Poisson random deviate with mean equal to 

product of the fecundity and the number of adults of that type (the sum of Poisson random 

variables is also a Poisson). The number of mutations (new mutants) was binomially distributed 

given the number of non-mutant births and mutation rate, and was subtracted from the number of 

non-mutants and added to the mutants. The number of each type surviving to adulthood was then 
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binomially distributed given its juvenile number and survival probability. Each realization was 

continued until the population was extinct, the number of mutants reached 1,000, or 1,000 

generations had passed. The probability of persistence was the fraction of 1,000,000 realizations 

for which the population was non-zero at the end. 

 

Monogenic analytical model method 

Let u be the probability of mutation, which produces a mutant offspring from a non-

mutant parent. The fecundity for both mutants and non-mutants is Ft (which varies with t) and 

the survival probability of non-mutants is V and of mutants is v (both constant). The expected 

number of surviving offspring of a non-mutant is , the geometric mean of which is less than 

1 (i.e. the non-mutant population is maladapted and faces extinction). For a mutant, the expected 

number of surviving offspring is , the geometric mean of which is greater than 1. If the 

number of offspring of each individual has a Poisson distribution with mean Ft, and survival of 

each offspring is independent of all others, the number of surviving offspring of each non-mutant 

or mutant also has a Poisson distribution with the mean  or , respectively.  

The initial population consists only of non-mutants, the number of which is expected to 

decline to 0. Evolutionary rescue requires the generation of at least one mutant whose lineage 

persists (i.e. is not lost to demographic stochasticity before becoming common). The expected 

number of mutants generated is the product of the mutation rate and the expected number of 

births to non-mutants before they go extinct. The probability of survival of the lineage of each 

mutant can be found using a branching process. Combining these values can give an estimate of 

the probability of rescue. 

FtV

Ftv
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First, we will find the expected number of mutants produced before non-mutant 

extinction (mutation rate times expected number of births to non-mutants). The expected number 

of births is the expected value of the product of the population size and fecundity. The non-

mutant population recursion is 

 , (A1) 

where Nt is the number of adults in generation t, implying 

 , ,  (A2) 

where  is the initial population size.  

The expected value of the number of births in generation t is  

 .  (A3) 

The expected total number of births through generation t is then 

 .  (A4) 

To incorporate variation, we assumed that Ft varies with time. To simplify the analysis, 

we let , where rt is a Gaussian random sequence with mean m and standard 

deviation σ, and with values of rt separated by g generations having correlation coefficient . 

The geometric mean of FtV = exp{m}, so m < 0 is required for non-mutants to be maladapted. 

The product of FjV in equation (A4) is therefore the exponentiation of the sum of the 

corresponding values of rj. The sum of Gaussians is itself Gaussian, so the product in equation 

(A4) has a lognormal distribution, which has an expected value of , where ms 
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and  are the mean and standard deviation of the Gaussian in the exponent, which is in this 

case the sum of i values of rt . FtV itself is lognormal at every time with 

. Note that because V is constant, the statistics of Ft are identical to 

those of FtV except for the scaling factor V, which causes a shift in the mean (but no change in σ 

or ρ) , so that the mean fecundity μf  = m – ln(V). 

The mean of a sum is the sum of the means, and the means of rt are all m. The variance of 

a sum is the sum of the variances plus twice the sum of the covariance of each pair of values. 

Each rt has a variance of σ2, and a pair of values separated by g generations has covariance ρgσ2. 

The product in equation (A4) for the ith term of the summation has i terms, so 

 , (A5) 

 . (A6) 

If the sequence is uncorrelated, then equation (A6) becomes . Substituting this and 

equation (A5) into equation (A4) and taking the limit as t goes to infinity gives the total expected 

number of births  

  (A7) 

assuming  so the series converges (note that m < 0 guarantees that with no 

mutations the population will go extinct, but it can still have an infinite expected number of 

births before extinction if the series does not converge). The expected number of mutants is the 

product of the expected number of births in equation (A7) and u. However, the mutant survives 

to adulthood with probability v. Therefore, the expected total number of mutants that arise and 

survive to adulthood is given by 

σs
2

E[FtV ]= exp{m+σ
2 / 2}

ms = im

σs
2 = σ2[i+2 (i− j)ρ j

j=1

i−1∑ ]

σs
2 = iσ2

E[ FiNi
i=1

∞

∑ ]= N *V −1 exp{m+σ2 / 2}
1−exp{m+σ2 / 2}

m+σ2 / 2<0



 8 

 . (A8) 

If there is no variation (so Ft is constant at F = exp{m}/V), σ = 0 and the number of mutants is  

 . (A9) 

 If the sequence (of rt and therefore Ft) is correlated, then the series in equation (A4) is not 

geometric, and therefore there is no closed form solution. The first few terms of the expected 

number of births is  

    (A10) 

The first term in brackets is due to births from the initial population, which is  multiplied by

. The second term is for births in the following generation, which is proportional to the 

product of F1 and F2, with ρ being the correlation coefficient between the corresponding values 

of rt, which inflates the variance (if positive). The third term is for the births in the third 

generation, which depends on the product of three consecutive values of Ft, which consists of 

two pairs with an underlying correlation of ρ and one pair (the first and last) with a correlation of 

ρ2. This pattern continues, so that for the kth term, there are  pairs of rt with a correlation of 

ρ, and then one fewer for each higher power of ρ, until there is just one pair with correlation 

 . After enough terms are included so that , the remaining part of the summation in 

brackets in equation (A10) is geometric, which for convergence requires 

 (recall that ). A higher variance than this limit results in an 

infinite mean number of births. For positive autocorrelation, the limit on  is less than the limit 

for an uncorrelated sequence.  
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 Since it has no closed-form solution, equation (A10) must be solved numerically. Results 

of this computation as a function of σ for ρ = 0 and 0.5 and various values of the geometric mean 

of FtV = exp{m} are shown in figure 3A, which gives results normalized by the expected 

number of births for a constant F, which is N*F/(1 – FV). More variation caused a greater 

inflation in the number of births, especially with autocorrelation. Equation (A10) is an infinite 

sum, and was calculated for 1,000 generations for figure 3A. 

The second step in the analytical method to approximate the probability of rescue is to 

find the probability of persistence of the lineage of a single adult mutant, which can be solved 

using a branching process. The number of mutants surviving after τ generations from a single 

initial mutant at time 0 is characterized by a probability generating function (PGF) 

   (A11) 

where j is the number of mutants and  is the probability of j mutants in generation τ after 

the mutant first appears. In generation 0, there is by assumption one mutant, so  (and all 

other probabilities are 0) and . In the first generation, this individual gives rise to a 

Poisson distributed number of offspring. The probability generating function (PGF) for a Poisson 

distribution with mean R is . 

The population PGF at generation τ + 1 is found by replacing s in the population PGF at 

generation τ by the PGF of the number of surviving offspring per adult at generation τ + 1. 

Therefore, the PGFs for the first few generations are  

   (A12) 

   (A13) 

Gτ (s)= Pτ ( j)
j=0

∞

∑ s j

Pτ ( j)

P0(1)=1

G0(s)= s

f (s)= exp{R(s−1)}

G0(s)= s

G1(s)= exp{R1(s−1)}
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   (A14) 

   (A15) 

… 

   (A16) 

where  is the mean number of surviving mutant offspring per mutant adult at 

generation τ (Fτ is a Gaussian random sequence as described above, except here we are tracking 

time from the appearance of a mutant). The probability of extinction at generation τ is . For 

constant Rτ  = R, this would approach a constant, which is the solution of . 

With Rτ varying, the equations must be solved numerically. We generated 10,000 sequences of Rt 

(the mutant is assumed to arise at the start of the simulation, so t and τ are the same) each 1,000 

generations long, and for each found G1000(0) using equations (A12-A16) and averaged these to 

get the average probability of extinction within 1,000 generations. Subtracting this from 1 gives 

the probability of persistence. The results are shown in figure 3B, which shows that there is 

relatively little change in the probability or persistence due to variation, with only a small 

decrease with increasing σ, a little more with higher ρ.  

 The product of the expected number of mutants that arise and survive to adulthood in a 

given generation (equation (A8) or similar equation using (A10)) and the probability of mutant 

lineage persistence solved using the method in this section gives the per-generation expected 

number of mutations that arise and persist, assuming that a mutation arising and its lineage 

persisting are independent. This should be the case with no autocorrelation. In years with a high 

fecundity, there will be more births and therefore more expected mutants, but the persistence of a 

mutant lineage depends on the fecundity in generations after the mutant arises, which are 

G2(s)= exp{R1[exp{R2(s−1)}−1]}

G3(s)= exp{R1[exp{R2(exp{R3(s−1)}−1)}−1]}

Gτ+1(s)=Gτ (exp{Rτ+1(s−1)})

Rτ = Fτv

Gτ (0)

q= exp{R(q−1)}
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independent of previous fecundities (given no autocorrelation). Given the expected number of 

mutants that arise with lineages that persist, the probability of adaptation can be calculated only 

if the distribution of the number of mutants is known. We assumed that the number of mutants 

with persisting lineages had a Poisson distribution over all runs to calculate the probability of 

rescue (Martin et al. 2013; figure A14). With this assumption, letting the expected number of 

mutations that arise the lineages of which persist be M, then the probability of persistence is the 

probability that a Poisson with this mean is not 0, which is 1 – exp{–M}. (With no variation, this 

method is very similar to Orr and Unckless 2008, except that they assume that the mutant fitness 

is close to 1 and get a closed-form solution. Since this assumption is not true for our parameters 

and we do not use their approximation for probability of lineage persistence, we get a somewhat 

lower persistence probabilities when σθ = 0, e.g., 0.039 compared to 0.054 for u = 0.0001 in 

figure A14B.) The calculated results agree well with the simulation results for low mutation rates 

and low-to-moderate variation (for which the expected number of mutants was low; figure A14). 

 With autocorrelation, the probability of a mutant arising and its lineage persisting are not 

independent, because population sizes (and therefore births and the expected number of mutants) 

are large during sequences of good years, and in those years mutant lineages are more likely to 

persist. Also, the production of mutants tends to be more concentrated into fewer populations 

(the ones that happen to have runs of good years at the beginning of the simulation), so the 

assumption of a Poisson distribution among populations is less justified because the actual 

distribution becomes over-dispersed. Thus our analytical predictions have a greater deviation 

from the simulations with autocorrelation, predicting higher persistence where they differ (figure 

A14). Our analytical model might overpredict the probability of rescue because the probability of 

rescue is a concave function of the number of mutants, thus when the number of mutants is 
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overdispersed, deviations below the mean outweigh deviations above it. This effect was observed 

in Uecker and Hermission (2016). (Note that the branching process method we employed 

calculates mutant lineage survival for 1,000 generations, while in the direct simulations, a mutant 

lineage only had to survive until the end of the 1,000-generation simulation, and could have 

arisen from a mutation at any time. This should make almost no difference, because mutant 

lineages arise before non-mutants go extinct, which tends to happen early in the simulations, and 

because mutant lineages tend either to go extinct quickly or persist indefinitely.) 

 

Population-level polygenic model: Varying fecundity 

We also ran simulations of the polygenic model in which we modelled temporal 

environmental variation by varying the fecundity Ft, which simulates environmental variation 

that is independent of the selection pressure. Autocorrelated random sequences of Ft were 

generated by using equations (2.3a–b). 

Variation in the mean population fecundity had a qualitatively similar effect on the 

probability of persistence to that observed for variation in the optimal phenotype. That is, 

variation in fecundity was detrimental in low-extinction-risk scenarios but beneficial in high-risk 

ones (figure A15). In general, these effects were amplified with greater degrees of variation and 

autocorrelation, but, as with variation in the optimal phenotype, there was a decline in the 

probability of persistence even in harsh environments when the magnitude of variation became 

very large. In this case, however, this decline occurs simply because large fluctuations in 

fecundity can result in years with very low birth rates, which lead to rapid declines in population 

size. Furthermore, as with variation in the optimal phenotype, the environmental conditions 
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immediately following the step change had the greatest influence on the outcome of simulations 

(figure A16). 

Methods for individual-based simulations with varying fecundity can be found above in 

the section Polygenic individual-based simulation methods. Results of those simulations are seen 

in figure A15E,F. Note that in these individual-based simulations with variation in fecundity the 

effect of variation on evolutionary rescue were minor and, as with variation in the optimal 

phenotype, we did not see any benefit in high-extinction-risk scenarios when fluctuations were 

uncorrelated. 

 

Polygenic model: Population-level statistical prediction 

Our goal was to evaluate how well the mean optimal phenotype of generations ti to tj 

(hereafter ) predicted whether or not the population size would drop below the critical 

population size Nc during the run of a simulation (1,000 generations). To do this we ran 1,000 

runs of the simulation with the parameter values: , , , N* = 10,000, 

, , , , . 

We then fit the simulation results to a generalized linear model (GLM) with a binomial 

distribution and logit link function. Our independent variable was  (for M1,20, M21,40 and 

M41-60) and our response variable was whether or not the population dropped below Nc during the 

course of the simulation. We then calculated McFadden’s R2 values using the package pscl 

(Jackman 2017) in R 3.63 (R Core Team 2020). McFadden’s R2 is a measure of fit which 

compares a model with just the intercept (null model) to a model with all the parameters (full 

model). Specifically, 

Mi, j

µθ = 4.3 σθ = 0.6 ρ= 0.9

Nc =100 µF =1.2 ω
2 =10 P=1 G= 0.5

Mi, j
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(Long 1997). Larger values of McFadden’s R2 indicate a better model fit. 

 To evaluate model predictability, we then ran an additional 1,000 runs of the simulation 

with the same parameter values. Using the function predict in R 3.63 (R Core Team 2020), we 

predicted the results of the second 1,000 runs of the simulation using the GLM that was fit to the 

first 1,000 runs of the simulation. This output probabilities that any given simulation run would 

drop below Nc given . We used a 0.5 decision boundary such that if the GLM predicted that 

the probability of the run going below Nc was greater than 50%, we recorded the model as 

predicting extinction for that run of the simulation. We then compared the prediction of the GLM 

to the actual results of the second 1,000 runs of the simulation to obtain our estimate of 

prediction accuracy. 
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Supplementary Figures 

 

Figure A1. Sensitivity analyses for the polygenic population-level model. For all parameter 

values, the plots show four different degrees of variation in the optimal phenotype ( , 

, , and ) with lighter shades indicating greater degrees of variation. 

(A) Three different values for the critical population size, Nc, below which the population is 

considered extinct: Nc = 1,000 (grey), Nc = 100 (red), and Nc = 10 (blue). (B) Three different 
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values for the strength of stablizing selection:  (grey),  (red),  (blue). (C) 

Three different values for the additive genetic variance: G = 0.25 (grey), G = 0.5 (red), G = 0.75 

(blue). Each point represents the proportion of 1,000 runs of the simulations in which the 

population did not drop below the critical population size Nc at any point of the simulation. 

Unless otherwise stated, the parameter values were: N* = 10,000, Nc = 100, , , 

P = 1, G = 0.5, and . 

 

 

Figure A2. Examples of how baseline extinction risk is affected by the change in the mean 

optimal phenotype (with no variation after the change) and the initial population size in the 

polygenic population-level model. (A) and (B) show the number of generations until the 

population reaches the critical population size Nc, below which the population is assumed to go 

extinct, as given by equation (3.1). If the time to Nc is undefined, the population never drops 

below Nc and thus rescue occurs without variation, which we consider here to be a low-

extinction-risk scenario. We consider finite times to Nc to be a high-extinction-risk scenario. (C) 
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Plot showing parameter space of low- and high-extinction-risk scenarios. Parameter values in all 

panels were: Nc = 100, , , P = 1, G = 0.5. In (A), N* = 10,000. In (B), . 

 

 

Figure A3. Results of the population-level polygenic models for high levels of variation in the 

optimal phenotype. (A) Shows results for three different degrees of variation ( ). Each point 

represents the proportion of 1,000 runs of the simulations in which the population did not drop 

below the critical population size Nc at any point of the simulation. (B) Shows examples of 

phenotypic evolution in a highly variable environment ( ). The optimum phenotype with 

mean  (grey lines) and mean phenotype (orange lines) from 20 randomly selected runs 

of the simulation are plotted. The parameter values were: N* = 10,000, Nc = 100, , 

, P = 1, G = 0.5, and .  
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Figure A4. Phenotypic evolution in the population-level polygenic models following an abrupt 

change in the optimal phenotype. Each panel shows the optimum phenotype (grey lines) and 

mean phenotype (orange lines) for 20 randomly selected runs of the simulation. (A) and (B) 

show results for uncorrelated fluctuations in the optimal phenotype ( ) and (C) and (D) 

show results for autocorrelated fluctuations in the optimal phenotype ( ). In all panels, 

, Nc = 100, ,  , P = 1, G = 0.5. In (A) and (C),  and in (B) and 

(D), . 
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Figure A5. The effect of autocorrelation in fluctuations of the optimum phenotype on the 

probability of persistence in the population-level polygenic models. (A) shows that for most 

values, increasing the degree of autocorrelation (ρ) increased both the positive and negative 

effects of fluctuations of the optimum phenotype. However, (B) shows that at high levels of 

autocorrelation (ρ > 0.98) increasing the degree of autocorrelation decreased the positive and 

negative effects of fluctuations of the optimum phenotype. Each point represents the proportion 

of 1,000 runs of the simulation in which the population did not drop below the critical population 

size Nc at any point of the simulation. Parameter values in both panels are , Nc = 100, 

, , P = 1, G = 0.5. 
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Figure A6. Violin plots showing the mean optimal phenotype from generation i to j for 

populations that went extinct and populations that persisted in runs of the polygenic population-

level simulations with fluctuations in the optimal phenotype. Each panel shows the results of 

1,000 runs of the simulation. The mean (black circle) and standard deviation (black bar) are 

shown for each group. Populations were recorded at ‘Extinct’ if the population dropped below 

the critical population size Nc at any point of the simulation (1,000 generations); otherwise, they 

were recorded as ‘Persisted’. Parameter values were: N* = 10,000, Nc = 100, , 

, , P = 1, G = 0.5, , . 
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Figure A7. Proportion of 1,000 runs of the population-level polygenic simulation in which the 

population size is below Nc at a given number of generations (the abscissa) after an abrupt 

environmental change. Three different degrees of variation are shown in each panel:   

(black),  (blue),  (orange). In both panels, Nc = 100, , , P = 

1, G = 0.5, , and . In (A),  and in (B), . 
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Figure A8. Optimal phenotype values for the first 100 generations after environmental change in 

100 randomly selected runs of the population-level polygenic simulations. Light orange lines 

denote runs in which the population dropped below the critical population size Nc at some point 

in the simulation and dark blue lines denote runs in which the population never dropped below 

Nc. Note that in the first 20 generations the dark blue lines are on average lower than the light 

orange lines. Compare with figure A6. Parameters were: N* = 10,000, Nc = 100, , 

, , P = 1, G = 0.5, , . 
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Figure A9. Comparison of population-level (A and B) and individual-based simulations (C and 

D) for the polygenic model with variation in the optimal phenotype. In (A) and (B), each point 

represents the proportion of 1,000 runs of the simulations in which the population did not drop 

below the critical population size Nc at any point of the simulation and in (C) and (D) each point 

represents the proportion of 800 runs of the simulations in which populations persisted. The left 

panels (A and C) show results for uncorrelated fluctuations in the optimal phenotype (ρ = 0) and 

the right panels (B and D) show results for autocorrelated fluctuations in the optimal phenotype 

(ρ = 0.9). Each panel shows results for different degrees of fluctuations in the optimal phenotype: 

, , , and  with lighter shades of grey indicating greater 

degrees of variation. In all panels, N* = 1,000, , and . Additional parameters for 

(A) and (B) were Nc = 100, P = 1, G = 0.5, and in (C) and (D)  K = 250. 
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Figure A10. Effect of density regulation in the polygenic individual-based simulations. Each 

point represents the proportion of 800 runs of the simulation in which the population either 

persisted until the end of the simulation (black circles) or had greater than K adults at any point 

in the simulation (white circles). (A) shows uncorrelated fluctuations in the optimal phenotype 

( , ρ = 0.0) and (B) shows autocorrelated fluctuations in the optimal phenotype 

( , ρ = 0.9). Parameters values were: N* = 1,000, , , and K = 250. 
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Figure A11. Effect of fluctuations in the optimal phenotype on additive genetic variation in the 

polygenic individual-based simulations. Lines show the mean additive genetic variation of 800 

runs of the simulation with either uncorrelated (A; ρ = 0.0) or positively autocorrelated (B; ρ = 

0.9) fluctuations in the optimal phenotype. Lighter shades of grey indicate greater degrees of 

variation in the optimal phenotype ( ). Additive genetic variation was calculated at the 

beginning of each generation before individuals were subject to viability selection. It was 

calculated by calculating the variance among individuals’ genotypic values. Recall that in our 

population-level polygenic models, additive genetic variance was assumed to be temporally 

constant. Parameters values were: N* = 1,000, , , and K = 250. 
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Figure A12. The probability of persistence in the population-level polygenic model for different 

initial population sizes with either uncorrelated (A; ρ = 0) or positively autocorrelated (B; ρ = 

0.9) fluctuations in the optimal phenotype. Each panel shows results for different degrees of 

fluctuations in the optimal phenotype: , , , and  with lighter 

shades of grey indicating greater degrees of variation. Each point represents the proportion of 

1,000 runs of the simulations in which the population never dropped below the critical 

population size Nc. Parameter values were: , , , , P = 1, 

. 
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Figure A13. Population-level polygenic model with the optimal phenotype of the first generation 

after the environmental change being a random Gaussian variable with mean  and variance 

. This differs from the results presented in the main text (and elsewhere in the supplemental 

material) in which the optimal phenotype of the first generation after the environmental change 

was always . (A) and (B) show the effects of increasing the magnitude of variation in the 

optimal phenotype  without (A; ρ = 0) and with (B; ρ = 0.9) autocorrelation. (A) and (B) are 

comparable to figure 2 in the main text. (C) and (D) show the results of increasing 

autocorrelation, which is comparable to figure A4. For (C) and (D) . In all panels, each 

point represents the proportion of 1,000 runs of the simulation in which the population did not 
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drop below the critical population size Nc at any point of the simulation. Parameter values in both 

panels are Nc = 100, , , P = 1, G = 0.5. 

 

 

 

Figure A14. Agreement between simulation results (solid lines) and our analytical approximation 

(dashed lines) for the monogenic model. The solid lines are generated from simulations with 

1,000,000 realizations for each parameter set (at intervals of 0.01 on the abscissa) as in figure 3c 

(although fecundity here is lower), while the dashed lines are values calculated using the 

expected number of mutants and probability of mutant lineage persistence, and assuming a 

Poisson distribution of mutants among populations. (A) shows uncorrelated variation and (B) 

shows autocorrelated variation with . Note that the ordinate is on a logarithmic scale. 

Parameter values were: N* = 100, geometric mean Ft = 3, V = 0.2, v = 0.5. 
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Figure A15. The effects of variation in fecundity in the polygenic model on the probability of 

persistence following a sudden environmental change. The left column (A,C,E) shows results for 

uncorrelated fluctuations (ρ = 0.0) and the right column (B,D,F) shows results for positively 

autocorrelated fluctuations (ρ = 0.9). (A) and (B) show results of the population-level 

simulations with a large initial population size (10,000) and weak stabilizing selection 

( ). (C) and (D) show results of the population-level simulations with a smaller initial 

population size (1,000) and stronger stabilizing selection ( ). (E) and (F) show results of 
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the individual-based simulations with an initial population size of 1,000 and stabilizing selection 

of . In (A), (B), (C), and (D) each point represents the proportion of 1,000 runs of the 

simulations in which the population did not drop below the critical population size Nc at any 

point of the simulation and in (E) and (F) each point represents the proportion of 800 runs of the 

simulations in which populations persisted. In all plots, lighter shades of grey indicate greater 

variation in fecundity  ( ). In the population-level simulations (A,B,C,D), the degrees of 

variation shown are , , , and . In the individual-based 

simulations, the degrees of variation shown are , , and . Additional 

parameters for (A) and (B) were , , , . Additional parameters 

for (C) and (D) were , , , . In (E) and (F)  and 

. 

 

 

Figure A16. Violin plots showing the mean fecundity from generation i to j for populations that 
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with fluctuations in fecundity. Each panel shows the results of 1,000 runs of the simulation. The 

mean (black circle) and standard deviation (black bar) are shown for each group. Populations 

were recorded as ‘Extinct’ if the population dropped below the critical population size Nc at any 

point of the simulation (1,000 generations); otherwise, they were recorded as ‘Persisted’. 

Parameter values were: initial population size = 10,000, , , , , 

, , , . 
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