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abstract: The metapopulation concept offers significant explana-
tory power in ecology and evolutionary biology. Metapopulations, a
set of spatially distributed populations linked by dispersal, and their
community and ecosystem level analogs, metacommunity and meta-
ecosystem models, tend to be more stable regionally than locally. This
fact is largely attributable to the interplay of spatiotemporal hetero-
geneity and dispersal (the inflationary effect). We highlight this un-
derappreciated (but essential) role of spatiotemporal heterogeneity in
metapopulation biology, present a novel expression for quantifying and
defining the inflationary effect, and provide a mechanistic interpre-
tation of how it arises and impacts population growth and abundance.
We illustrate the effect with examples from infectious disease dynam-
ics, including the hypothesis that policy decisions made during the
COVID-19 pandemic generated spatiotemporal heterogeneity that en-
hanced the spread of disease. We finish by noting how spatiotemporal
heterogeneity generates emergent population processes at large scales
across many topics in the history of ecology, as diverse as natural enemy–
victim dynamics, species coexistence, and conservation biology. Em-
bracing the complexity of spatiotemporal heterogeneity is vital for fu-
ture research on the persistence of populations.

Keywords: spatiotemporal heterogeneity, persistence, asynchrony,
source-sink dynamics, dispersal, natural enemy–victim interactions.

Introduction

The concept of a metapopulation—a set of spatially dis-
tributed populations linked by dispersal—is central to dis-
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course in ecology, evolution, and conservation biology. Me-
tapopulation theory (Hanski and Gaggiotti 2004) and its
community-level counterpart, metacommunity theory (Lei-
bold et al. 2022), address important issues in ecology, includ-
ing population persistence (Levins 1969), species coexistence
(Amarasekare 2003; Hoopes et al. 2005), community as-
sembly (Thompson and Gonzalez 2017; Leibold et al. 2022),
and community stability (Loreau et al. 2003; Thompson
et al. 2017). Metapopulation models help advance under-
standing of biogeographic patterns (Gonzalez et al. 1998)
and evolutionary processes, such as the ecology and evolu-
tion of range limits (Holt and Keitt 2000), the evolution of
dispersal (Olivieri et al. 1995; Wang and Altermatt 2019),
and the interplay of selection and gene flow in adaptive
evolution and evolutionary rescue (Ingvarsson 2002; Bell
and Gonzalez 2011; Hanski et al. 2011). In applied contexts,
metapopulation perspectives pertain to biocontrol (Levins
1969) and analyses of habitat loss and fragmentation (Ova-
skainen and Hanski 2004). Here, we bring out the some-
times hidden theme of spatiotemporal heterogeneity as a
key driver of metapopulation processes.

Metapopulation theory emerged from observations by
empirical ecologists—such as Andrewartha and Birch (1954),
Huffaker (1958), and den Boer (1968)—on the often ephem-
eral and unstable nature of local populations. The for-
mal theory, stemming back to the seminal paper of Levins
(1969) for a single species (the term “metapopulation” had
its first usage in Levins [1970]), addresses the challenge of
understanding the interplay of dispersal and complex tem-
poral and spatial environmental heterogeneities. Levins’s
(1969) original metapopulation model described a set of spa-
tially discrete extinction-prone local populations connected
Chicago. All rights reserved. Published by The University of Chicago Press for
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The Inflationary Effect 343
by dispersal. In this model, he assumed (1) that individuals
move equally between all populations, (2) that the dynamic
nature of local environments and population growth cause
local extinctions, occurring independently across popula-
tions; and (3) that extinctions and colonization events were
slow compared with local population dynamics. From this
model, Levins derived conditions for the persistence of an ag-
ricultural pest and the efficacy of different control strategies.

Today, the term metapopulation is used more expansively
than originally defined by Levins. It describes a region span-
ning multiple local populations where the dynamics of local
populations are determined by local processes and move-
ment among local populations (i.e., emigration and im-
migration). The metapopulation idea has been expanded
to include multiple species and their interactions (Wilson
1992) in what are called metacommunities, that is, spatially
distributed sets of multispecies communities, with extinc-
tion and colonization events determining ecological and evo-
lutionary patterns and processes both locally and regionally
(Hoopes et al. 2005).

Like all valuable theory, metapopulation and metacom-
munity theories neglect many complexities of the world to
make other complexities manageable. A full accounting of
population dynamics in space, even without intrinsic spa-
tial and temporal environmental heterogeneities, leads to
challenging mathematical problems (Holmes et al. 1994; see,
e.g., Bolker and Pacala 1997). Metapopulation and metacom-
munity theories simplify space into suitable habitat patches
surrounded by nonhabitat, akin to islands in an ocean. This
maps well to some naturally patchy ecosystems (such as
ponds, specialist host plants, and agricultural fields that mo-
tivated Levins’s original model), but this abstraction also
makes other spatial problems tractable. Some models track
presence or absence, which we call “occupancy models.” In
such models, changes in occupancy reflect local extinction
and colonization events. Others track local population densi-
ties, which we call “patch models.” In these models, changes
in density reflect demographic processes (birth, death, and
movement). Occupancy and patch models are complemen-
tary frameworks, each with strengths and limitations, and
the differing assumptions made in each framework provide
complementary insights into spatially distributed population
and community dynamics at large scales.

The simplifying assumptions of metapopulation mod-
els sometimes mask critical processes important to their
dynamics. Here, we look under the hood of classical meta-
population occupancy models to bring out—and make ex-
plicit—key but largely unrecognized assumptions crucial
to their behavior. The major implicit assumption we wish
to highlight is the presence of spatiotemporal heterogene-
ity in occupancy models. First, we reflect on how occupancy
models of metapopulations and metacommunities embody
spatiotemporal heterogeneity. Without spatiotemporal het-
erogeneity, many predictions from classical metapopula-
tion and metacommunity theories no longer hold. Second,
we explore a phenomenon that has received attention in
the theoretical literature but comparatively little empirical
exploration—the “inflationary effect” (a term coined in Gon-
zalez and Holt 2002). The inflationary effect is the elevated
average growth (Kortessis et al. 2020) or average abun-
dances (Gonzalez et al. 1998) emerging in spatiotemporally
heterogeneous landscapes coupled by dispersal compared
with landscapes without temporal heterogeneity (Gonzalez
and Holt 2002). We summarize the findings of experiments
and models done to date on the inflationary effect. Third,
we suggest that a clear understanding of the inflationary
effect enriches our understanding of a critical dimension of
population biology, with implications for species persistence
and the spread of infectious disease. We argue that fail-
ing to grasp this effect hampered the management of the
SARS-CoV-2 pandemic. We finish by identifying future di-
rections in ecology, evolution, and conservation biology that
involve spatiotemporal heterogeneity and the inflationary
effect. Our emphasis is on conceptual issues and illustrative
examples in order to make the mathematics more intuitive
and accessible, but key references for deeper investigation
are provided for interested readers.
Spatiotemporal Heterogeneity

Among the simplifying assumptions of classical metapop-
ulation models, perhaps the most consequential is the as-
sumption that extinction rates (and colonization rates) are
independent across patches, which we argue here often im-
plies the presence and influence of spatiotemporal hetero-
geneity. Spatiotemporal heterogeneity denotes how the spa-
tial pattern of conditions changes over time. Spatiotemporal
heterogeneity is a form of variability in the environment
that is apparent only when one considers space and time to-
gether. Though the founders of metapopulation theory rec-
ognized this issue (e.g., Hanski 1998), an explicit discussion
of this fundamental assumption is encountered infrequently
in the literature and deserves special attention.

Spatiotemporal heterogeneity occurs when the spatial pat-
terning of conditions affecting fitness (or growth rates) changes
over time (equivalently, temporal patterning differs across
space). It can be viewed as the variation remaining once
accounting for average variation in space and time (fig. 1).
A statistical decomposition of total variation in some defined
space and time reveals three components: j2

S, the variance
in the average spatial pattern across time; j2

T, the variance in
the average temporal pattern across space; and j2

ST, spatio-
temporal variability (box 1; for alternative but conceptu-
ally similar definitions, see Chesson 1985; Melbourne et al.
2007; Johnson and Hastings 2023; Schreiber 2025). Our
focus is on j2

ST, which is a distinct form of variability from
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temporal and spatial variation. It can constitute from 0%
of total variability (i.e., the spatial pattern is unchanging
in time) up to 100% (i.e., average conditions in time are
equal across locations, but conditions nonetheless vary like
a shifting mosaic across locations and over time).

Spatiotemporal heterogeneity occurs in both abiotic and
biotic dimensions of the environment. In both cases, the
spatial pattern of the environment fluctuates over time.
Temperature and precipitation are typical abiotic exam-
ples because, at any time, some places are hotter and wet-
ter than others, but the places that are hottest and wettest
change over time. Spatiotemporal heterogeneity can also
arise from interactions between different abiotic factors
varying across space and time. For example, in a landscape
with many lakes and ponds differing in area and depth,
larger and deeper water bodies are buffered from fluc-
tuations in physical factors, such as temperature, compared
with smaller and shallower water bodies. Thus, the water
body with the highest (or lowest) temperature is likely to change
over time. These abiotic mechanisms may impact a focal
species directly or indirectly, for example, by directly affect-
ing another species with which that focal species interacts.
Figure 1: Hypothetical landscape with variability in conditions affecting fitness. a, Spatial locations are aligned vertically, and time points
are aligned horizontally. Averaging values across time (i.e., horizontally) gives ~Fx , a perspective that illuminates differences in average con-
ditions across locations. Averaging values across space (i.e., vertically) gives �Ft , a perspective that illuminates differences in average condi-
tions over time. The remaining variation is spatiotemporal. Adding together the variation in the “spatial only,” “temporal only,” and “spatio-
temporal only” panels recovers the “full variation” panel. b, Decomposition of total variation across space and time in fitness factor for
landscape in a.
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A special form of biotic spatiotemporal heterogeneity
comes in the form of spatially asynchronous population
and community dynamics (Shoemaker et al. 2022). Asyn-
chronous population dynamics are a form of spatiotem-
poral heterogeneity because the temporal patterns of abun-
dance differ across space. Asynchronous ecological dynamics
can arise from spatially asynchronized physical environ-
mental conditions (Reuman et al. 2023) but can also occur
in homogeneous physical environments because of complex
processes involving density dependence, dispersal, chance
events, and interspecific interactions (Levin 1974; Keeling
et al. 2000; Vasseur and Fox 2009; Gouhier et al. 2010).
For example, slight differences in initial conditions, paired
with chaotic dynamics, can generate large deviations in pop-
ulation trajectories among locations (Hassell et al. 1991;
Holt 1993). Moreover, spatially asynchronous population
sizes can occur in small populations heavily subject to de-
mographic stochasticity, which may lead to chance extinc-
tions in small, isolated populations (Gaggiotti and Hanski
2004).

While asynchrony and spatiotemporal heterogeneity are
related, they are not the same. Asynchrony always implies
spatiotemporal heterogeneity but is not necessary for spa-
tiotemporal heterogeneity. Even perfectly synchronized dy-
namics in space can have a spatiotemporal component if
the magnitude of fluctuations in time differ across loca-
tions (see sec. S1.1 of the supplemental PDF). For example,
temperature in differently sized water bodies could exhibit
perfectly synchronized fluctuations across locations but
with different magnitudes. These fluctuations, while spa-
tially synchronous, nonetheless characterize spatiotemporal
heterogeneity.
Simple Models of Spatiotemporal Heterogeneity:
Spatial Occupancy Models

Levins (1969) introduced the metapopulation concept to
deal with the complexities generated by modeling spatio-
temporal heterogeneity. While this is often overlooked in
more contemporary descriptions, environmental heteroge-
neity was at the forefront of Levins’s mind when develop-
ing the concept. His original article articulating the meta-
population model is titled “Some demographic and genetic
consequences of environmental heterogeneity for biological
control.” He recognized that environmental conditions dif-
fering across space and time could cause populations to
fluctuate wildly, oftentimes causing local extinctions. But
sites do not remain empty because reproductively viable in-
dividuals from surviving populations can immigrate and re-
colonize recently extinct populations.

Localized extinctions and subsequent recolonizations are
foundational in classical metapopulation models of occupancy.
Box 1: Mathematical description of spatiotemporal heterogeneity

To illustrate how to quantify spatiotemporal heterogeneity, consider a landscape with locations and time
indexed by x and t, respectively. Let F(x, t) measure some factor influencing the fitness or growth rate of individ-
uals found in x at t.

A characterization of this factor that does not include temporal effects is a spatial-only perspective. A measure
for the average condition over time in location x is ~Fx p Et[F(x, t)], where Et is an average over time, indicated by
a tilde. The spatial variation in ~Fx, j2

S p Varx(~Fx), measures purely spatial variation (Varx is the variance over
space).

A characterization of variation ignoring space is a temporal-only perspective. A measure for the average con-
dition at time t across the entire landscape is �Ft p Ex[F(x, t)], where Ex is an average across space and is indicated
by an overbar. The temporal variation in �Ft , j2

T p Vart(�Ft), gauges purely temporal variation (Vart is variance over
time).

Given these definitions of pure spatial and pure temporal variance, the total variance is

Var Fð Þ p j2
S 1 j2

T 1 j2
ST,

where j2
ST measures spatiotemporal variation. The expression for spatiotemporal variation is (see supplementary

material S1 for derivation)

j2
ST p Et VarxF x, tð Þ½ �2 Varx Et F x, tð Þ½ �ð Þ

p time average of the variance across space � pure spatial variance:

The quantity j2
ST represents the amount of variation over time of the spatial distribution of conditions. An equiv-

alent representation represents the amount of variation in space of the temporal pattern of conditions (for details,
see sec. S1 of the supplemental PDF).
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Classical occupancy models build on the following canon-
ical form:

dp
dt

p cp 1 2 pð Þ2 ep, ð1Þ

where p is the proportion of patches currently occupied, e
is the rate at which populations go locally extinct, and cp
is the rate at which unoccupied patches become occupied
(c is the colonization rate per occupied patch). Model (1)
describes landscapes with many patches, where each patch
has the same extinction rates and where recolonization
does not depend on the spatial position of empty patches
(Hanski 1997, 1998). It predicts that if the extinction rate
is lower than the colonization rate (e ! c), the fraction of
occupied patches grows logistically to p* p 1 2 e=c. Though
local extinction is inevitable everywhere, recolonizations
allow metapopulation persistence.

A crucial assumption of model (1) is that local extinc-
tions are not synchronized; otherwise, recently extinct pop-
ulations would have no sources for recolonization. Asyn-
chrony in model (1) is implied from a technical feature
of exponential rates. Model (1) with no recolonization
(i.e., c p 0) leads to occupancy that declines at an expo-
nential rate given by dp=dt p 2ep. Exponential rates oc-
cur when individual events are independent of each another
and independent over time and so are asynchronous. Such
stochastic processes at the level of populations of individ-
ual events are described by Poisson distributions when mea-
suring the number of events (here, extinctions) and expo-
nential distributions when measuring the length of events
across those populations (here, time to extinction). Others
have pointed out the inherent assumption that extinctions
are asynchronous (Chesson 1981; Hanski 1998; Hoopes
et al. 2005), but this insight is rarely at the forefront of
the discussion of metapopulations and can be overlooked
(although see Chesson 1985; Harrison and Quinn 1989;
Petchey et al. 1997).

To illustrate this subtle assumption and its consequences,
we simulated a finite patch version of model (1) (fig. 2; for
details, see sec. S2 of the supplemental PDF). In this model,
spatiotemporal variability can be controlled with the joint
probability of extinctions across patches over time. If we
assume independence of extinction events across space and
time, the model corresponds to a finite-patch version of
equation (1) with strong spatiotemporal heterogeneity be-
cause the temporal patterns of extinction-causing factors
differ among patches (fig. S2c; figs. S1–S6 are available on-
line). If instead there are correlated extinction events across
patches, temporal patterns of extinction are similar across
patches, reducing spatiotemporal heterogeneity.

We tune the level of spatiotemporal heterogeneity with
rE, the correlation between any two patches in environ-
mental conditions affecting extinction. The parameter rE

represents a latent variable that nonlinearly determines
extinction (fig. S2). For example, a metapopulation of a fo-
cal species of plant might become locally extinct if herbi-
vore abundance were above a particular threshold. In that
case, rE describes the correlation of herbivore abundance
across patches. When rE p 0, herbivore abundance is in-
dependent across patches and so extinction events are in-
dependent across patches, and all variation in extinction is
spatiotemporal (j2

ST 1 0; j2
T p 0). When rE p 1, herbi-

vore abundance is perfectly correlated across patches
and so extinction in one patch implies extinction in all (i.e.,
no spatiotemporal variation;, j2

ST p 0), and all variation in
extinction is temporal (j2 p j2

T). This model has no spatial
heterogeneity in extinction (j2

S p 0) regardless of the value
of rE because all patches have the same average extinction
probability.

Removing spatiotemporal heterogeneity in this model
erodes metapopulation stability and persistence. With inde-
pendent extinctions (i.e., rE p 0), the population reaches a
relatively stable patch occupancy (fig. 2, blue line), even
in a finite patch model with a modest number of patches
(n p 50). But when we break the assumption of indepen-
dent extinction events across locations, the metapopulation
is much less stable (fig. 2, green line). Occupancy fluctuates
wildly because local extinctions, when they occur, typically
occur over a large spatial domain, with many local popula-
tions impacted simultaneously. Even highly occupied meta-
populations are vulnerable to drastic drops in occupancy
because of highly synchronized extinction events, a find-
ing that has been illustrated experimentally (Fox et al.
2017).

The large fluctuations caused by eroding spatiotem-
poral heterogeneity greatly increase the likelihood of meta-
population extinction. For example, a metapopulation of
n p 25 patches with independent extinction events (i.e.,
strong spatiotemporal heterogeneity) persists an average
of ∼300,000 units of time (fig. 3a, dark purple points).
Removing spatiotemporal heterogeneity by correlating
patch extinction events reduces persistence times by sev-
eral orders of magnitude (fig. 3a), despite little change in av-
erage occupancy (fig. 3b). This simple model shows (as do
others; e.g., Fox et al. 2017) that the well-known stability of
metapopulation models results from an implicit assumption
of strong, persistent spatiotemporal heterogeneity.
Metacommunities: Spatiotemporal Heterogeneity
in Species Interactions

A natural extension of metapopulation models is to con-
sider multiple interacting species. Patches now represent
local arenas harboring communities, connected by dispersal,
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the collection of which is a metacommunity (a term first
used by Wilson 1992). Species’ colonization and extinc-
tion rates in metacommunities reflect some combination
of the physical environment, interspecies interactions, and
demography. Metacommunity models can come in occu-
pancy form (see, e.g., Hastings 1980) as well as patch form
(e.g., Holt and Chesson 2016). Spatiotemporal heterogene-
ity in patch models—a rich and growing area of commu-
nity ecology (Driscoll and Lindenmayer 2009; Leibold and
Chase 2018; Lu 2021; Leibold et al. 2022)—is considered
below. Here we show how a simple occupancy-based meta-
community formed by locally unstable interactions is sta-
bilized by spatiotemporal heterogeneity.

Consider a specialist predator interacting with its prey.
A specialist predator-prey metacommunity model is

dp
dt

p cpp 1 2 pð Þ2 ep 1 cpq
� �

p,

dq
dt

p cqqp2 eqq,

ð2Þ
where p is the fraction of habitat patches occupied by
prey alone, q is the fraction occupied by both predators
and prey, ci is the colonization rate of patches of type i
(i p p, q), and ei is the extinction rate of patches of type i
(e.g., the prey alone or the prey together with the predator).

Models such as (2) share assumptions with Levins’s
metapopulation model except that now extinction and col-
onization rates depend on other species. Patches occupied
by prey alone change state independently of the predator
(e.g., because of disturbance) with an extinction rate of ep.
They are colonized by the predator at a rate proportional to
the availability of prey-only patches and predator prevalence
(cqpq). The predator greatly limits prey numbers in co-
occupied patches, and as such, patches occupied by the
predator do not provide prey colonists to empty patches.
Model (2) assumes that predators become locally extinct
only when their prey in a patch become extinct and do
not persist once their prey are gone. More elaborate mod-
els relaxing these assumptions about extinction (Holt 1997)
and assuming different influences of predators on prey col-
onization lead to comparable effects, albeit with some dif-
ferent twists (Holt 1997; Poethke et al. 2010).
Figure 2: Finite patch version of Levins’s metapopulation model under different degrees of asynchrony of local extinctions and for low and
high patch numbers. Blue lines show dynamics under the conventional assumption that environments influencing local extinction are un-
correlated across patches, that is, are spatially asynchronous (rE p 0). Green lines show dynamics under spatially correlated extinctions
(rE p 0:75). Simulation details can be found in the supplemental PDF. For all dynamics, e p 0:25 and c p 0:5 such that the infinite patch
model predicts equilibrium occupancy of p* p 1 2 e=c p 0:5 (dashed lines).
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Metacommunity models such as (2) often exhibit sta-
bility despite locally unstable interactions between species
within patches (Levin 1974; Gravel et al. 2016). Large-
amplitude predator-prey fluctuations arise in spatially and
temporally homogeneous local environments with well-
mixed species (May 1972). Such interactions are difficult
to sustain experimentally (though see Blasius et al. [2020]
for a laboratory success) yet are generally stable in a meta-
community framework (Hastings 1977; Gouhier et al. 2010;
Pillai et al. 2011). This regional stability reflects spatiotem-
poral heterogeneity, which arises because local extinctions
(either in predators or prey) occur independently across
locations, as in metapopulation model (1), and coloni-
zations likewise are independent. Independent predator-
induced prey extinctions imply that predators are unevenly
distributed across space and that the spatial pattern of oc-
cupancy constantly shifts over time, a diagnostic feature of
spatiotemporal heterogeneity. Synchronous predator col-
onization or prey extinction events generate large-scale oscil-
lations comparable to those of figure 2, with a high likeli-
hood of regional extinction in realistic models, a prediction
empirically validated in the lab (Fox et al. 2017).
Digging Deeper: Simple Source-Sink Systems
with Spatiotemporal Heterogeneity

The stabilizing effects of spatiotemporal heterogeneity
can be difficult to recognize in metapopulation models of
occupancy, and the exact interplay between environmental
heterogeneity, dispersal, and population growth can be dif-
ficult to discern. However, this interplay is revealed in patch
models where the factors affecting local demography and
movement are explicit. We review one line of inquiry that
uncovers a key emergent effect of spatiotemporal varia-
tion in patch models with explicit local demography and
movement.

An early illuminating example of the effects of spatio-
temporal heterogeneity was illustrated by Gonzalez and
Holt (2002), who considered a single sink patch supported by
constant immigration from a source patch. Sink populations
Figure 3: Effect of spatially correlated extinction events on metapopulation stability. a, Metapopulation extinction times for replicate sim-
ulations. b, Corresponding conditional mean occupancy. Squares connected by lines are the geometric mean extinction times (a) and mean
conditional mean occupancy (b) over all replicate simulations. The parameter rE refers to the correlation coefficient for all pairwise latent
variables describing environmental variables determining extinction in patches (details in sec. S2 of the supplemental PDF). All simulations
had 25 patches, 13 of which were initially occupied, with e p 0:5. There are 100 replicate simulations for each rE value. Dashed line in b is
the equilibrium occupancy in the original Levin’s model. Mean occupancy in the stochastic model is lower than in the deterministic model,
which we attribute to a combination of below-average occupancy just prior to extinction and because equilibrium occupancy is a nonlinear
concave function of the average colonization rate within a single simulation (which here varies slightly between simulations). This stochasticity
in colonization in metapopulation models depresses average occupancy by Jensen’s inequality (see box 1 of Peniston et al. [2024] for arguments
to this effect).
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(i.e., local populations that become extinct in the absence
of any immigration) may persist given constant immigra-
tion from a source population, which is a population that
can persist indefinitely in the absence of movement (Van
Horne 1983; Holt 1985; Pulliam 1988; Runge et al. 2006).
Gonzalez and Holt (2002) envisioned a sink that was only
so on average over time. Transient phases of locally favor-
able conditions might allow a population to temporarily
grow without immigration (and so the population may
fluctuate and temporarily increase), but eventually, without
recurrent immigration, given its sink status, it declines, and
the population becomes locally extinct. This spatial scenario
is a very simple form of spatiotemporal heterogeneity be-
cause a constant source of immigration implies constant
conditions in the source, unlike those in the sink. Our mea-
sure of spatiotemporal variance applied to Gonzalez and
Holt’s (2002) model shows that j2

ST p j2
r=4, where j2

r is
the variance in sink growth rates (for more details, see
sec. S3 of the supplemental PDF).

The spatiotemporal heterogeneity introduced by varia-
tion in the sink inflates time-averaged population sizes in
the sink (sometimes by orders of magnitude; fig. 4). Gon-
zalez and Holt (2002) termed this phenomenon the infla-
tionary effect, and we refer to it as an inflationary effect of
the environment on abundance, in which the joint presence
of spatiotemporal heterogeneity and dispersal increases
average total population abundance across the metapopu-
lation. This effect was rigorously tested and demonstrated
empirically in a microcosm experiment with source-sink
populations of the protozoan Paramecium tetraurelia, buf-
feted by temporally varying thermal conditions (reported in
Gonzalez and Holt 2002). It occurs because runs of good
conditions for growth cause large upswings in population
size that are greater than declines in population sizes dur-
ing poor times for growth. The rate of population decline
during poor times is buffered by recurrent immigration
from the source (preventing local extinction). Thus, the ef-
fects of favorable conditions over time outweigh the effects
of unfavorable conditions, even if good and poor times are
equally frequent.

Somewhat remarkably, the inflationary effect has also
been shown theoretically to promote the persistence of spe-
cies in landscapes composed entirely of sink patches (Roy
et al. 2005). In other words, in every location on the land-
scape, a local population isolated from immigration cannot
persist, but nonetheless the ensemble persists when patches
are linked by moderate dispersal. This point is worth re-
iterating. In such landscapes, there is no persistent source
habitat anywhere in the landscape, but dispersal (not too
much; see sec. S4.1 of the supplemental PDF) to neigh-
boring locations can suffice to allow all populations to
persist. This boost in regional population size promotes
Figure 4: Sink population dynamics with fluctuating growth rate and constant immigration from source population. Sink dynamics follow
N(t 1 1) p N(t)er(t) 1 I, where r(t) is the per capita growth rate without immigration and I is the density of immigrants each time step.
Here r(t) is normally distributed and independent over time, with mean �r p 20:2 and standard deviation jr. Lines represent 10 equally
spaced values of jr between jr p 0 (black line) and jr p 0:5 (yellow line). When jr is larger, the environment is more variable in the sink
(i.e., good times are more favorable to growth and poor times are more unfavorable to growth) without changes in the average suitability of
the environment. Right panel shows the corresponding geometric and arithmetic mean abundances in the sink as a function of the calcu-
lated spatiotemporal variation in the model (j2

ST p j2
r=4). We set I p 1 2 e20:2 ≈ 0:18, which simply makes the equilibrium density of the

sink 1 in a constant environment. All cases start with the same initial conditions and have the same environmental sequence. Further details are
in section S3 of the supplemental PDF.
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persistence and critically depends on spatiotemporal vari-
ation in growing conditions among patches. It is a specific
case of paradoxical persistence of mixed dynamics sys-
tems with strong heterogeneity (see the excellent review
of such systems in Williams and Hastings 2011).

A microcosm study (Matthews and Gonzalez 2007)
prompted by this theoretical result convincingly demon-
strated that spatiotemporal heterogeneity permits metapopu-
lation persistence. Matthews and Gonzalez set up a micro-
cosm of two local populations of Paramecium aurelia under
fluctuating temperatures. In isolation, both became extinct
(i.e., were sinks). When coupled by dispersal, extinction oc-
curred in both patches for treatments with synchronous
temperature fluctuations across patches, but both popu-
lations persisted in treatments with asynchronous tem-
perature fluctuations across the two patches. They further
showed that positive temporal autocorrelation boosted the
inflationary effect on sink population sizes, because runs of
favorable conditions allowed the boost in population sizes to
be greater. A comparable result was found for host-parasite
dynamics in metapopulations of Paramecium caudatum
and its bacterial parasite Holospora undulata (Duncan et al.
2013). The key finding of that study was that temporally
autocorrelated and spatially asynchronous variation in tem-
perature (i.e., spatiotemporal heterogeneity) allowed in-
fected host populations to maintain sizes equivalent to un-
infected populations, despite negative demographic impacts
of parasites on infected individuals.

These studies demonstrate a very general pattern: spa-
tiotemporal heterogeneity in growth rates can robustly al-
low for persistence of species and increase their abundance
in metapopulations linked by moderate dispersal. On the
one hand, these experiments and models are remarkable
in demonstrating how populations of sinks can persist when
coupled together. On the other hand, these results are anal-
ogous to the classical stability results of metapopulations
because metapopulations persist despite no individual patch
persisting on its own without the others. One might ap-
ply to metapopulations as a motto the famous quip ascribed
to Benjamin Franklin, “We must all hang together, or as-
suredly we shall all hang separately.”
What Is the Inflationary Effect
and How Does It Work?

Models show that spatiotemporal heterogeneity can in-
flate time-averaged per capita growth rates (Schreiber 2010)
and abundance (Roy et al. 2005) and help to reveal the
requirements for inflation to occur. Put simply, the infla-
tionary effect is the result of spatiotemporal heterogeneity
inflating some aspect of population growth at the scale of
the metapopulation, such that it exceeds growth under some
simple average of local conditions. The requirements for
inflation in patch models are (1) temporal variation in patch
growth rates, (2) a less than perfect spatial correlation in
those growth rates (i.e., spatial correlation below 1), (3) some
movement among patches, and (4) temporal autocorrela-
tion in growth rates. The combination of temporal variation
and low spatial correlation in growth rates constitutes spa-
tiotemporal heterogeneity. The combination of movement
and temporal autocorrelation allows individuals sufficient
time to build up in temporarily favorable locations and
disperse across space. As local populations grow, more indi-
viduals emigrate, even if the locations into which they
immigrate are currently poor for growth. Given spatiotem-
poral heterogeneity, favorable conditions in one patch imply
that emigrants from there are likely to immigrate to a tem-
porary sink, boosting numbers there. Temporary sinks dis-
proportionately benefit from immigration because the in-
flux maintains minimum population sizes. Populations with
slightly larger sizes grow faster (in absolute, not per capita
terms) when the environment eventually turns, as illus-
trated in the sink model with constant immigration above
(fig. 4; for model details, see sec. S3 of the supplemental
PDF). Without temporal autocorrelations, environments
shift before populations can build up substantially in tran-
siently favorable locations.

To make this qualitative description of inflation more
precise, consider the following mathematical description
of the inflationary effect on growth rates. Mathematical
descriptions are available for discrete time (Schreiber 2010,
2025; Johnson and Hastings 2023), but we present one for
continuous time where the math is (slightly) less painful
and helps hone one’s intuition. Consider a patch model
with n connected patches, where Ni(t) is the local density
in a patch i at time t, ri(t) is the (possibly density-dependent)
local per capita growth rate, mij is the per capita movement
rate from patch i to j, and mi p

P
jmij is the (possibly

density-dependent) total emigration rate from patch i.
The dynamics in patch i follow

dNi

dt
p ri tð ÞNi|fflfflffl{zfflfflffl}

local growth

2 miNi|ffl{zffl}
emigration

1
X
j(i

mjiNj

|fflfflfflfflffl{zfflfflfflfflffl}
,

immigration

ð3Þ

which allows for time- and location-dependent growth rates.
(We assume for simplicity no mortality during dispersal.)

The inflationary effect in model (3) can be measured in
terms of the linear relationship between local growth rates,
ri(t), and local relative density, ni(t) p Ni(t)=�N(t) (where
�N(t) is the average density across the n patches). It can be
written as (derivation in sec. S4 of the supplemental PDF)

inflationary effect p Et covi ri tð Þ, ni tð Þð Þ½ �2 covi ~r i,~n ið Þ:
ð4Þ
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The inflationary effect is measured as a comparison of
covariances between local density and local growth rates
in different contexts. The first covariance in equation (4) is
measured from the full model given by equation (3) with
spatiotemporal heterogeneity. The second covariance is mea-
sured in a reference environment where spatiotemporal
heterogeneity has been removed by assuming that growth
rates are fixed at their average across time. This compar-
ison thus isolates the effect of spatiotemporal heteroge-
neity (for more discussion, see sec. S4 of the supplemental
PDF; for an example of the calculation with the disease
model used below, see fig. S6).

Equation (4) fundamentally measures how species’ dis-
persal patterns interact with the spatiotemporal structure
of the environment to alter regional population dynamics.
The determining factor for inflation is whether the distri-
bution of individuals in the metapopulation on average
matches the distribution of local growth rates. As such, it
measures the ability of populations to track good loca-
tions that constantly shift in time and space. Expression (4)
may be positive, negative, or zero, reflecting the relative
ability of individuals to reach favorable conditions, whether
passively or actively. When positive, individuals in the meta-
population are, on average, concentrated in better than
average spatial locations. When negative, individuals in
the metapopulation are, on average, concentrated in poorer
than average spatial locations. When zero, population den-
sity is, on average, random with respect to local patch growth
rates. (Deriving explicit expressions for this quantity is an-
alytically challenging; however, some approximations are
possible [see Schreiber 2025].)

The sign of the inflationary effect depends in large part
on the details of dispersal and its relation to factors affect-
ing fitness in the metapopulation. Prior studies studying
the inflationary effect have almost always assumed con-
stant, identical, and symmetrical rates of dispersal between
all patches (i.e., fitness-independent dispersal). In such cases,
the inflationary effect is positive, provided that dispersal
rates are not too high (exactly how much is too high de-
pends on the magnitude and temporal autocorrelation struc-
ture of growth rates; for more details, see sec. S4 of the
supplemental PDF). Fitness-dependent dispersal—which
has not been rigorously studied in terms of the inflation-
ary effect—should strengthen inflationary effects, as it has
been shown to enhance persistence in some systems (Poethke
et al. 2010). For instance, if organisms show some breeding
site fidelity in good years and local environments are pos-
itively autocorrelated in fitness over time, this behavioral
tendency helps populations persist in spatiotemporally vary-
ing environments (Schmidt 2004).

We suspect that organisms with environmentally forced
dispersal—such as happens with wind-dispersed plant prop-
agules and aquatic and marine organisms dispersing with
water currents—may experience limited (or no) benefits
of the inflationary effect. In some cases, the pattern of en-
vironmentally determined dispersal could lead individu-
als away from temporarily high fitness locations, creating
negative inflationary effects. For example, Keddy’s (1982)
study on the sea rocket (Cakile edentula) in Nova Scotia
dunes demonstrated a strong source-sink dynamic. Pop-
ulations near the sea are productive yet rare because wind
from the sea strips seeds there, depositing them in the
dune interior. Populations are abundant inside the dunes,
even though they are sinks (local births ! local deaths,
across all measured densities). Such directional dispersal
out of sources into sinks produces negative average co-
variance between local abundance and local fitness (defla-
tionary effects).

While there has been a great deal of work on the in-
flationary effect in a variety of models, there is still much
that is unknown. Studies have shown that the effect exists
robustly in models with explicit resource dynamics, density
dependence, demographic stochasticity, and competition
between species (although the magnitude of the effect may
differ across contexts; Holt et al. 2003) and occurs over
a broad range of parameter space in both discrete- and
continuous-time models (Schreiber 2010; Katriel 2022;
Benaïm et al. 2023). Among the important unknowns is
the relationship between inflationary effects on abundance
and on growth. Inflated abundance in many cases implies
inflated population growth when rare at the metapopu-
lation scale, as is illustrated by the case of persistence in
a landscape of temporally varying, on-average sinks. How-
ever, it is unclear whether inflated growth when rare always
leads to inflated abundance at a long-term equilibrium. We
suspect that the answer lies in how density dependence acts
on the landscape to influence how variation in fitness fac-
tors translates into long-term average abundance. Nega-
tive inflationary effects are theoretically possible but to
our knowledge have never been demonstrated empirically.
Another critical unknown is what role life history plays in
modulating the inflationary effect and the impact of dis-
persal costs, as most prior modeling studies assume un-
structured populations and complete survival during dis-
persal. Future modeling work should fill these gaps.

Although the theory has been satisfactorily demonstrated
in several laboratory experiments with model species, our
understanding of the inflationary effect in natural systems
is limited. But the inflationary effect seems most likely for
species living in environments with the characteristics out-
lined in table 1, which could provide useful indicators for
choosing apt systems to empirically study it. The infla-
tionary effect remains a niche concept in population and
community ecology, despite its apparent connection to the
basic concepts of persistence in metapopulation and meta-
community theories. We hope that this review—and the
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case studies from epidemiology provided below—spark in-
terest in the concept, especially among empiricists.
Spatiotemporal Heterogeneity and Infectious Disease:
A Case Study of COVID-19

Our emphasis thus far has been conceptual, with illustra-
tive examples from microcosm experiments with protozoans
and free-living dune plants, but the inflationary effect may
be particularly common in host-parasite (Duncan et al.
2013) systems for two reasons. First, individual hosts even
within the same host species can vary substantially in their
immunity, behavior, and physiology in ways that can gen-
erate spatiotemporal heterogeneity within and among host
populations. Second, pathogen dynamics are often fast in
terms of absolute pathogen numbers and host infections.
Quickly growing pathogens in currently favorable local host
populations can spread to new ones and can do so quickly
when conditions change.

The inflationary effect of pathogen growth may be pres-
ent at multiple scales in infectious disease systems but can be
categorized schematically into either the within-host scale
or the among-host scale. Linking within-host dynamics to
among-host dynamics is a challenge, with many avenues
yet to be explored (e.g., analogs of emigration coupled to
transmission altering within-host pathogen dynamics; see
Barfield et al. 2015). This is an important theme, but here
we focus on only the among-host scale, considering pop-
ulations of individual hosts and metapopulations of hosts
(see e.g., Cliff et al. 2000).

Host populations can be described at both local and
regional scales. Local host populations are metapopulations
from the perspective of pathogens and parasites harbored
within those individual hosts. Within a local host popu-
lation, transmission of infectious pathogens to uninfected
hosts is in effect colonization of empty patches, and patho-
gen clearance (or host death) is a form of local extinction for
the pathogen. Susceptible-infectious-recovered (SIR) models
in epidemiology are metapopulation models where one
simply tracks pathogen occupancy (are individual hosts
infected or not?) rather than pathogen load. In SIR models,
local persistence of a pathogen relies on stabilizing effects
of spatially uncorrelated infections and clearance, analo-
gous to colonizations and extinctions, respectively, in meta-
population occupancy models. Metapopulations at the host
scale involve local host populations coupled by host move-
ment (or possibly vector movement). For the pathogen,
these regional ensembles are “meta-metapopulations” and
can be represented as multisite SIR models that include
movement among local arenas of infection.

Spatiotemporal heterogeneity of host-pathogen inter-
actions can arise in many ways related to individual host
condition (e.g., physiology and immunity) and local con-
ditions (e.g., host abundance), but behavior—which differs
both within and between populations—is often key to infec-
tious disease transmission and creates potent spatiotemporal
variation at different spatial scales. We will focus as an ex-
ample on infectious disease dynamics within our own spe-
cies. Broad, geographically distinct populations of human
hosts behave differently owing to different local public
health policies, demography, economics, and social norms.
Local and regional drivers can interact to contribute to spa-
tiotemporal heterogeneity, such as when bottom-up changes
in individual behavior magnify or dampen top-down forces,
such as imposed public health measures (e.g., differences
among locations in social expectations about the impor-
tance of nonpharmaceutical control measures can modu-
late their impact).

In 2020, early during the COVID-19 pandemic, many
of the present authors noticed the potential for broadscale
spatiotemporal heterogeneity and asynchrony in disease
transmission to influence the spread of SARS-CoV-2, the
causal agent of COVID-19. Initially, there were few op-
tions to combat SARS-CoV-2. In the absence of thera-
peutics and vaccination, the main approaches to slow and
limit its spread—thereby reducing stress on health care in-
frastructure—were nonpharmaceutical interventions (e.g.,
masking, social distancing, closing of nonessential business
places, lockdowns; hereafter, interventions) that modified
host behaviors. The timing, nature, and efficacy of interven-
tions varied across time and space as social, economic,
and epidemiological conditions changed, and this shifting
Table 1: Features necessary for inflationary effect in natural systems
Empirical pattern
 Link to inflationary effect measure (eq. [4])
Spatiotemporal variation in fitness-affecting factor
 Variation in local growth rates across space and time, rx(t)

Spatial distributions of individuals that are nonrandom

with respect to fitness factor

Spatial variation in relative density, nx, and positive cov(rx, nx)
Temporal changes in nonrandom distribution of
individuals over space
Variation in local density across space and time, nx(t)
Undirected passive dispersal or environmental tracking
 Possibility that population is concentrated in locations
and times of higher than average growth (positive cov(rx(t),
nx(t)), on average)
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mosaic of control efforts could have caused substantial spa-
tiotemporal heterogeneity in the transmission rate of the
pathogen.

To illustrate this idea, consider a version of the model
used by Kortessis et al. (2020) to explore potential con-
sequences of spatially asynchronous interventions on the
pandemic (details in sec. S5 of the supplemental PDF). The
model simplifies the world to two patches (e.g., cities or
other discrete political entities) of human hosts linked by
movement, including movement of asymptomatic infected
individuals. Disease dynamics within each patch are de-
scribed by an SIR model (with well-mixed hosts within
each patch), and all epidemiological parameters are iden-
tical between patches except for b(x, t), the transmission
rate in location x at time t. For simplicity, we assume that
b(x, t) fluctuates between two values over time: b0, a base-
line transmission rate, and b0(1 2 ϵ), a transmission rate
decreased by interventions with effectiveness ϵ. Each trans-
mission rate lasts for a time T before switching (i.e., square
wave temporal variation; fig. S3). The model includes the
possibility for differences in the timing of interventions,
controlled by a parameter Q, which we refer to as the inter-
vention overlap; Q is the proportion of time the two patches
have the same transmission rate. Intervention overlap
controls the magnitude of spatiotemporal heterogeneity
in this model because spatiotemporal variance is j2

ST p
(1 2 Q)(b0ϵ=2)2 and, on a scale proportional to the total
variation, is j2

ST=j
2 p (1 2 Q) (see sec. S5 of the supple-

mental PDF). Hence, spatially synchronized policies (Q p 1)
do not generate spatiotemporal variability, whereas spa-
tially asynchronous policies (Q ! 1) do.

The key finding is that spatially asynchronous inter-
ventions—when paired with some host movement be-
tween patches—inflate the metapopulation scale growth
rate of infected hosts (fig. 5a). This is an instantiation of the
inflationary effect for infectious diseases, where aspects of
human behavior create spatiotemporal heterogeneity in
the fitness of a respiratory virus. For any nonzero move-
ment rate, the rate of pathogen spread at the metapopu-
lation scale increases with spatial intervention asynchrony
(i.e., smaller intervention overlap; fig. 5a). The effect is
larger for more effective interventions (i.e., larger ϵ, gen-
erating greater variation in transmission over time; fig. S4)
and when the duration of application of interventions is
longer (larger T; fig. S5). Naturally, more intense interven-
tions, when they occur, lower the growth rate of infectious
hosts. However, given a specific intensity of interventions,
spatially asynchronous interventions nonetheless inflate the
rate of growth compared with equivalently intense inter-
ventions that are synchronized. Hence, when interventions
are asynchronous, they must locally be more effective to
achieve the same global effect as synchronized interventions.
Figure 5: Inflationary effect in two-patch susceptible-infectious-recovered model. a, Metapopulation-scale growth rate and how it depends
on overlap in application of nonpharmaceutical interventions (NPIs) and host dispersal. When interventions overlap less, they are less synchro-
nized across space, and metapopulation-scale growth rates are higher (given fixed movement rates). b, Example dynamics from stochastic ver-
sion of model. Parameters: infectious duration, 4.5 days; baseline transmission rate, b0 p 0:375 day21 (hence R0 ≈ 1:7); duration of interven-
tion, T p 30; effectiveness of intervention, ϵ p 0:95. In b, the movement rate is m p 0:025 day21. The inflationary effect is calculated using
equation (4). Further details are in section S5 of the supplemental PDF.
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These results extend to stochastic versions of the model,
which show increasingly larger waves of infection when in-
terventions overlap little in time compared with when they
overlap completely (fig. 5b).

There is reason to believe that this phenomenon, while
illustrated here with a very simple model, squarely pertains
to the much more complex COVID-19 pandemic. Epide-
miological data and evidence from cell phone data show
that human mobility patterns during state-enforced inter-
ventions in the European Union in 2020 were sufficient to
promote the inflationary effect in the presence of repeated
statewide—but uncoordinated—lockdowns. Ruktanonchai
et al. (2020) illustrated that if different countries in the
European Union came out of lockdown at different times
(thereby generating spatiotemporal heterogeneity, as was
the case), then there would be many more infections and
hospitalizations from COVID-19 than if countries and loca-
tions had come out of lockdown in a coordinated manner.
Other authors have since modeled the timing of interven-
tions in light of this phenomenon and found it to be quite
general (Eksin et al. 2021; Zhang et al. 2021; Wang and
Wu 2022; Berestycki et al. 2023). A general conclusion from
this body of work is that optimal local public health strat-
egies depend on decisions made by nearby localities (and
the level of movement of hosts carrying the pathogen). In
other words, spatiotemporal heterogeneity in disease trans-
mission coupled with movement among locations could
have substantively degraded the effectiveness of interven-
tions during the pandemic.

The inflationary effect has likely played a role in the per-
sistence of other human pathogens, such as measles. Prior
to vaccination in the late 1960s, measles had synchronized
biennial epidemics across England and Wales. Bolker and
Grenfell (1996) documented how widespread vaccination
eliminated large epidemics, which along with movement
had been the putative causative synchronizing factor across
locations. In effect, vaccination weakened local transmission
sufficiently that measles dynamics were decoupled across
space. Spatial asynchrony following vaccination was thus
hypothesized to reduce the chance of regional extinction of
measles. Unfortunately, in line with this prediction, measles
in the United Kingdom is far from being eliminated, and
eradication targets are still being chased (Winter et al. 2022)
decades after the introduction of a highly effective vaccine.
We conjecture that comparable effects are present—and
often important for human health—in other infectious dis-
ease systems.
Other Applications of the Inflationary
Effect in Ecology and Evolution

The inflationary effect has applications throughout ecol-
ogy and evolution because it is about fundamental aspects
of population growth: environmental heterogeneity cou-
pled with dispersal. In hopes of stimulating study of the
phenomena in new domains, we list some brief examples.
Conservation and Management

We argue that drivers of the inflationary effect can be lev-
eraged to inform conservation and management decisions.
The greatest threats to biodiversity—global change, hab-
itat destruction, and overexploitation, among others (Brook
et al. 2008; Bellard et al. 2022)—will modify the structure
of the environment in ways that could either disrupt or
foster the inflationary effect. Typically, more frequent ex-
treme events (e.g., droughts and heat waves) synchronize
populations (a generalized Moran effect; Hansen et al. 2020;
see also Reuman et al. 2023), thereby weakening the infla-
tionary effect. However, some evidence suggests that at suf-
ficiently large scales, climate interactions with local heteroge-
neity decouple local spatial synchrony (Hansen et al. 2019).
Similar ideas can be applied to management of fire-obligate
communities, the complexity of which requires a carefully
planned decision-making framework (Kelly et al. 2015).
Managing burning regimes might be made more effective
by thinking about the heterogeneity maintained or lost by
the extent, timing, intensity, and spatial arrangement of man-
aged fires (Noss 2018).

Scientists already recognize the importance of incorpo-
rating metapopulation processes for pursuing conserva-
tion priorities (Akçakaya et al. 2007), but considering the
inflationary effect helps clarify the factors that promote
persistence and stability of metapopulations. A common
practice in conservation biology is to facilitate movement
between local populations (e.g., with corridors) under the
presumption that this enhances the benefits of the infla-
tionary effect. While we agree that this is likely beneficial in
many circumstances, the arguments here suggest that too
much movement may move individuals away from tem-
porarily favorable locations or degrade spatially asynchro-
nous dynamics. Similar concepts apply in fisheries. Prescrip-
tions about quotas might include considerations for how
they promote or degrade spatial asynchrony at regional
scales. Intense fishing on a few populations with tempo-
rarily high numbers can synchronize population dynamics
across large scales, reducing the so-called population port-
folio effect (Stier et al. 2020) and eroding stability provided
by the inflationary effect.
Species Interactions

Natural enemy interactions have long been thought to be
maintained by asynchronous dynamics. Effective predators
risk overeating their prey and then suffering local extinc-
tion themselves. The spreading of risk among different
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populations, loosely coupled by dispersal, is a likely reason
for the persistence of many strong natural enemy interac-
tions. In the classic experiments of Huffaker (1958), persis-
tence of a predatory mite (Typhlodromus occidentalis) with
a prey mite (Eotetranychus sexmaculatus) in a mesocosm
comprised of an array of oranges depended on limited dis-
persal and the fact that local dynamics were asynchronous
across space. This experiment inspired a later experiment
with a bruchid beetle (Callosobruchus chinensis) feeding on
beans and attacked by a pteromalid parasitoid (Anisoptero-
malus calandrae; Hassell and May 1988). Without spatial
structure, the parasitoid rapidly overexploited its host and
then became extinct (allowing the host to rebound). Host-
parasitoid coexistence occurred only when each beetle was
put in its own patch, with restricted dispersal among patches.
Here, the physical environment was homogeneous (by ex-
perimental design), and spatiotemporal variation in each spe-
cies’ fitness arose entirely from within-species and between-
species localized interactions.

The inflationary effect may also influence competitive
interactions and species coexistence. One example is the
competition-colonization trade-off. Classic models (e.g.,
Tilman 1994) that show persistence of rapidly colonizing
but subordinate competitors require that patches be col-
onized asynchronously. The dynamics of the competitive
dominant species—which in classic occupancy models im-
mediately excludes competitive inferior ones—in effect
generates a positively autocorrelated temporal environment
for the local fitness of the inferior species. This can promote
coexistence, provided there is asynchrony among patches in
extinction and subsequent recolonization (Roy et al. 2005).
Long et al. (2007) showed experimentally in a laboratory
microcosm using bacterivorous protists that if the infe-
rior (but not superior) competitor immigrates, temporal
variation in growth rate boosts the time-averaged numbers
of the inferior species, and this could even lead to the local
extirpation of the locally superior (on average) species.

The inflationary effect also underpins the spatial insur-
ance hypothesis (Loreau et al. 2003; Shanafelt et al. 2015;
Thompson et al. 2017), which posits that biodiversity
provides stability to ecosystem functioning across a meta-
community. According to this hypothesis, stability stems
from the interaction between dispersal, differences among
competing species in their use of the environment, and spa-
tiotemporal environmental fluctuations. If different local
communities experience distinct temporal patterns of en-
vironmental conditions, species in a local community well
adapted to their local environment will thrive and supply
emigrants (as a temporary source) for a finite period before
the environmental state of the patch switches. Dispersal en-
sures that species adapted to the new environmental con-
ditions locally are available as immigrants to replace less
adapted species as the local environment changes. As a result,
biodiversity enhances and buffers ecosystem processes by
virtue of complementary inflationary growth among spe-
cies in the metacommunity. Factors that synchronize pop-
ulation dynamics across ecosystems (Reuman et al. 2023)
or constrain dispersal will erode the multispecies inflation-
ary dynamics that stabilize metacommunities and thus their
ecosystem functions.
Genetic Variation and Evolutionary Dynamics

Our focus has been on ecological consequences of spatio-
temporal variation and the inflationary effect, but there are
doubtless evolutionary effects, although they are much less
explored. Wieczynski and Vasseur (2016) demonstrated that
the inflationary effect could promote the maintenance of
intraspecific genetic variation when different genotypes are
differentially superior at distinct times, and they showed that
overall population sizes could thereby increase and promote
population persistence (the genetic analog to Loreau et al.
[2003]). Expression (4) describing the inflationary effect in
terms of the covariance between local growth rate and rel-
ative abundance can be viewed as a component of fitness
that selection can act upon. If a behavioral variant arises
that increased the match between the spatial distribution
of that variant and its temporarily greater local growth rate,
that variant would have a selective advantage. This is one
way of describing the fitness advantage of habitat selection,
a point illustrated by Altenberg (2012) in the context of the
evolution of dispersal. Temporal autocorrelation structure
relevant to the inflationary effect is known to influence dis-
persal evolution (Travis 2001), and positive autocorrelations
typically favor habitat selection fostering use of temporarily
high-quality sites, which can promote metapopulation per-
sistence (Schmidt 2004).
Conclusions

This paper is an invited contribution to a special feature of
The American Naturalist on the theme of neglected and mis-
understood mathematical theories in ecology. We hope to
have illustrated that work on the inflationary effect clarifies
and extends the intuition of ecologists about the role of
spatiotemporal variation in fitness—in interplay with dis-
persal—in promoting the regional persistence of species.
These ideas have a long history and are entrenched in eco-
logical thinking. For example, Andrewartha and Birch (1954,
p. 657) remarked, “A natural population occupying any
considerable area will be made up of a number of . . . local
populations or colonies. In different localities the trends
may be going in different directions at the same time.” den
Boer (1981) studied differences in ground beetle fluctuations
over 35 years and showed that the beetle Pterostichus ver-
sicolor fluctuated asynchronous across 10 locations without
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local extinction, while the beetle Calathus melanocephalus
fluctuated synchronously, with multiple local extinctions.
Gotelli (2008, p. 96) pointed out the link between persistent
and spatiotemporal fluctuations in de Boer’s study, noting
that “at any point in time, some populations were increas-
ing in size and acting as source populations that prevented
the extinction of other, declining sink populations.” Pre-
sciently, den Boer was thinking about the nature of spatio-
temporal heterogeneity and its effects when he developed
his idea of risk spreading (den Boer 1968), which Andre-
wartha and Birch lauded, noting, “The concept of spread-
ing risk recognized the importance of dispersal with the
natural population that enables individuals to colonize
new localities” (Andrewartha and Birch 1984, p. 175). They
extensively quote den Boer (1981, p. 39), who suggests, “The
survival time of composite populations uninterruptedly in-
habiting large and heterogeneous areas, highly depends on
the extent to which the numbers fluctuate unequally in the
different subpopulations.” In other words, population per-
sistence at broad scales may rest on the interplay of dis-
persal and spatiotemporal variation in fitness.

One of the lessons to emerge from the recent pandemic
is that the issues of spatiotemporal heterogeneity in fitness is
not only relevant for ecologists understanding natural pop-
ulations but also for policy makers dealing with the spread
of infectious disease. Pathogen eradication is extremely rare
among human pathogens, a fact we believe occurs in part
because of the large heterogeneities present at the scale of
human societies that allow persistence, much in the way
that den Boer, Andrewartha, and Birch discussed for nat-
ural populations of insects. We submit that ignorance of
these emergent effects possibly contributed to the failure
of governmental control of the COVID-19 pandemic in
its early phases in many parts of the globe. In some circum-
stances, human decisions may have even generated spa-
tiotemporal variability that exacerbated pathogen spread.
There was, for example, in the early phases of the pandemic,
a block-by-block control strategy in New York (Guarino
2020) and local whack-a-mole strategies in the United King-
dom (BBC 2020). Such uncoordinated interventions—paired
with continued movement of asymptomatic infectious in-
dividuals among locations (Sah et al. 2021)—likely contrib-
uted (to a degree not yet known) to the pervasive failure
of control. Failure to recognize the epidemiological conse-
quences of spatiotemporal variability and its potential to
boost abundances through the inflationary effect perhaps
fostered a great deal of human suffering.

The throughline connecting Andrewartha and Birch
with COVID-19 is the role of spatiotemporal heterogeneity
in population growth and persistence. Despite recognizing
its importance for decades, a new generation of empirical
research is needed to establish how widespread the inflation-
ary effect is in nature (see table 1 for the necessary features),
and further theoretical studies of its role in ecology and
evolution are important desiderata for future research. The
quantitative theory we present can help describe how im-
portant the inflationary effect is for understanding the
dynamics of species and the structure of communities and
also for the health of human societies in the face of emerg-
ing pathogens.
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S1 Formalizing spatiotemporal variation

Here we provide a mathematical justification for the expressions of different variance compo-
nents.

We begin with a set of data F(t, x) that can be indexed by time t and spatial location x.
Assume for simplicity that this data is measured without error, such that there is no need to
partition out measurement or sampling error. To calculate the variance in this data, and moreover
to break that variance into different components, we need to introduce the conditional data

F|x (S1)

and
F|t. (S2)

The data F|x gives the outcomes across time at a specified location x. In essence, it is the dis-
tribution of conditions in time at location x. Similarly, F|t gives the conditions across space at
particular time t.

We can calculate the variance in F(t, x) using the law of total variance such that

Var(F) = Ex[Vart(F|x)] + Varx(Et[F|x]), (S3)

where Ex[·] and Et[·] are spatial and temporal averages, respectively, and Varx(·) and Vart(·) are
spatial and temporal variances, respectively.

To partition this variation into space, time, and spatiotemporal components, we introduce the
concepts of the temporal mean field and the spatial mean field. A temporal mean field model
is one in which conditions that vary over time are represented by their mean. A model of the
temporal mean field includes spatial variation but any temporal variation is represented simply
by the mean. Let F̃x := Et[F|x] be the distribution of fitness-affecting conditions present in such
a model. These conditions have variance

σ2
S = Varx(F̃x) = Varx(Et[F|x]), (S4)

which is entirely comprised of spatial variation and so represents ”spatial-only” variation.
A spatial mean field model is one in which conditions that vary across space are represented

by their mean. A model of the spatial mean field includes temporal variation but any spatial
variation is represented simply by the mean. Let F̄t := Ex[F|t] be the distribution of fitness-
affecting conditions present in such a model. These conditions have variance

σ2
T = Vart(F̄t) = Vart(Ex[F|t]), (S5)

which is entirely comprised of temporal variation and so represents ”temporal-only” variation.
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Substituting (S4) into (S3) and adding and subtracting σ2
T yields

Var(F) = Ex[Vart(F|x)] + Varx(Et[F|x]) (S6)

= Ex[Vart(F|x)]− Vart(Ex[F|t]) + σ2
S + σ2

T (S7)

Var(F) = σ2
S + σ2

T + σ2
ST, (S8)

where in the last line we have defined σ2
ST = Ex[Vart(F|x)] − Vart(Ex[F|t]) as the magnitude

of spatio-temporal variation. Spatio-temporal variation is the variation in F that remains after
accounting for spatial-only and temporal-only variation.

S1.1 Spatiotemporal heterogeneity despite synchrony

Spatiotemporal heterogeneity does not imply asynchrony (although asynchrony implies spa-
tiotemporal heterogeneity). One way to see this is to formalize the example of temperature in
different water bodies. Let Fx,t be the temperature at time t in water body x. A model to describe
temperature is

Fx,t = µ + Sx + ZxXt, (S9)

where Sx is a random variable describing spatial variability and Xt is the random variable de-
scribing temporal variation. Without loss of generality, assume E[Sx] = 0 and E[Xt] = 0. As such,
the parameter µ is a grand mean across space and time. The variable Zx is a given location’s sen-
sitivity to temporal variation. The model given by eqn. (S9) is essentially a linear regression
model of spatio-temporally structured data with environmental conditions Fx,t regressed against
conditions over time, Xt, with random intercepts (Sx) and random slopes (Zx) for differential
spatial locations.

The variance partition in equation (S8) shows contributions from each component. The
pure spatial variance for model (S9) is σ2

S = Var(Sx). The pure temporal variance is σ2
T =

E[Zx]2Var(Xt). The spatiotemporal variance is σ2
ST = Var(Xt)Var(Zx). Thus, spatiotemporal

variability is present provided locations are differently sensitive to a common environmental fac-
tor (i.e., Var(Zx) > 0). In a linear regression framework, there is spatiotemporal heterogeneity
provided a random slopes model fits nonzero variance of the slope distribution.

This model can include perfectly synchronized fluctuations across space. To see how, consider
two locations denoted A and B. The correlation between FA,t and FB,t is sgn(zAzB), that is, the
sign of the product of the slopes in the two locations. When the slopes are of the same sign,
the correlation is 1. When the slopes are different signs, the correlation is -1. Hence, this model
includes the case of complete synchrony whenever the distribution of Zx has nonzero variance
and exists on the nonnegative real numbers.
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S2 Stochastic metapopulation model

Here we provide a mathematical overview of the metapopulation model with (patch-level) de-
mographic stochasticity. This model is conceptually similar to the traditional metapopulation
model as introduced by Levins, but follows a finite number of patches. Given the finite number
of patches, we must deal with the metapopulation analogue to demographic stochasticity, which
is random deviations in extinction and colonization from large-scale averages.

The model is a discrete-time Markov chain for n patches, and it models the occupancy of a
all patches as denoted with the time-dependent vector O(t) = (O1(t), O2(t), . . . , On(t))T. Each
Oi(t) can be either 0, corresponding to an empty patch, or 1, corresponding to an occupied
patch. Occupancy changes states (or stays in the same state) with extinction and colonization
probabilities, Ei and Ci(t), respectively. To formalize the model, a typical approach is to write
the transition probabilities for all patches. To do so, define Pi

t as

Pi
t (a, b) := P

(
Oi(t + ∆t) = b|Oi(t) = a

)
, (S10)

the probability that patch i in state a at time t transitions to state b in the time interval (t, t + ∆t].
Given the extinction and colonization probabilities above, we have

Pi
t (0, 0) = 1 − Ci(t) Pi

t (0, 1) = Ci(t) (S11)

Pi
t (1, 0) = Ei(t) Pi

t (1, 1) = 1 − Ei(t). (S12)

Given that we are only interested in illuminating the consequences of asynchrony, we keep
the assumptions of the model simple. In particular, we assume that all patches are the same
size and are equally connected, implying global dispersal. These assumptions correspond to the
assumptions developed initially by Levins for the first metapopulation model in continuous-time.
We set

Ei = 1 − exp(−e∆t) (S13)

for all patches, where e is the infinitesimal rate of extinction, and ∆t is a small unit of time.
This model of extinction has the typical biological interpretation that all patches are effectively
identical with respect to factors that influence extinction, and corresponds to an extinction rate
of e in the limit as ∆t → 0.

We also assume that the probability that an unoccupied patch stays unoccupied is

1 − Ci(t) = exp
(
− cP(t)∆t

)
, (S14)

such that the colonization probability is

Ci(t) = 1 − exp
(
− cP(t)∆t

)
. (S15)

This colonization model implies that colonization rates depend on the occupancy on the land-
scape and occur at infinitesimal rate cP(t). Indeed, in the limit as the time interval becomes very
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small, this discrete-time model converges on the continuous-time metapopulation model (1) of
the main text.

The conditional transition probabilities (S11)-(S12) alone are not enough to specify this model.
The full model requires a statement about the joint probability of extinction and colonization across
patches. We need to stipulate whether transition probabilities act independently across patches
or are correlated in some way. For example, if there is a 50% chance of extinction, the joint
distribution tells us whether the 50% of times when a patch changes state occur at the same time
as other patches, different times as other patches, or without respect to what happens in any
other patch.

A typical assumption is that extinction probabilities are independent across patches (and the
same for colonization probabilities). In this special case of independence, one can simply model
how many patches go extinct in one time period using the binomial distribution. In this model,
the number of extinctions is Binom(∑i Oi(t), Ei). Biologically, the binomial distribution implies
that the factors influencing extinction in one patch at one time are completely unrelated to those
in any other patch across space. That may very well be true, but is a specific case of a broader
set of possibilities.

To model the broader range of possibilities, we use a latent variable approach that describes a
hypothetical environmental variable affecting extinction and colonization in each patch. We then
use properties of the extinction and colonization probabilities to create a reaction norm relating
local environmental characteristics to extinction or colonization events.

Note that while this works for discrete-time models, correlated events can be described in true
continuous-time as correlated times to extinction. However, such a mathematical description is
beyond the scope of this paper. The approach here is sufficient to illustrate the point.

To model correlated events, let Xi(t) be the environmental conditions in patch i at time t. For
simplicity for modeling correlations between variables, we assume that Xi(t) is a standard normal

random variable that is i.i.d. (independent and identically distributed) over time; hence, Xi(t)
iid∼

N (0, 1) for all i. To include correlations between conditions in patches across space, we collect all
individual environmental variables as a multivariate collection X(t) = (X1(t), X2(t), . . . , Xn(t))T

that follows a multivariate normal with zero mean and covariance matrix Σ. Because all the
marginal variables are standard normal, Σ has values of 1 for all diagonal elements and therefore
takes the interpretation of a correlation matrix. Again, for simplicity, we assume this correlation
matrix has the simple structure where Corr(Xi(t), Xj(t)) = ρ, for all i ̸= j. Written succinctly,

X(t) iid∼ Nn

(
0, Σ = ρ1 · 1T + (1 − ρ)I

)
, (S16)

where 1 is an n-length column vector of ones.
Correlations take values between -1 and 1. However, given that the correlation applies to all

possible pairs of patches, the multivariate normal will not permit ρ near -1 when n > 2. Indeed,
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larger n restricts the range of permissible values of ρ based on the requirement that Σ be positive
semi-definite. To satisfy this restriction, we only consider ρ values between 0 and 1.

To translate this environment into an extinction (or colonization) event, we convert the envi-
ronmental variables, X(t), into multivariate Bernoulli random variables using copulas. Copulas
are used to create correlated random variables in cases where the marginals are of different dis-
tributional form or more generally where the multivariate distribution has no known analytical
form. Copulas and their use in ecology are discussed by Ghosh et al. (2020). For examples of
the use of copulas for questions of life history evolution in plant communities, see Kortessis and
Chesson (2018, 2021).

Here, the goal is to have a multivariate distribution of extinction events at each time step
under the provision that each marginal distribution has the probability Ei of an extinction event
in time t. Thus, we need a random variable

Yi(t) =

1 with probability Ei

0 with probability 1 − Ei

, (S17)

where Yi(t) = 1 means that a population i that was occupied in time t goes extinct in time t + 1.
The transformation for Yi(t) from Xi(t) is

Yi(t) =

1 if ϕ(Xi(t)) < Ei

0 if ϕ(Xi(t)) ≥ Ei

, (S18)

where ϕ(·) is the standard normal cumulative distribution function. Hence, ϕ(Xi(t)) ∈ (0, 1).
Moreover, ϕ(Xi(t)) has a uniform distribution (indeed, all continuous random variables are uni-
formly distributed when transformed with their distribution function, a fact that can be found in
most graduate textbooks in probability; e.g., Theorem 2.1.10 in Casella and Berger 2001). Figure
S1 illustrates how a random sample from a normal distribution (red points), once transformed
through its distribution function (solid line), yields a random sample from a uniform distribution
(purple points).

Because ϕ(Xi(t)) ∼ Uniform(0, 1), P(ϕ(Xi(t)) < Ei) = Ei, and P(ϕ(Xi(t)) ≥ Ei) = 1 − Ei.
Hence, P(Yi(t) = 1) = Ei and P(Yi(t) = 0) = 1 − Ei, meaning Yi(t) ∼ Bernoulli(Ei). In our
simulations, we sample X(t) to calculate Y(t) according to equation (S18), and then use Y(t) to
determine which local populations go from occupied to unoccupied from time step t to time step
t + ∆t.

Importantly, the correlation structure embedded in the multivariate distribution X(t) is like-
wise embedded in the multivariate distribution of extinction events, Y(t) = (Y1(t), Y2(t), . . . , Yn(t)),
because Yi(t) is a monotonic function of Xi(t).

Figure S2 shows a version of this model for 2 patches where the correlation is very strong
in the environmental variables (Fig. S2a) such that, when the latent variables are transformed
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Figure S1: Demonstration of the fact that a sample from a standard normal distribution (red
points in main figure; frequency distribution shown in the lower panel) can be transformed to
a random sample from a uniform distribution (purple points; frequency distribution shown in
the right panel). The transformation is done by the normal cumulative distribution function,
which is the curve in the main panel. Gray lines show the mapping of a random sample from
the standard normal through the distribution function to yield a value between 0 and 1.

to extinction events (Fig. S2b), the spatio-temporal pattern of extinction events shows strong
synchrony over space (Fig. S2c).

S2.1 Simulation details

To simulate extinction times and mean occupancy with this model, we chose a population with
n = 50 patches, and we set ∆t = 0.005. Each occupied patch has extinction probability, Ei(t) =
1 − exp(−e∆t), with e = 0.25, meaning that the expected time to extinction is 4 units of time.
We also chose c = 0.5 such that colonization probability of any unoccupied patch in a small time
step is Ci(t) = 1− exp(−cP(t)∆t). Under this model, when P(t) = 0.5, patches have an expected
time being unoccupied of ≈ 4 units of time. At this point, extinction and colonizations equal
each other in the large patch number limit, meaning P(t) = 0.5 is the equilibrium occupancy for
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the deterministic form of the model.
For each simulation, we begin with 13 of the 25 patches initially occupied, i.e., Oi(t = 0) = 1

for i = 1, 2, . . . , 13 and Oj(t = 0) = 0 for all j ̸= i. Each time step, we randomly sample X(t)
and calculate Y(t) for each patch. If a patch is occupied and Yi(t) = 1, then the patch becomes
unoccupied in the next time step. For unoccupied patches in time t, we take a random sample
from a Binomial random variable with n(1− P(t)) trials (i.e., the number of unoccupied patches)
and ”success” probability C(t). Sampling from a Binomial distribution implies independence
of colonization events across unoccupied patches, a simplifying assumption made here for sim-
plicity. Non-independence of extinction is sufficient to demonstrate the effect of spatio-temporal
heterogeneity.

We sampled this process for every time increment over 100 units of time for a total of 20,000
increments (i.e., 100/∆t = 20,000 time steps) and evaluated whether the metapopulation had
gone extinct (i.e., P(t) = 0). If it had, we recorded the first time of metapopulation extinction.
If it had not yet gone extinct, we continued for another 100 units of time, repeating this process
until the metapopulation had gone extinct.

We repeated this process for 100 replicate sample paths of extinction and colonization events
for a single value of ρE. Extinction times are approximately log-normally distributed across the
replicate simulations, so we plotted extinction times on the log10 scale.

S3 Inflated abundance in a source-sink model with spatio-temporal
heterogeneity

Here we provide analytical justification for the inflationary effect in a model with a fluctuating
sink with constant immigration.

Let N(t) be the density of individuals in the sink at time t (t = 0, 1, 2, . . .) and r(t) be a
random variable describing the per-capita growth rate in the sink patch in the absence of any
immigration. We assume that r(t) is i.i.d. over time and that E[r(t)] = r̄ < 0, such that the
population declines exponentially in the sink with long-term growth rate r̄ < 0. As conditions
in the sink fluctuate stochastically, but are on average negative, the patch is better described as
a stochastic sink. Finally, we assume that there is a constant source of immigrants that enter the
sink. The number that enter in a given time interval per area of the sink is I.

The population size in time t + 1 is then given by the following equation:

N(t + 1) = N(t)er(t) + I. (S19)

The per-capita growth rate for this model is

g(r, N) ≡ ln N(t + 1)− ln N(t) = ln {er(t) + I/N(t)}. (S20)
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This equation allows one to make some observations about the qualitative nature of the dynamics
in the model. The first observations is that the population is bounded from above because

lim
N→∞

g(r, N) → r(t) (S21)

which, on average, is negative because r(t) is negative on average. Thus, the population has a
tendency to decline when its density is too high. (Note that this analysis requires the technical
assumption that r(t) is bounded from above by a finite value, a technical assumption that does
not restrict the generality of the result.)

Moreover, we know that population size is bounded from below because

lim
N→0

g(r, N) → ∞, (S22)

and as such, the population has a strong tendency to recover as it becomes rare. This is the strong
stabilizing effect of immigration.

Taken together, these two observations suggest that the population stays within some range
of population sizes and does not increase to infinity, nor decline to zero. Hence, at some temporal
scale, the average per-capita growth rate is 0, i.e., E[g(r, N)] = 0.

This equilibrium is straightforward to define in the case of a constant environment, i.e., r(t) =
r̄ for all t. Equilibrium population size, N∗, satisfies the equation

g(r̄, N∗) = 0 ⇒ er̄ + I/N∗ = 1. (S23)

The solution to (S23) is N∗ = I/(1 − er̄), which is the equilibrium population size in a constant
environment.

By nature of the fact the population is bounded from below and bounded from above by the
arguments above (provided E[r(t)] < 0), then it follows that, in the long-term, the population
neither grows nor declines, on average. Hence, the long-term growth rate of the population is
E[g(r(t), N(t))] = 0. A small-variance approximation of g around the constant environment case
(i.e., r∗ = r̄ and N∗ = I/(1 − er̄)), yields the following equation for the growth rate at time t:

g(r, N) = g(r̄, N∗) + er̄(r − r̄)− (1 − er̄)2

I
(N − N∗) +

1
2

er̄

1 − er̄ (r − r̄)2

+
1
2
(1 + er̄)(1 − er̄)3

I2 (N − N∗)2 + o(σ2),
(S24)

where we assume that r − r̄ = O(σ) and N − N∗ = O(σ), σ small.
Noting that g(r̄, N∗) = 0, and taking the expectations of the left and right hand sides of (S24)

yields

E[g(r, N)] = − (1 − er̄)2

I
E[(N − N∗)] +

1
2

er̄

1 − er̄ Var(r) +
1
2
(1 + er̄)(1 − er̄)3

I2 Var(N) + o(σ2). (S25)
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Since E[g(r, N)] = 0, simple rearrangement of (S25) yield the following approximate difference
between the average population size and the equilibrium population size under constant condi-
tions:

E[N]− N∗ ≈ 1
2

[
Ier̄

(1 − er̄)3 Var(r) +
(1 + er̄)(1 − er̄)

I
Var(N)

]
≥ 0, (S26)

where the approximation sign denotes o(σ2), and the inequality follows from the fact that all
the terms on the right hand side of the approximation are non-negative provided r̄ < 0. Hence,
E[N] ≥ N∗, meaning that the average population size under variable local growth rates is larger
than the model under constant growth rates. This is simple example of the inflationary effect for
small variation in local growth rates.

S3.1 Quantifying the magnitude of spatio-temporal heterogeneity

The source-sink model has spatio-temporal heterogeneity because the sink’s growth rates fluctu-
ate while it is implied that the source’s growth rates do not. Constant immigration to the source
is most consistent with a constant fraction of the population in the source that leaves each time
step. This also requires that the population size in the source be at an equilibrium

By making the dynamics of the source patch explicit, we can quantify the spatio-temporal
variability σ2

ST.
Label the source as patch 1 and the sink as patch 2. Assume that the source has density-

independent growth rate r1, a constant, that is reduced by density-dependence with per-capita
strength α. Following growth, a fraction d of individuals disperse to the sink. With these as-
sumptions, the dynamics in the source follow

N1(t + 1) = N1(t)er1−αN1(t)(1 − d), (S27)

and the total number of dispersers to the sink in one unit of time is I(t) = N1(t)exp(r1 − αN1(t))d.
Immigration becomes constant when the source population reaches equilibrium, N∗

1 , can be
found by solving

N∗
1 = N∗

1 er1−αN∗
1 (1 − d), (S28)

and has the non-trivial solution
N∗

1 =
r1 + ln{1 − d}

α
. (S29)

Note that because 0 ≤ d ≤ 1, ln{1 − d} ≤ 0, meaning that r1 > ln{1 − d} in order for the source
population to have a positive equilibrium density.

At this equilibrium, the growth rate prior to dispersal in the source is exp(r1 − αN∗
1 ) =

1/(1− d) ≥ 0, which is a constant. The number of immigrants to the sink at equilibrium can also
be calculated as

I = dexp(r − αN∗
1 )N∗

1 =
d

1 − d
· r1 + ln(1 − d)

α
(S30)
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With the growth rates in hand, we can define the fitness factor as the local growth rates
themselves, which are

F(t, 1) = −ln(1 − d)

F(t, 2) = r(t).
(S31)

Given that the growth rate in the source patch is constant, the temporal mean is Et[F|x = 1] =
−ln(1 − d) and so the temporal variance is Vart[F|x = 1] = 0. The temporal variance is zero in
this model regardless of emigration and immigration rates. The temporal mean and variance for
the sink growth rates are Et[F|x = 2] = r̄ and Var(F|x = 2) = σ2

r . Since both patch types are
equally common (i.e., there is one of each), we weight their contribution to growth equally in the
spatial variance, which is

σ2
S = Varx(Et[r|x])

=
(−ln(1 − d)− r̄)2

4
.

(S32)

The temporal variance is calculated as

σ2
T = Vart(Ex[r|t])

= Vart

(
−ln(1 − d) + r(t)

2

)
= Vart

(
r(t)

2

)
=

σ2
r

4
.

(S33)

Finally, the spatio-temporal variance is

σ2
ST = Ex[Vart(r|x)]− σ2

T

=
1
2

(
Vart(r|x = 1) + Vart(r|x = 2)

)
− σ2

T

=
1
2
(0 + σ2

r )− σ2
T

=
σ2

r
2

− σ2
r

4

=
σ2

r
4

.

(S34)

On a relative scale, the contribution of spatio-temporal variance to total variance on the land-
scape can be written as

σ2
ST

σ2
T + σ2

S + σ2
ST

=
1

2 + (−ln(1 − d)− r̄)2/σ2
r

. (S35)

This shows that the absolute measure of spatio-temporal variance depends on the variance in
sink growth rates, σ2

r , whereas the contribution to the total variance on the landscape also relies
on dispersal from the source, d, as well as the temporal average growth rate in the sink, r̄.
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Variance Component
σ2

T σ2
S σ2

ST

Expression σ2
r /4 (−ln(1 − d)− r̄)2/4 σ2

r /4

Table S1: Components of the variance in growth rates in the source sink model. σ2
r = Var(r(t))

is the variance of the growth rates in the sink, and d is the fraction of individuals that disperse
from the source to the sink in a unit of time.

S4 Derivation of the measure of the inflationary effect

To derive the measure of the inflationary effect, we need the growth rate of model (3) provided
in the main text at the scale of the metapopulation. At the scale of the metapopulation, we
can define N̄ = 1

n ∑n
i=1 Ni as the metapopulation density (assuming all patches are the same

size). This density represents the dynamics across all space on average. The growth rate at the
metapopulation scale is then

dN̄
dt

=
1
n

n

∑
i=1

dNi

dt
, (S36)

and so is the average of the local patch growth rates. Thus, the per-capita growth rate at the
metapopulation scale is

1
N̄

dN̄
dt

=
1
n

n

∑
i=1

1
N̄

dNi

dt
. (S37)

Plugging in the expression for the patch-specific growth rates (eqn 3) of the main text into
(S37) yields

1
N̄

dN̄
dt

=
1
n

n

∑
i=1

ri(t)νi(t) +
1
n

n

∑
i=1

∑
j ̸=i

mijνj(t)−
1
n

n

∑
i=1

miνi(t), (S38)

where νi(t) = Ni(t)/N̄ is the relative density in patch i at time t. The second summation on the right
hand side of (S38) is the average rate of immigration across all n patches (in per-capita terms).
The third summation is the average rate of emigration across all n patches (again, in per-capita
terms). As no individuals die during dispersal in the model, the total rates of emigration and
immigration are the same, i.e.,

1
n

n

∑
i=1

∑
j ̸=i

mijνj(t) =
1
n

n

∑
i=1

∑
j ̸=i

mjiνi(t) =
1
n

n

∑
i=1

miνi(t). (S39)

Using (S39) in (S38) yields the following expression for the per-capita growth rate at the regional
scale:

1
N̄

dN̄
dt

=
1
n

n

∑
i=1

ri(t)νi(t) = r̄(t) + covi(ri(t), νi(t)), (S40)

where r̄(t) = (1/n)∑n
i=1 ri(t) is the spatial average growth rate at time t, and the last equality

follows because the average of a product is the product of the averages plus a covariance between

13

Supplemental Material (not copyedited or formatted) for: Nicholas Kortessis, Gregory Glass, Andrew Gonzalez, Nick W. Ruktanonchai, Margaret W. Simon, Burton 
Singer, Robert D. Holt. 2025. "Metapopulations, the Inflationary Effect, and Consequences for Public Health." 

The American Naturalist 205(3). DOI: https://doi.org/10.1086/733896.

Supplemental Material (not copyedited or formatted) for: Nicholas Kortessis, Gregory Glass, Andrew Gonzalez, Nick W. Ruktanonchai, Margaret W. Simon, Burton 
Singer, Robert D. Holt. 2025. "Metapopulations, the Inflationary Effect, and Consequences for Public Health." 

The American Naturalist 205(3). DOI: https://doi.org/10.1086/733896.



Supplement to “Metapopulations and the Inflationary Effect” Am. Nat.

the two (the average of νi(t) is ν̄(t) = 1). Note that the covariance here is defined for a finite set
of patches, rather than the typical interpretation in probability as a covariance over a probability
measure. However, its properties should generally be identical (within sampling error) to the
probabilistic interpretation when the finite set of locations under question is a random sample of
space.

The metapopulation scale growth rate applies at a single point in time. The long-term growth
rate in this environment is the average across the set of environmental conditions that are ex-
perienced (including their possible temporal structure). We use the expectation operator from
probability theory to represent the -average across these possible conditions (and their associ-
ated probabilities of occurrence). Given some time t far into the future, the long-term average
metapopulation growth rate is

Et

[
1
N̄

dN̄
dt

]
= Et[r̄(t)] + Et

[
covi

(
ri(t), νi(t)

)]
, (S41)

which gives the appropriate per-capita measure of population growth in models with continu-
ously variable population densities in spatially and temporally varying environments.

Note that in stochastic representations of the environment in continuous-time models typi-
cally involves stochastic differential equations, the calculus of which is not straightforward. A
choice must be made in the calculus of the integral to evaluate the average. Itô and Stratonovich
calculuses are two methods by which to evaluate long-term growth rates in such models, with
the long-term patch growth rate under Itô calculus differing from the average of the distribution
of ri(t) (see Schreiber et al. (2023) for an example). However, such differences in calculus of
growth rates has no impact on the quantification of the inflationary effect as the effect cancel
each other out, as can be seen below.

When applied to the per-capita growth rate, the inflationary effect is the amount to which the
growth rate is enhanced in reference to a hypothetical scenario without spatiotemporal variabil-
ity. Originally, Gonzalez and Holt (2002) constructed a reference scenario in which there is no
temporal variation. We follow that definition here and represent a model wherein the environ-
ment is constant, but retains the effects of temporal variability.

Temporal variability in a continuous-time model in a single patch i without dispersal (i.e., all
mij = 0) is described by the time average per-capita growth rate,

r̃i ≡ Et

[
1
Ni

dNi

dt

]
, (S42)

which we write as r̃i, indicating the time average in patch i.
Applying each patch’s time-average growth rate in the model with dispersal yields a system

of linear ordinary differential equations as

dN
dt

= AN, (S43)
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where N = (N1, N2, . . . , Nn)T is a column vector of local population densities, and A = (Aij)

gives the rates of change in patch i contributed by patch j. The diagonal elements, aii = r̃i − mi,
describe the emigration discounted growth rate of a patch, and the off-diagonal elements, aij =

mij describe movement rates between patches. This model is a linear model that grows expo-
nentially at the rate given by the dominant eigenvalue of A and has a stable spatial distribution
given by the right eigenvector of A.

The stable spatial distribution can be rescaled to relative density, which we label with a tilde
as ν̃i to indicate that the relative density applies to the stable distribution defined by constant
growth rates r̃i.

The dominant eigenvalue of A, which is the metapopulation scale per-capita growth rate, can
be written as

1
N̄

dN̄
dt

=
1
n

n

∑
i=1

r̃iν̃i =
1
n

n

∑
i=1

r̃i + covi (r̃i, ν̃i) . (S44)

In (S44), the covariance is a constant, rather than a time-varying function.
The inflationary effect is simply how much the growth rate in the actual model deviates from

the reference model. Given that the reference model has pure spatial variation and pure temporal
variation, any differences can be attributable to spatiotemporal variation. Subtracting (S44) from
(S41) gives an experession for the inflationary effect, which is

Inflationary Effect = Et[r̄(t)]−
1
n

n

∑
i=1

r̃i + Et

[
covi

(
ri(t), νi(t)

)]
− covi (r̃i, ν̃i)

= Et

[
covi

(
ri(t), νi(t)

)]
− covi

(
r̃i, ν̃i

)
,

(S45)

where the final line follows because

Et[r̄(t)] = Et

[
1
n

n

∑
i=1

ri(t)

]
=

1
n

n

∑
i=1

Et[ri(t)] =
1
n

n

∑
i=1

r̃i, (S46)

and so the first two terms in the first line cancel out. The last line of equation (S45) is equation
(4) of the main text.

S4.1 On the rate of dispersal necessary for the inflationary effect

We stipulated that dispersal was required for the inflationary effect so long as it is not ”too
much” dispersal. What constitutes ”too much”? A clear case of too much comes from the
metapopulation model given by equation (3) of the main text in the limit as m → ∞. In this
case, the metapopulation converges on a ”well-mixed” spatial distribution in which individuals
have an equal probability of being present in any patch on the landscape. As such, the relative
density is the same in every patch (i.e., νi = 1 for all patches). Without any variation in relative
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density, the covariance between local fitness and density is zero and so there is no inflationary
effect. Clearly ”well-mixed” is too much dispersal.

The more general statement about ”too much” dispersal comes from studies of the inflation-
ary effect using models of the general form of eqn (3). Those studies typically find a hump-
shaped relationship between the landscape level growth (or abundance) and the dispersal rate
m (e.g., Fig. 4 of Roy et al. 2005). The front half of the hump comes from the fact that some
dispersal moves individuals to patches in the landscape that are currently declining but will
soon be expanding. This increased movement, on average, concentrates individuals in favorable
patches on the landscape. The latter half of the hump comes from the fact that more movement
begins to move individuals out of these favorable locations. Hence, the determination of ”too
much” depends on the temporal structure of the environment. If the temporal autocorrelation of
the environment is short, comparatively high emigration rates may still not be ”too much” be-
cause environments change quickly and only highly dispersive individuals will be able to keep
up with continuously moving favorable locations. If the temporal autocorrelation is long, then
comparatively slow emigration rates may nonetheless constitute ”too much” dispersal as local
patch conditions tend to stay favorable for longer.

The hump-shaped relationship between the metapopulation growth rate and the rate of move-
ment, however, does not necessarily indicate a negative inflationary effect. The types of dispersal
and environmental structure considered has been limited such that (at least to our knowledge)
there are no demonstrated deflationary effects. For all dispersal rates greater than zero, prior
models have shown positive inflationary effects, but the hump-shape indicates that the mag-
nitude of the inflationary effect varies non-monotonically with dispersal. For sufficiently high
movement rates, the inflationary effect, while positive, will be so small as to be immeasurable in
any real system.

S5 Details of the model of disease transmission

To illustrate the effects of spatio-temporal heterogeneity on the spread of infectious disease, we
use the following two-patch SIR model:

dSi

dt
= −βi(t)

Si Ii

Ni
− mSi + mSj

dIi

dt
= βi(t)

Si Ii

Ni
− γIi − mIi + mIj (i = 1, 2)

dRi

dt
= γIi,

(S47)

where Si, Ii, and Ri are the number of susceptible, infectious, and recovered individuals in patch
i, respectively, βi(t) is the time and location-specific transmission rate, m is the movement rate,
and γ is the rate of recovery from infection. In this simple form of the of model, we assume that
individuals may only be in one of these three classes such that Ni(t) = Si(t) + Ii(t) + Ri(t).
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As a simple illustration of asynchrony, we consider a scenario where the transmission rate
oscillates between two values periodically according to the following equations (and shown in
Figure S3):

β1(t) =

β0 for 2nT < t < (2n + 1)T

β0(1 − ϵ) otherwise
,

β2(t) =

β0 for 2nT − τ < t < (2n + 1)T − τ

β0(1 − ϵ) otherwise
,

(S48)

where n = {0, 1, 2, 3, . . .} is the set of natural numbers (zero inclusive), and ϵ is the proportional
reduction in transmission from non-pharmaceutical interventions (0 ≤ ϵ ≤ 1). As such, it is the
effectiveness of any non-pharmaceutical intervention (hereafter NPI).

The parameter τ is the time-shift between the change in state of the two patches. Patch two
begins NPIs τ units of time prior to patch 1 and releases them τ units prior to patch 1 as well.
Time shifts can be anywhere from 0, when the two patches are completely in sync, to T, when
the patches are completely out of sync (note that because the square wave function is periodic, τ

can take any real value, each of which has a mapping to the space τ ∈ [0, T]).
The time shift is related to Ω, the NPI overlap, with the following relationship

Ω = 1 − τ

T
, (S49)

where τ/T is the fraction of a half period where the patches are in different states. Each of the
half periods are the same duration, so it is also the fraction of the entire period that the two
patches are in different states. Therefore, 1 − τ/T is the fraction of time the two patches are in
the same state, i.e., the amount of overlap.

S5.1 Spatio-temporal variance

The fitness factor for this model is β, which changes over space and time. To calculate the
three components of variability in β, we need the conditional spatial and temporal means and
variances.

The temporal means and variances are based on the two values of the square-wave function,
β0 and β0(1 − ϵ), which are equally common on a cycle. Since they are equally common in both
patches, the temporal average β in patch x is Et[βx] = β0(1 − ϵ/2).

The pure spatial variance is the variance among patches in the temporal average transmission
rate. The temporal average transmission rates are identical in the two patches, meaning there is
no spatial variability. Hence,

σ2
S = Varx(Et[β]) = 0. (S50)

The pure temporal variance is the variance over times in the average spatial transmission
rate. To determine this, we partition time within a cycle into four periods, described below and
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demonstrated in Figure S3. The first time period, t1, is the time when both patches have the fast
transmission rate, i.e. β1 = β2 = β0. The third time period, t3, is the time when both patches
have the slow transmission rate β1 = β2 = β0(1 − ϵ). Time periods two, t2, and four, t4, are
those where the patches are in different states; one has transmission rate β0 and the other has
transmission rate β0(1 − ϵ) and the two time periods are distinguished by the identities of the
patches in the different states.

Time periods one and three together comprise Ω fraction of time, and time periods two and
four together comprise 1 − Ω fraction of time.

The average growth rate over space at any time, Ex[β(x, t)|t] can be found by using this time
partition. The average across the two patches in each time period are

Ex[β(x, t)|t ∈ t1] = β0

Ex[β(x, t)|t ∈ t2] = β0

(
1 − ϵ

2

)
Ex[β(x, t)|t ∈ t3] = β0(1 − ϵ)

Ex[β(x, t)|t ∈ t4] = β0

(
1 − ϵ

2

)
.

(S51)

The average of these spatial averages across time is

Et[Ex[β(x, t)]] = β0

(
1 − ϵ

2

)
. (S52)

And so the temporal variance of these spatial averages is

σ2
T = Vart(Ex[β(x, t)|t]) = Ω

(
β0ϵ

2

)2

. (S53)

The spatio-temporal variance can be written as

σ2
ST = Ex[Vart(β|x)]− Vart(Ex[β|t]). (S54)

To calculate this quantity, we need the spatial average of the conditional variance over time,
Ex[Vart(β|x)], as the second term on the right-hand side of the expression is the pure temporal
variance.

The temporal variance in a given patch x can be found by noting that the two values in a
period, which are each equally common in time, deviate from the temporal average by ±β0ϵ/2 .
Hence, the variance over time is

Vart(β|x) = 1
2

(
β0ϵ

2

)2

+
1
2

(
−β0ϵ

2

)2

=

(
β0ϵ

2

)2

. (S55)

This variance is the same for both patches so that

Ex[Vart(β|x)] =
(

β0ϵ

2

)2

. (S56)
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Using (S56) and (S53) in (S54) yields

σ2
ST = (1 − Ω)

(
β0ϵ

2

)2

. (S57)

Putting this on a scale of the spati-temporal variations contribution to the total variation in the
transmission rate yields

σ2
ST

σ2
S + σ2

T + σ2
ST

=
(1 − Ω)

(
β0ϵ
2

)2

0 + Ω
(

β0ϵ
2

)2
+ (1 − Ω)

(
β0ϵ
2

)2 = 1 − Ω, (S58)

which shows that all the variation is temporal-only when NPIs are exactly in sync and all the
variation is spatio-temporal when NPIs are exactly out of sync.

S5.2 Calculating the long-term growth rate

We find the long-term metapopulation growth rate of an invading pathogen in Figure 5a by
assuming that the fraction in the population in the infectious class is very small, which is suitable
for much of the early dynamics of COVID-19 because the disease was distributed worldwide,
but had infected a very small percentage of the population in any given locality of moderate
spatial scale. We do this by simulating (S47) while rescaling the density of the infectious class to
keep it arbitrarily small. We run this simulation over multiple cycles of βi(t) until a stationary
distribution for νi = Ii/ Ī is reached. At that point, we simulate the dynamics of Ii for more cycle
and measure the long-term metapopulation rate of spread as(

I1(2T) + I2(2T)
)
−

(
I1(0) + I2(0)

)
2T

, (S59)

which is the average rate of change of the infectious class at the metapopulation scale. This allows
us to isolate the average effect of spatio-temporal heterogeneity when a pathogen is introduced
into a population and is sufficiently uncommon so as not to experience self-regulation by limited
susceptible hosts.

Figures S4 and S5 show the effects of increasing the effectiveness of NPIs and the duration of
NPIs on the long-term growth rate under different overlap levels and movement scenarios.

Stochastic model

We included stochastic variation in transmission rates in addition to deterministic variation from
NPIs. To do so, we used a discrete-time version of the above continuous-time SIR model where
time steps correspond to days. To model stochasticity in the transmission rate, we assumed βi(t)
in any time point follows a truncated normal distribution. The mean of the normal distribution
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at time t is given by the deterministic component of the model from eqn (S48), and the variance
of the normal distribution is assumed to be σ2. The truncated normal is used to ensure that the
transmission rate is not a negative value.

For the stochastic model, we chose infectious duration 1/γ = 4.5 days in both patches and
a baseline transmission rate of β0 = 0.375 d−1. This corresponds to a daily growth rate of 1.53
d−1, case doubling times of approximately 4.5 days, and R0 value about 1.7 (in a completely sus-
ceptible population). We illustrate the inflationary effect with a highly effective NPI regime (95%
reduction in baseline transmission) that cycles every 60 days (30 days NPI regime and 30 days
”business as usual”). We chose chose σ = 0.1 to represent stochastic variation in transmission in
addition to NPIs.

To illustrate how the inflationary effect arises from positive fitness-densities covariances, on
average, over time, we kept track of relative density of infectious individuals in each patch and
the fitness at each time step. Relative density of infectious individuals in patch i at time t was
calculated as Ii(t)/ Ī(t) where Ī(t) = (I1(t) + I2(t))/2 is the average infectious density. Fitness
for the discrete-time model was calculated as λi(t) = exp(βi(t)− γ), which is analogous to the
continuous-time per-capita growth rate (1/I · dI/dt) when the time scale is very short.

At each time step, we calculated the covariance across the two patches between relative in-
fectious density and local fitness. We plotted the dynamics of this spatial covariance for each of
the two Ω values considered in Figure 5 of the main text. The dynamics are shown by the solid
lines in Figure S5.2. The average over time of these covariance gives the inflationary effect be-
cause cov(ν̃, r̃) = 0 by the fact that the temporal average growth rate is the same in both patches.
The average fitness-density covariance is given by the dotted lines in Figure S5.2, showing that
the fitness-density covariance is positive on average with asynchrony and zero on average when
completely synchronized.
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Figure S2: Example construction of correlated extinction events with two patches in the occu-
pancy model. (a) The correlated probability distribution for X representing the two environ-
mental factors present in the patches that affect extinction. Each marginal has mean 0 and unit
variance, and the correlation between marginals is ρE = 0.85. The marginal variables can be
considered as latent variables measuring habitat quality. Gray circles represent a random sample
from this bivariate distribution. (b) The environmental factors are translated to extinction events
in each patch. The relationship between Xi(t) and the extinction event is given by (S18) with
e = 0.05 and is shown by the blue line. The random sample in (a) is shown by the red points
in (b). (c) The spatio-temporal pattern of extinction events from the random sample in (a) and
transformed in (b). Because of the correlated nature of the environmental variables, extinction
events are also correlated across space such that an extinction event in one patch means that
extinction is likely in the other patch.
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Time period 1 Time period 2 Time period 3 Time period 4

Figure S3: The square-wave function used to model differential timing of non-pharmaceutical
interventions. The black line shows the transmission rate in the first patch and the gray line
shows the transmission rate in the second patch. The dotted line shows the temporal average in
each patch, Et[β(x, t)|x]. Time can be partitioned into four distinct periods which fully describe
the unique set of states the two patches can be in together.

23

Supplemental Material (not copyedited or formatted) for: Nicholas Kortessis, Gregory Glass, Andrew Gonzalez, Nick W. Ruktanonchai, Margaret W. Simon, Burton 
Singer, Robert D. Holt. 2025. "Metapopulations, the Inflationary Effect, and Consequences for Public Health." 

The American Naturalist 205(3). DOI: https://doi.org/10.1086/733896.

Supplemental Material (not copyedited or formatted) for: Nicholas Kortessis, Gregory Glass, Andrew Gonzalez, Nick W. Ruktanonchai, Margaret W. Simon, Burton 
Singer, Robert D. Holt. 2025. "Metapopulations, the Inflationary Effect, and Consequences for Public Health." 

The American Naturalist 205(3). DOI: https://doi.org/10.1086/733896.



Supplement to “Metapopulations and the Inflationary Effect” Am. Nat.

0 0.2 0.4 0.6 0.8 1

NPI effectiveness ( )

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

M
et

ap
o

p
u

la
ti

o
n

 S
ca

le
 I

n
fe

ct
io

u
s

G
ro

w
th

 R
at

e 
(p

er
 d

ay
)

NPI Overlap = 0.75

0.001

0.002

0.003

0.004

0.005

0 0.2 0.4 0.6 0.8 1

NPI effectiveness ( )

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

M
et

ap
o

p
u

la
ti

o
n

 S
ca

le
 I

n
fe

ct
io

u
s

G
ro

w
th

 R
at

e 
(p

er
 d

ay
)

NPI Overlap = 0.5

0 0.2 0.4 0.6 0.8 1

NPI effectiveness ( )

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

M
et

ap
o

p
u

la
ti

o
n

 S
ca

le
 I

n
fe

ct
io

u
s

G
ro

w
th

 R
at

e 
(p

er
 d

ay
)

NPI Overlap = 0.25

Figure S4: Metapopulation growth rate of the infectious class as a function of the effectiveness
of an NPI.The dotted line shows the metapopulation spread of the disease assuming no spatio-
temporal heterogeneity, which implies either coordinated NPIs or no movement. Actual spread
rates lie above this line, reflecting that fact that the realized effectiveness of NPIs is diminished
by asynchrony in the timing of NPIs. The difference between the dotted line any given solid line
is the magnitude of the inflationary effect.
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Figure S5: Metapopulation growth rate of the infectious class as a function of the duration of
NPIs. Longer NPI application (and so longer durations of ”business as usual”) creates autocor-
related growth rates from the perspective of infectious hosts. As such, the inflationary effect is
larger. The solid line gives the boundary growth rate above which the disease spreads in the
metapopulation. The dashed line gives the baseline growth rate in the absence of any spatio-
temporal variability in transmission.
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Figure S6: Mechanistic basis of the inflationary effect. Plotted are the dynamics of the fitness-
density covariance for the stochastic SIR model simulated and presented in Figure 5b of the main
text. The left panel shows the dynamics of the fitness-density covariance in the case with com-
plete NPI overlap. Variability in the fitness-density covariance is caused by stochastic variation
in the transmission rate. As such, it is zero over time on average (dotted line), meaning that the
inflationary effect is zero by equation 4 of the main text. The right panel shows the same model
with NPI overlap equal to 0.5. In that case, the fitness-density covariance gets to very large val-
ues, but only dips to small negative values. Averaging over time (dotted line) reveals a positive
inflationary effect. Parameters identical to those in Figure 5b.
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