Write final answers on this sheet. Turn in all relevant work on separate sheets. Good luck!

(1) Find the Laplace transform \(\mathcal{L}\{f(t)\}(s) \) for the period 2 function with
\[
f(t) = \begin{cases}
2t & \text{if } 0 \leq t < 1 \\
4 - 2t & \text{if } 1 < t < 2
\end{cases}
\]

(2) Show that the gamma function \(\Gamma \) has the property that \(\Gamma(n + 1) = n\Gamma(n) \) for any positive integer \(n \).

(3) Find \(\mathcal{L}^{-1} \) for the following functions
 (a) \(\frac{3s + 8}{s^2 - 8s + 25} \)
 (b) \(\frac{e^{-3s}}{s^4} \)
 (c) \(\frac{s + 3}{(s - 1)^2(s^2 + 4)} \)

(4) Solve the IVP
\[
y'' - 4y' = \begin{cases}
3 & \text{if } 0 \leq t < 2 \\
0 & \text{if } t > 2
\end{cases}; y(0) = 1, y'(0) = 0
\]

(5) A mass of 3 kg is attached to a spring with stiffness \(k = 50 \text{N/m} \). The spring is released from rest 1 meter to the left of the spring’s equilibrium position. Five seconds later, the mass is struck, giving it an impulse of 10 Ns. Find a differential equation for the position \(y(t) \) of the mass at time \(t \) and use Laplace transforms to solve for \(y(t) \).

(6) Find the transfer and impulse response function for the ODE
\[
y'' + 4y = g(t).
\]
Use the impulse response function to find a formula for the solution to the above ODE with initial conditions
\[
y(0) = 1, y'(0) = 1.
\]