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SM1 Model Flowcharts
Within Section 2 of the of the main text, we introduce a generic host-parasite-hyperparasite model which
allows for the dynamics of multiple strains of parasite and hyperparasite to be considered. This model is
described by equations (1)-(3) in the main manuscript. The addition of different strains can result in quite
a complex model, hence, we display the dynamics in the form of a flowchart, shown in Fig. S1.

In Section 3 of the main text, we considered three different possible evolutionary scenarios, for each of
these scenarios we constructed similar flowcharts depicting the interactions with the resident-mutant models
constructed using the adaptive dynamics framework. The first scenario in Section 3.1 considers the evolution
in the parasite only, when the parasite virulence can evolve but the hyperparasite strength is fixed. The
flowchart for this scenario is shown in Fig. S2.
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Figure S1: Flowchart displaying all interactions within the generic host-parasite-hyperparasite model that
accounts for the existence of multiple strains of parasite and hyperparasite, given in the main text by
equations (1)-(3). The system consists of three components; healthy hosts (S), hosts infected by a parasite
(P i) and hosts infected by a hyperparasite (Hi,L) where i denotes the parasite strain with virulence αi and
L represents the hyperparasite with strength εL. For the sake of simplicity the figure includes only a single
strain of the hyperparasite L.
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Figure S2: Flowchart for the introduction of an initially rare mutant strain with virulence αm into the
ecological equilibrium of resident strain αr as described in Section 3.1 of the main text where evolution in
the parasite only is considered.

Next, in Section 3.2 we fixed the parasite virulence and considered evolution in the hyperparasite strength
only. The corresponding flowchart can be seen in Fig. S3.

Figure S3: Flowchart for the introduction of a rare mutant hyperparasite strain εm into the resident system
characterised by εr at its ecological equilibrium, where the parasite virulence α is fixed. This corresponds to
the mutant equation (12) given in Section 3.2 of the main text.

Finally, we consider the co-evolution of both the parasite virulence and the hyperparasite strength. This
scenario corresponds to Section 3.3 within the main text. The flowchart for this scenario is shown in Fig.
S4.
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Figure S4: Flowchart for the mutant-resident model corresponding to Section 3.3 of the main text where
we allow for the co-evolution of both the parasite virulence and the hyperparasite strength. The resident
components S, P r and Hr,R assume parasite virulence αr and hyperparasite strength εR. The mutant
components allow for a mutation in just the hyperparasite producing Hr,M , a mutation in just the parasite
producing Pm, Hm,R and a simultaneous mutation in both producing Pm, Hm,M .
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SM2 Dependence of Evolutionary Outcomes on Key Model Param-
eters

Within Section 3 of the main manuscript, we looked at the dependence of evolutionary parameters and model
dynamics on key parameters.

SM2.1 Evolution in the Parasite Only
Dependence of Prevalence and Mortality on µ In particular, we looked at how the evolutionary
parameters and the stationary states varied as we varied µ. Here we show the corresponding figures for
the prevalence and the overall mortality and transmission rates. We define the overall mortality to be the
average morality for all organisms, given as µS+µP+αP+µH+αH(α)H

N whereas the overall transmission rate is
defined to be the per capita loss of susceptible hosts due to infection via parasites that are either uninfected
or infected by the hyperparasite, given as βP (α)P ∗ + βH(α, ε)H∗. Firstly, we looked at the evolution in the
parasite only, discussed in Section 3.1 of the main text. The results for this are shown in Fig. S5-S6.

5

Supplemental Material (not copyedited or formatted) for: Simran K. Sandhu, Andrew Yu. Morozov, Robert D. Holt, Michael Barfield. 2021. "Revisiting the Role of 
Hyperparasitism in the Evolution of Virulence." The American Naturalist 197(2). DOI: https://doi.org/10.1086/712351. 



Figure S5: The dependence of model dynamics on the mortality rate µ where we allow for evolution in the
parasite only corresponding to Fig. 1 of Section 3.1 of the main text. (A) The dependence on µ of the ESS
prevalence of infected hosts in the presence and absence of the hyperparasite. (B) The dependence on µ
of the overall mortality and transmission in the presence and absence of the hyperparasite demonstrating
the positive impact the introduction of a hyperparasite can have on the host population. Regions (I)-
(III) are defined the same as in Fig. 1 of the main manuscript. Other parameter values are as follows:
F (N) = 5− 0.8N , α0 = 0.6, C = 1.5, K = 0.5, β0 = 0.5, Q = 0.9, σ0 = 0.5.

In addition to the example shown in Fig. 1 of the main text and Fig. S5 we also looked at the impact
of the background mortality µ when we have a larger fixed value of α0. We again vary the value of µ and
investigate its impact on the ESS, stationary states, prevalence and overall mortality shown in Fig. S6.
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Figure S6: The dependence of model dynamics on the mortality rate µ where we allow for evolution in
the parasite only where the hyperparasite has a higher fixed detrimental impact on parasite virulence with
α0 = 0.8. (A) The ESS for the case with hyperparasite and without hyperparasite. (B) The equilibrium host
densities at the ESS shown in (A). (C) The dependence of the prevalence of both types of infected hosts in
the presence and absence of the hyperparasite. (D) The dependence of the overall mortality and transmission
in the presence and absence of the hyperparasite demonstrating the positive impact the introduction of a
hyperparasite can have on the host population. Regions (I)-(III) are defined the same as in Fig. 1 of the
main manuscript. Other parameter values are as follows: F (N) = 5 − 0.8N , α0 = 0.8, C = 1.5, K = 0.5,
β0 = 0.5, Q = 0.9, σ0 = 0.5.
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Parasite Virulence Dependence on α0 For the scenario in Section 3.1 where we consider evolution
in the parasite only we also investigated the dependence of the model behaviour on the hyperparasite’s
detrimental effect on the virulence, given by α0. We vary the value of α0 (a higher value meaning the
hyperparasite lowers pathogen virulence less than for a lower value) and investigate its impact on the ESS,
stationary states, prevalence and mortality as shown in Fig. S7.

9

Supplemental Material (not copyedited or formatted) for: Simran K. Sandhu, Andrew Yu. Morozov, Robert D. Holt, Michael Barfield. 2021. "Revisiting the Role of 
Hyperparasitism in the Evolution of Virulence." The American Naturalist 197(2). DOI: https://doi.org/10.1086/712351. 



Figure S7: The dependence of model dynamics on the hyperparasite’s effect on the parasite virulence, α0,
when we allow for evolution in the parasite only; because this only affects hyperparasites, the "no H" curves
do not vary with α0. (A) The ESS virulence for the case with hyperparasite and without hyperparasite for
varying values of α0. The ratio decreases as α0 increases, tending towards 1. (B) The stationary states at
the ESS shown in (A), there is only coexistence for a small range of α0 values.(C) The prevalence of the
system at the ESS based upon the stationary states in (B). (D) The mortality rates of the system at the
ESS based upon the stationary states in (B). Regions (I)-(III) are defined the same as in Fig. 1 of the main
manuscript. Other parameter values are as follows: F (N) = 5− 0.8N , µ = 0.5, C = 1.5, K = 0.5, β0 = 0.5,
Q = 0.9, σ0 = 0.5.

From the figure we can see that only for a range of α0 values can all three types of hosts coexist together;
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if α0 is too small then the parasite becomes hyperparasitised everywhere and if it is too large then the
hyperparasite will eventually fall extinct. As α0 is increased we see that the ESS α∗ decreases and tends
towards the value of α̂, therefore the more effective or efficient the hyperparasite, the larger the ESS parasite
virulence.

One way to assess the effectiveness and benefits of the hyperparasite is to compare the overall mortality
rates of all model components for the case with and without hyperparasite. From these mortality rates, it
is clear that the addition of an effective hyperparasite (that is, one with a relatively small α0) results in
reduced mortality. Hence the hyperparasite is effective in helping the host to fight against the detrimental
effects of the parasite. However, it is interesting to note that for low values of α0 the healthy host density
is lower than and the total transmission can be higher than with no hyperparasites. In these cases the
hyperparasite drops parasite virulence much more than transmission, making the parasite more abundant.
However, overall mortality is still decreased because of the low virulence.

Parasite Virulence Dependence on β0 We also investigated the dependence of the ESS parasite viru-
lence α∗ and model properties on β0, the transmission of the hyperparasite-infected parasite βH relative to
that of the uninfected parasite βP ; 0 ≤ β0 ≤ 1. As we vary β0 the changes in the ESS, stationary states,
prevalence and mortality rates can be seen in Fig. S8 (note that here we are examining the effect of different
fixed values of β0, and not allowing β0 to vary as in the hyperparasite evolution and co-evolution scenarios).
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Figure S8: The dependence of model dynamics on the hyperparasite’s reduction in the parasite transmission
rate, β0 (a lower value giving a larger reduction), when we allow for evolution in the parasite only. (A) The
ESS for the case with hyperparasites and without hyperparasites for varying values of β0. The ratio decreases
as β0 decreases, tending towards 1. (B) The equilibria at the ESS shown in (A); there is only coexistence
for a small range of β0 values.(C) The prevalence of the system at the ESS based upon the stationary states
in (B). (D) The overall mortalities for varying values of β0. Regions (I)-(III) are defined the same as in
Fig. 1 of the main manuscript (but note their reversed positions). Other parameter values are as follows:
F (N) = 5− 0.8N , µ = 0.5, C = 1.5, K = 0.5, Q = 0.9, σ0 = 0.5, α0 = 0.6.

Again we can assess the effectiveness and benefits of the hyperparasite by comparing the host-parasite-
hyperparasite model with the host-parasite model. From this figure, it is clear that the larger the value of
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β0 the greater the impact of the hyperparasite on the system. It can be observed from Fig. S8(D) that the
addition of the hyperparasite can potentially reduce the overall mortality provided the hyperparasite has a
high enough transmission rate to persist (that is, a large enough value of β0). Again, it is important to note
that for some values of β0 the healthy host density is less than and the total transmission is greater than
the case with no hyperparasite.

SM2.2 Evolution in the Hyperparasite Only
Next, we considered the scenario of evolution in the hyperparasite only, discussed in Section 3.2 of the
main text. Fig. 3 shows the dependence of the ESS hyperparasite strength and stationary states on the
background mortality µ. In Fig. S9 we show the corresponding figures for the prevalence and overall
mortality dependence.
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Figure S9: The dependence of model dynamics on the mortality rate µ where we allow for evolution in the
hyperparasite only corresponding to Fig. 2 of Section 3.2 of the main text. (A) The dependence of the
prevalence of both types of infected hosts. (B) The dependence of the overall mortality and transmission
demonstrating the positive impact the introduction of a hyperparasite can have on the host population.
Regions (I)-(III) are defined the same as in Fig. 1 of the main manuscript. Other parameter values are as
follows; F (N) = 5− 0.8N , C = 1.5, K = 0.5, Q = 0.9, σ0 = 0.5 and α = 0.6.
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SM2.3 Co-evolution of Parasite and Hyperparasite
Lastly, in Section 3.3 we considered the scenario with co-evolution of both the parasite and hyperparasite.
The dependence of the prevalence and overall mortality are shown in Fig. S10 corresponding to Fig. 4 of
the main text.
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Figure S10: The dependence of model dynamics on the mortality rate µ where we allow for co-evolution
in both the parasite and hyperparasite corresponding to Fig. 4 of Section 3.3 of the main text. (A) The
dependence of the prevalence of both types of infected hosts in the presence and absence of the hyperparasite.
(B) The dependence of the overall mortality in the presence and absence of the hyperparasite demonstrating
the positive impact the introduction of a hyperparasite can have on the host population. Regions (I)-
(III) are defined the same as in Fig. 1 of the main manuscript. Other parameter values are as follows;
F (N) = 5− 0.8N , C = 1.5, K = 0.5, Q = 0.9, σ0 = 0.5 and α = 0.6.
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SM3 Stability Analysis
This section of the supplementary material provides the analytical stationary states for the trivial, semi-
trivial and non-trivial cases for the system with one strain each of parasite and hyperparasite (so we omit
subscripts for strain), which are generally defined as the solutions to the following system

dS

dt
= F (N∗)S∗ − µS∗ − (βP (α)S

∗P ∗ + βH(α)S∗H∗) = 0 (1)

dP

dt
= βP (α)S

∗P ∗ − σ(α)P ∗H∗ − µP ∗ − αP ∗ = 0 (2)

dH

dt
= βH(α)S∗H∗ + σ(α)P ∗H∗ − µH∗ − αH(α)H∗ = 0 (3)

along with their stability conditions determined through the computation of the corresponding Jacobian
matrix. When calculating our stationary states we make the following assumptions:

F (N) = B0 −B1N

αH(α) = α0α

βP (α) = C
α

α+K
βH(α) = β0βP (α) σ(α) = σ0βH(α) = σ0β0βP (α).

In order to determine the stability of a stationary state we need to determine the eigenvalues of the
Jacobian matrix. A stationary state is stable if and only if all eigenvalues λ1,2,3 have negative real parts.

(0, 0, 0)
Initially we consider the trivial case where all organisms are extinct, that is, (S∗, P ∗, H∗) = (0, 0, 0). The

Jacobian at this stationary state can be simplified to

J =

B0 − µ 0 0
0 −µ− α 0
0 0 −µ− αH(α)

 (4)

which has the characteristic equation

(B0 − µ− λ1)(−µ− α− λ2)(−µ− αH(α)− λ3) = 0 (5)

Therefore the eigenvalues are
λ1 = B0 − µ (6)

λ2 = −µ− α (7)

λ3 = −µ− αH(α) (8)

λ2, λ3 < 0, hence the state is stable when λ1 < 0, that is when B0 < µ. If B0 > µ (and hence λ1 > 0) then
the state (0, 0, 0) is unstable and S will be able to invade this state when initially rare.

(S1, 0, 0)
Now we consider the semi-trivial case for which the parasite is absent, (S1, 0, 0). We fix P 1 = 0 and

H1 = 0, and the model at this stationary state is

dS

dt
= F (S1)S1 − µS1 = (B0 −B1S1)S1 − µS1 = 0 (9)

dP

dt
= 0 (10)

dH

dt
= 0. (11)
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The resulting stationary state for the susceptible members is

S1 =
B0 − µ

B1
(12)

The Jacobian at the stationary state (S1, 0, 0) can be simplified to

J =

µ−B0 µ−B0 + βP (α)
B0−µ
B1

µ−B0 − βH(α)B0−µ
B1

0 βP (α)
B0−µ
B1

− µ− α 0

0 0 βH(α)B0−µ
B1

− µ− αH(α)

 (13)

which has the characteristic equation

(µ−B0 − λ1)(βP (α)
B0 − µ

B1
− µ− α− λ2)(βH(α)

B0 − µ

B1
− µ− αH(α)− λ3) = 0. (14)

The eigenvalues are given as
λ1 = µ−B0 (15)

λ2 = βP (α)
B0 − µ

B1
− µ− α (16)

λ3 = βH(α)
B0 − µ

B1
− µ− αH(α) (17)

We know λ1 < 0 or else S1 < 0 which is not a feasible stationary state. If P is slightly positive rather than
0, its growth can be described as

dP

dt
= βP (α)

B0 − µ

B1
P − µP − αP = λ2P (18)

If the invasion is possible then λ2 > 0 and the state (S1, 0, 0) is unstable. Similarly we have the same
condition with λ3 and the invasion of H. Hence the violation of the stability condition λ2 < 0, λ3 < 0 results
in the possible invasion of P , H respectively.

(S2, P 2, 0)
If we fix H2 = 0, then the model is

dS

dt
= F (S2 + P 2)S2 − µS2 − βP (α)S2P 2 = 0 (19)

dP

dt
= βP (α)S2P 2 − µP 2 − αP 2 = 0 (20)

dH

dt
= 0. (21)

These can be solved to give the following stationary states:

S2 =
µ+ α

βP (α)
(22)

P 2 =
B0 −B1

µ+α
βP (α) − µ

B1 + βP (α)
. (23)

The Jacobian evaluated at this stationary state can be simplified to

J =

 −B1S2 −(B1 + βP (α))S2 −(B1 + βH(α))S2

βP (α)P 2 0 −σ(α)P 2

0 0 βH(α)S2 + σ(α)P 2 − µ− αH(α)

 (24)

19

Supplemental Material (not copyedited or formatted) for: Simran K. Sandhu, Andrew Yu. Morozov, Robert D. Holt, Michael Barfield. 2021. "Revisiting the Role of 
Hyperparasitism in the Evolution of Virulence." The American Naturalist 197(2). DOI: https://doi.org/10.1086/712351. 



which has the following characteristic equation:

(βH(α)S2 + σ(α)P 2 − µ− αH(α)− λ3)(λ
2
1,2 +B1

µ+ α

βP (α)
λ1,2 + (µ+ α)(B0 −B1

µ+ α

βP (α)
− µ)) = 0 (25)

Provided the real parts of all λ are negative then we have stability, which is true if and only if

λ3 = β0(µ+ α) +
σ(α)

B1 + βP (α)
(B0 −B1

µ+ α

βP (α)
− µ)− µ− αH(α) < 0 (26)

and
B0 −B1

µ+ α

βP (α)
− µ > 0. (27)

Equation (27) is the condition for the real parts of λ1,2 to be negative. We know B0 − B1
µ+α
βP (α) − µ > 0 as

if this is not satisfied then P 2 ≤ 0 which is not feasible. Hence the stability condition is that λ3 < 0. As in
the previous case λ3 > 0 is also the condition for H to successfully invade the state.

(S3, 0, H3)
Suppose instead the hyperparasite is able to infect the entire parasite population resulting in P 3 = 0.

Therefore the model is
dS

dt
= F (S3 +H3)S3 − µS3 − βH(α)S3H3 = 0 (28)

dP

dt
= 0 (29)

dH

dt
= βH(α)S3H3 − µH3 − αH(α)H3 = 0. (30)

Solving this gives the stationary states

S3 =
µ+ αH(α)

βH(α)
(31)

H3 =
B0 −B1

µ+αH(α)
βH(α) − µ

B1 + βH(α)
. (32)

For this scenario the Jacobian is simplified to

J =

 −B1S3 −(B1 + βP (α))S3 −(B1 − βH(α))S3

0 βP (α)S3 − σ(α)H3 − µ− α 0
βH(α)H3 σ(α)H3 0

 (33)

which has the following characteristic equation

(βP (α)S3 − σ(α)H3 − µ− α− λ2)(λ
2
1,3 +B1

µ+ αH(α)

βH(α)
λ1,3 + (µ+ αH(α))(B0 −B1

µ+ αH(α)

βH(α)
− µ)) = 0.

(34)

Provided the real parts of all λ are negative then we have stability, which is true if and only if

λ2 = βP (α)
µ+ αH(α)

βH(α)
− σ(α)

B1 + βH(α)
(B0 −B1

µ+ αH(α)

βH(α)
− µ)− µ− α < 0 (35)

and
B0 −B1

µ+ αH(α)

βH(α)
− µ > 0 (36)

Again for the state to be feasible (H3 > 0) it is required that B0 − B1
µ+αH(α)
βH(α) − µ > 0. Therefore the

stability condition is given by λ2 < 0; if this is positive we have the condition for P to increase when rare.
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(S∗, P ∗, H∗)
Finally we consider the most complex non-trivial scenario where all model components are able to coexist

together. The model is given by equations (1)-(3). The stationary states are

S∗ =
α
(
B1(1−α0)

C − α0 + β0

)
+ σ0β0B0 +

B1(1−α0)K
C − µ(1− β0 + β0σ0)

B1(1− β0 + β0σ0)
(37)

P ∗ =
µ+ α0α− β0βP (α)S

∗

σ0β0βP (α)
(38)

H∗ =
βP (α)S

∗ − µ− α

σ0β0βP (α)
. (39)

Using these stationary states, the Jacobian can be simplified to

J =

 −B1S
∗ −S∗(B1 + βP (α)) −S∗(B1 + β0βP (α))

µ+α0α−β0βPS
∗

σ0β0
0 β0βPS

∗ − µ− α0α
βPS

∗−µ−α
σ0

βPS
∗ − µ− α 0

 (40)

The corresponding characteristic equation is given as

σ0β0λ
3 + σ0β0B1S

∗λ2 − λ ((βH(α)S∗ − µ− αH(α))(σ0β0(βPS
∗ − µ− α) + S∗(B1 + βP (α))))

−λS∗β0(B1 + βH(α))(βPS
∗ − µ− α)− (βPS

∗ − µ− α)(βH(α)S∗ − µ− αH(α)) (S∗B1(1− β0 + σ0β0)) = 0

= a3λ
3 + a2λ

2 + a1λ+ a0
(41)

For a cubic characteristic equation with a3 > 0 (here a3 = σ0β0 > 0), the conditions for stability are a2 > 0,
a0 > 0 and a2a1 > a0 (Routh-Hurwitz stability condition). The first condition is always satisfied, and the
second is assuming that β0(1 − σ0) < 1, which is true if the hyperparasite decreases transmission as we
assume. Therefore, stability is determined by the last condition, which is that{

B1

(
βP
µ+ α

− βH
µ+ αH

)
− βP
µ+ α

βH
µ+ αH

(α− αH)

}
S∗ + βP − βH > 0. (42)

The term in braces must be negative for instability assuming that the hyperparasite lowers transmission.
The first term in braces must be positive for the equilibrium to be feasible, and the second term is negative
assuming that the hyperparasite lowers the death rate.

Since the first term must be positive{
B1

(
βP
µ+ α

− βH
µ+ αH

)
− βP
µ+ α

βH
µ+ αH

(α− αH)

}
S∗ + βP − βH >

− βP
µ+ α

βH
µ+ αH

(α− αH)S∗ + βP − βH .

(43)

The first term on the right is negative, and will be most negative if S∗ is maximum (assuming the other
parameters are not changed; S∗ can be increased without changing these parameters), which is when S∗ =
µ+αH(α)

βH
(if it is higher, the equilibrium is not feasible, since P ∗ < 0). Therefore

− βP
µ+ α

βH
µ+ αH

(α− αH)S∗ + βP − βH > (µ+ αH)(
βP
µ+ α

− βH
µ+ αH

). (44)

Combining inequalities (43) and (44) gives{
B1

(
βP
µ+ α

− βH
µ+ αH

)
− βP
µ+ α

βH
µ+ αH

(α− αH)

}
S∗ + βP − βH > (µ+ αH)(

βP
µ+ α

− βH
µ+ αH

) (45)

But the right hand side is positive under our assumptions, and therefore the left side is positive and the
system is stable.
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SM4 Example of Evolutionary Bistability
Within Section 1 of the main text, it is mentioned that we sometimes find evolutionary bistability for our
host-parasite-hyperparasite system. Here we provide an example that demonstrates the presence of multiple
ESS points. Initially, we suppose that α = 0.6 was fixed, that is, we allow evolution in the hyperparasite only.
For this we constructed a PIP (shown in Fig.S12(A)) clearly demonstrating two evolutionary attractors. The
two attractors are separated by a region for which the hyperparasite is extinct. Following this, we considered
the co-evolution of both the parasite and the hyperparasite using the method of quantitative genetics. We
consider the trade-off with α0 = 0.7

1+exp(9−20ε) +
0.7

1+exp(20−25ε) being the sum of two sigmoidal functions and
linear β0 = 0.8ε, shown in Fig. S11. Note that α0 can take values greater than one, in which case the
hyperparasite increases parasite virulence. However, at both ESSs the hyperparasite reduces virulence.

Figure S11: Trade-off functions for α0 and β0 that gives rise to evolutionary bistabilty demonstrated in Fig.
S12.

Starting from several different possible initial conditions we found that the evolutionary parameters α
and ε will evolve towards two distinct ESS pairs. This can be seen in Fig. S12(B) which demonstrates how
the final ESS pairs can be dependent on the initial starting point of evolution. Therefore, if we start from
different initial conditions we can have low or high evolutionary stable parasite virulence and hyperparasite
strength.
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Figure S12: Evidence of bistability for the host-parasite-hyperparasite model allowing for the evolution of
both the parasite and hyperparasite. (A) Firstly, we fix α = 0.6 and construct a PIP that demonstrates the
existence of two distinct evolutionary attractors given by the black filled points. (B) Secondly, we use the
quantitative genetics with co-evolution to show the existence of two ESS pairs (α∗, ε∗) whose evolution is
dependent on the initial evolutionary strategies. Initially, α = ε = 0.15, 0.3, 0.45 (which result in the lower
ESS), or 0.6 or 0.75 (which result in the higher ESS). Other parameter values are as follows: F (N) = 5−0.8N ,
µ = 0.5, C = 1.5, K = 0.5, Q = 0.9, σ0 = 0.5.
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SM5 Co-Evolutionary Extinction
Within Section 3.3 of the main manuscript, an example of co-evolutionary extinction for our host-parasite-
hyperparasite system with co-evolution of both the parasite virulence α and the hyperparasite strength ε
was shown. Here we provide the regions of existence of each model component for all possible evolutionary
parameter pairs. Demonstrating the extinction boundaries for each model component, shown in Fig. S13.
The figure shows four regions; the dark blue region I represents where we have only uninfected susceptibles,
the green region II we have susceptible hosts and hosts infected with the parasite only, the yellow region IV
we have susceptible hosts and hosts infected with the hyperparasite only and finally the light blue region III
we have the coexistence of all model components.

Figure S13: Regions of different model structures at the stationary states for different evolutionary parameter
pairs (α, ε) corresponding to the example of co-evolutionary extinction shown in Fig.5 of the main text.
Regions of the graph are as follows.(I)=The system consists of only susceptible hosts. (II)=The hyperparasite
cannot be established in the system with the resulting system consisting of just susceptible hosts and hosts
infected by the parasite. (III)=Coexistence of uninfected hosts and infected hosts with and without the
hyperparasite. (IV)=At the equilibrium all pathogens are infected by the hyperparasite. The red and pink
lines are two examples of phase plots of the evolutionary parameters α and ε (solid) and their subsequent
evolution (dashed). The red curve is an example of the extinction of the parasite and the pink curve is an
example of the extinction of the hyperparasite.

Fig. 5 in the main text demonstrates how the speed of evolution can impact the evolutionary outcome.
For the quantitative genetics framework, we regulate speed by varying the values of Gα and Gε (for fast
evolution we have Gα = 0.05, Gε = 0.05 and for slow evolution we have Gα = 0.05, Gε = 0.01). However, for
the adaptive dynamics framework, we instead regulate the speed through our choices of mutants. For a fast
evolution, we allow the mutant to differ much more from the mutant than in the case with slower evolution.
For each mutant, we select a random value with a uniform distribution over a range centred around the
resident; the width of these ranges dictate the evolutionary speed. Interestingly, varying only the speed of
evolution of ε results in different evolutionary outcomes, suggesting that if the hyperparasite evolves more
slowly, it is subsequently eliminated by the parasite but if it evolves fast enough it will be able to invade all
parasites.
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SM6 Comparison Between the Adaptive Dynamics and Quantita-
tive Genetics Frameworks

Within Section 2 of the main manuscript, it was suggested that two approaches of modelling evolution can
be applied to our host-parasite-hyperparasite model. The first one was the adaptive dynamics framework
for which we construct the resident-mutant models (as displayed in the form of a flowchart in Section SM1).
The second approach was based upon a quantitative genetics framework where we modelled the evolution
from the equations (4)-(8) in the main text. Here we compare the two frameworks via direct simulations for
all three evolutionary scenarios. Furthermore, we verify the obtained ESS through the use of eigenvalues; if
we obtain a true evolutionary attractor then the eigenvalue should be negative in the vicinity of this point
and zero at the point itself.

In Section 3.1 of the main text, we look at evolution in the parasite only. For this scenario we have
the mutant equations given by equations (9) and (10) (displayed in Fig. S2 as a flowchart) from which
the invasion fitness λP given by equation (11) can be derived. The resident-mutant model can be used to
determine the ESS through a series of mutant invasions, where we simulate the behaviour of both the mutant
and resident (using the model given by equations (1)-(3) in the main text) to determine which can survive,
out-competing the other (to simulate their behaviour we implemented the ode45 MATLAB function). To
determine the mutant strain we select a uniform random value close to that of the resident evolutionary
parameter value. This is done by defining a range around the resident strain that the mutant must lie in;
by varying the width of this range we can regulate the speed of the evolution (see section 3.3 and SM5).
However, if this range is relatively large (sometimes required for computational speed) it can produce some
computational errors resulting in slight oscillations around the true ESS (this can be seen in Fig. S14).
Alternatively, we applied the quantitative genetics framework with rP = maxλP , λH in equation (7). The
implementation of both frameworks is shown in Fig. S14(A), where it is clear that they both yield the
same ESS parasite virulence α∗. Additionally, in Fig. S14(B) we can conclude that this ESS is indeed an
evolutionary attractor.
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Figure S14: (A) Direct comparison of the adaptive dynamics framework and the quantitative genetics
methodology as applied in Section 3.1 of the main manuscript, where we allow for evolution in the par-
asite only. We show the results of modelling the evolution of the parasite virulence using both frameworks
showing they both yield the same ESS. (B) We verify these results through the computation of the dominant
eigenvalue in the vicinity of the ESS α∗. Other parameter values are as follows: F (N) = 5− 0.8N , µ = 0.5,
C = 1.5, K = 0.5, Q = 0.9, α0 = 0.6, β0 = 0.5, σ0 = 0.5, Gα = 0.005, Gε = 0.005.

Section 3.2 of the main text explored the evolution in the hyperparasite only. For this case the mutant
equation is given in the main text by equation (12) (or as a flowchart given by Fig. S3) with corresponding
invasion fitness λH . For the quantitative genetics framework, we set rH = λH in equation (8) of the main

26

Supplemental Material (not copyedited or formatted) for: Simran K. Sandhu, Andrew Yu. Morozov, Robert D. Holt, Michael Barfield. 2021. "Revisiting the Role of 
Hyperparasitism in the Evolution of Virulence." The American Naturalist 197(2). DOI: https://doi.org/10.1086/712351. 



text. We applied both of these frameworks to each of the trade-off scenarios and the results can be seen in
Fig. S15(A). In all cases, the ESS hyperparasite strength obtained from either framework yield the same
result. Fig. S15(B) verifies that this singular point is an evolutionary attractor.
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Figure S15: (A) Direct comparison of the adaptive dynamics framework and the quantitative genetics
methodology outlined in Section 3.2 of the main manuscript where we allow for evolution in the hyperparasite
only. We show the results of modelling the evolution of the hyperparasite strength using both frameworks
showing they both yield the same ESS. (B) We verify these results through the computation of the dominant
eigenvalue in the vicinity of the ESS ε∗. Other parameter values are as follows: F (N) = 5− 0.8N , µ = 0.5,
C = 1.5, K = 0.5, Q = 0.9, σ0 = 0.5, α = 0.6, Gα = 0.005, Gε = 0.005.
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Finally, Section 3.3 of the main text investigated the co-evolution of both the parasite and hyperparasite.
For this scenario, the mutant equations are given in Appendix C of the main text (with the corresponding
flowchart shown in Fig. S4). From these equations we obtained the invasion fitnesses λP , λHr,M

(also given
in Appendix C). Using rP = λP and rH = λHr,M

in equations (7) and (8) of the main text we can implement
the quantitative genetics framework. Fig. S16(A) shows that in all trade-off scenarios considered, the ESS
pairs (α∗, ε∗) are the same for both evolutionary frameworks. We again verify these ESS pairs through the
use of the maximal eigenvalues and Fig. S16(B) demonstrates that they are indeed evolutionary attractors.
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Figure S16: (A) Direct comparison of the adaptive dynamics framework and the quantitative genetics
methodology outlined in Section 3.3 of the main manuscript where we allow for co-evolution in the both the
parasite and hyperparasite. We show the results of modelling the evolution of the parasite virulence and
hyperparasite strength using both frameworks showing they both yield the same ESS. (B) We verify these
results through the computation of the dominant eigenvalue in the vicinity of the ESS α∗ and ε∗ Other pa-
rameter values are as follows: F (N) = 5− 0.8N , µ = 0.5, C = 1.5, K = 0.5, Q = 0.9, σ0 = 0.5, Gα = 0.005,
Gε = 0.005.
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SM7 Mutual Displacement of Hyperparasite Strains
In section 3.4 of the main text, we introduce this idea of a hyperparasite strain displacing another in an
infected host. Here, we show an example where we allow for evolution in the hyperparasite only with multiple
stains of hyperparasite possessing the ability to displace neighbouring strains. The model equations can be
modified to account for this and are given as follows;

dS

dt
= F (N)S − µS −

(
βP (α)SP +

n∑
i=1

βH(α, εi)SHi

)
(46)

dP

dt
= βP (α)SP −

(
n∑
i=1

σ(α, εi)PHi

)
− µP − αP (47)

dHi

dt
= βH(α, εi)SHi + σ(α, εi)PHi − µHi − αH(α, εi)Hi − γσ(α, εi)(Hi−1 +Hi+1)Hi+

γ
(
σ(α, εi+1)Hi+1 + σ(α, εi−1)Hi−1

)
Hi

(48)

where γ is the rate at which a hyperparasite of strain ε infects a host with a neighbouring hyperparasite
strain with either εi+1 or εi−1 and displaces with resident hyperparasite. We simulated the behaviour of this
model with a large range of ε values and we find that a large number of different strains are able to coexist
in the system; the results can be seen in figure S17. The figure shows that multiple strains can coexist with
their stationary density being larger the closer the strain is to ε∗ verifying our earlier results. Fig. S17(A)
shows only a limited number of ε values within the range 0 to 1, this shows how many strains will go extinct
and only those close to the ESS (represented by the pink curve) can survive.
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Figure S17: Addition of mutual displacement of hyperparasite strains into our model with evolution in the
hyperparasite only with α = 0.6 and trade-off functions given by α0(ε) = ε with hyperbolic β0(ε) = ε

0.6+ε .
We simulated the behaviour with multiple strains of hyperparasite present in the system. (A) Densities of
susceptibles S, parasite-only hosts P , and hosts with a varying strains of hypereparasite Hi. (B) Distribution
of the densities for each hyperparasite strain at the stationary state. Other parameter values are as follows:
F (N) = 5− 0.8N , µ = 0.5, C = 1.5, K = 0.5, Q = 0.9, σ0 = 0.5, γ = 0.05.

Note that, for clarity for the reader a larger grid is used to construct figure S17(A) than figure S17(B).
Although the integral total density of hyperparasite remains the same for both figures due to the differences
in grid size the maximal density will vary (in order to preserve this integral quantity).
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SM8 Proving Stability of Singularities
Within the appendixes of the main text we discuss the evolutionary stability of any singularity. We state
that we have the following criteria that must be met to ensure stability;

Ei < 0, Ei +Mi < 0,

∣∣∣∣ ∂2λP
∂εR∂αm

∂2λHrM

∂αR∂εm

∣∣∣∣− (E1 +M1)(E2 +M2) < 0

where

E1 =
∂2λP
∂α2

m

= β′′P (α
∗)S∗ < 0, M1 =

∂2λP
∂αm∂αr

= β′P (α)S
′∗(α),

E2 =
∂2λHrM

∂ε2M
= β′′0 (ε

∗)βP (α
∗)(S∗ + σ0P

∗
r)− α′′0(ε

∗)α∗, M2 =
∂2λHrM

∂εM∂εR
= β′0(ε)βP (α)(S

′∗ + σ0P
′∗),

In some of the cases with a trivial and semi-trivial state at the singularity these criteria can be proven
analytically to always hold. However, for the more complex non-trivial state it is more difficult to verify.
Therefore, we use computational results to show these criteria are met for varying parameter values. Firstly,
we varied a single parameter and observed that the criteria is always met, we checked a wide range of
parameters but here we just show the results when σ0 is varied (shown in Fig. S18). Secondly, we conducted
hundreds of random ’experiments’ where parameter values are randomly selected and we find that all criteria
are always satisfied.

Figure S18: Computational verification of the criteria required for an evolutionary endpoint, or singularity
to be stable. Dependence of the criterion on the parameter σ0. Other parameter values are as follows:
F (N) = 5 − 0.8N , µ = 0.5, C = 1.5, K = 0.5, Q = 0.9 and trade-off functions given by α0(ε) = ε with
hyperbolic β0(ε) = ε

0.6+ε . The green line is close to 0 for high values of σ0 but is always negative.

It is clear from the figures that the criteria is always met and the singularities are always either an
evolutionary attractor or repellor.
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SM9 Hypervirulence
Within the main text, it is mentioned that we sometimes observe hypervirulence for our host-parasite-
hyperparasite system, where α0(ε) > 1. Here we provide an example that demonstrates the possibility of
hypervirulence. In this case, we allowed for the co-evolution of both the hyperparasite and the parasite.
Fig. S19 shows that the hyperparasite can evolve from a very low hyperparasite effect, α0(ε), to one that is
greater than 1 making the hyperparasite more detrimental to the host than the parasite itself.

Figure S19: The dependence of model dynamics on the mortality rate µ where we allow for co-evolution
in both the parasite and the hyperparasite with the trade-off functions given by α0(ε) = ε with hyperbolic
β0(ε) =

ε
0.6+ε . (A) The ESS for the case with hyperparasite and without hyperparasite. (B) The equilibrium

host densities at the ESS shown in (A). Regions (I)-(III) are defined the same as in Fig. 1 of the main
manuscript. Other parameter values are as follows: F (N) = 5− 0.8N , C = 1.5, K = 0.5, β0 = 0.5, Q = 0.9,
σ0 = 0.5.
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