Significant Publications in Theory

1. R. J. Bartlett and G. D. Purvis, “Many-body perturbation theory, coupled-pair many-electron theory and the importance of quadruple excitations for the correlation problem,” Proceedings of the American Theoretical Chemistry Conference, Boulder, Colorado, Int. J. Quantum Chem. 14, 561-581 (1978).

2. R. J. Bartlett and G. D. Purvis III, “Molecular applications of coupled cluster and many-body perturbation methods,” Proceedings of the Nobel Symposium on Many-Body Theory, Lerum, Sweden, Physica Scripta 21, 255-265 (1980).

3. G. D. Purvis, III and R. J. Bartlett, “A full coupled-cluster singles and doubles model: The inclusion of disconnected triples,” J. Chem. Phys. 76, 1910-1918 (1982).

4. L. Adamowicz, W. D. Laidig and R. J. Bartlett, “Analytical gradients for the coupled-cluster method,” Int. J. Quantum Chem. Symp. 18, 245-254 (1984).

5. Y. S. Lee, S. A. Kucharski and R. J. Bartlett, “A coupled cluster approach with triple excitations,” J. Chem. Phys. 81, 5906-5912 (1984).

6. J. Noga and R. J. Bartlett, “The full CCSDT model for molecular electronic structure,” J. Chem. Phys. 86, 7041-7050 (1987).

7. R. J. Bartlett, “Coupled-cluster approach to molecular structure and spectra: A step toward predictive quantum chemistry,” J. Phys. Chem. (Feature Article) 93, 1697-1708 (1989).

8. S. A. Kucharski and R. J. Bartlett, “The coupled-cluster single, double, triple and quadruple excitation method,” J. Chem. Phys. 97, 4282-4288 (1992).

9. J. F. Stanton and R. J. Bartlett, “The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties,” J. Chem. Phys. 98, 7029-7039 (1993).

10. M. Nooijen and R. J. Bartlett, “A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory,” J. Chem. Phys. 106, 6441-6448 (1997).

11. N. Flocke and R.J. Bartlett, “A natural linear scaling coupled-cluster method,” J. Chem. Phys. 121, 10935 (2004).

12. R. J. Bartlett, V. F. Lotrich, I.V. Schweigert, “Ab initio DFT: The best of both worlds?” J. Chem. Phys. 123, 062205 (2005).

13. A. Taube and R.J. Bartlett, “Frozen natural orbital coupled-cluster theory: Forces and applications to decomposition of nitroethane,” J. Chem. Phys. 128, 164101/1 – 164101/17 (2008).

14. R. J. Bartlett, “Towards an exact correlated orbital theory for electrons,” Frontiers Article, Chem. Phys. Lett. 484, 1-9 (2009).

15. M. Musial, A. Perera, and R.J. Bartlett, “Multireference coupled-cluster theory: The easy way,” J. Chem. Phys. 134, 114108/1-10 (2011).

16. P. Verma and R.J. Bartlett, “Increasing the applicability of density functional theory. III. Do consistent Kohn-Sham density functional methods exist?” J. Chem. Phys. 137, 134102/1-12 (2012).

17. T.J. Watson, Jr., V. Lotrich, P. Szalay, A. Perera, and R.J. Bartlett, “Benchmarking for perturbative triple-excitations in EE-EOM-CC methods,” J. Phys. Chem. A 117, 2569-2579 (2013).