
MAP 2302, Exam II, Spring 2015
Name:

Student signature:

Write final answers on this sheet. Turn in all relevant work on
separate sheets.

(1) Use the method of undetermined coefficients to find the form of a
particular solution yp to the following ODEs. Do not solve the
equation!
(a) y′′ − 2y′ + 2y = et

The roots of the characteristic polynomial r2 − 2r + 2 are r =
1± i. Looking at the right hand side of the ODE, we set yp =
tsA0e

t. Since 1 is not a root of the characteristic polynormial,
we set s = 0 so yp = A0e

t.
(b) y′′ − 2y′ + 2y = tet cos(t) + t2et sin(t)

The method says to use the form

yp = ts
((
A2t

2 + A1t + A0

)
et sin(t) +

(
B2t

2 + B1t + B0

)
et cos(t)

)
.

Since 1 + i is a root of the characteristic polynomial, we choose
s = 1 and have

yp = t
((
A2t

2 + A1t + A0

)
et sin(t) +

(
B2t

2 + B1t + B0

)
et cos(t)

)
.

(c) y′′ + 4y′ + 4y = e−2t

For this equation, the characteristic polynomial has a double
root r = −2. We set yp = ts(A0)e

−2t Since −2 is a double root,
set s = 2 so yp = t2(A0)e

−2t.
(d) y′′ + 4y′ + 4y = e−2t + et

By the superposition principle, we can solve separately for e−2t

and et. We previously found a form for when the right hand
side is e−2t. Following the same argument, the form for et is
A0e

t. Adding them together (and being sure not to reuse A0)
we have yp = t2A0e

−2t + B0e
t.

(2) Find the general solution to the following ODE for t < 0.

t2y′′ + 4ty′ + 2y = sin(t)

This is a Cauchy-Euler equation which can be written in standard
form as

y′′ +
4

t
y′ +

2

t2
y =

sin(t)

t2
.

Recall that y = yp + yh is the general solution where yp is one
particular solution to the ODE and yh is the general solution to the
associated homogeneous ODE. Since we need yh to find yp we will
start by finding yh. The characteristic polynomial for this Cauchy-
Euler equation is r2 + 3r + 2 which has roots r = −1,−2. So

yh = k1(−t)−1 + k2(−t)−2
1



2

. We will call y1 = (−t)−1 = −1/t, y2 = (−t)−2 = 1/t2. The
Wronskian (which we need for variation of parameters) is computed
to be

W [y1, y2] = y1y
′
2 − y′1y2

= (−t)−1(2(−t)−3)− (−t)−2(−t)−2

= (−t)−4

= t−4.

Then by variation of parameters we have yp = v1y1 + v2y2 where

v1 =

∫
−gy2

W [y1, y2]
dt = −

∫
t−2 sin(t)t−2

t−4
dt

v1 = −
∫

sin(t) dt = cos(t)

and,

v2 =

∫
gy1

W [y1, y2]
dt =

∫
t−2 sin(t)(−t−1)

t−4
dt

v2 = −t sin(t) dt = t cos(t)− sin(t)

Then yp = −t−1 cos(t) + t−1 cos(t)− t−2 sin(t) = −t−2 sin(t) and

y = −t−2 sin(t) + k1(−t)−1 + k2(−t)−2

is the general solution.

(3) If y1, y2 are solutions to y′′ + t2y′ + ety = 0 on (−∞,∞) can
W [y1, y2](t) = t be their Wronskian?
No. The functions t2, et are continuous on (−∞,∞). Then the
Wronskian of two solutions on (−∞,∞) is either identically zero or
never equal to zero. However, t is zero only for t = 0.

(4) Verify that y1(t) = t is a solution to

(1− t2)y′′ − 2ty′ + 2y = 0.

Then find the general solution to that ODE for t > 1.
Call y1 = t. Then y′1 = 1, y′′1 = 0. Plugging this into the above ODE
gives

(1− t2)(0)− 2t(1) + 2t = 0.

So y1 = t is a solution. To find the second linearly independent
solution, we use reduction of order. First we put the equation in
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standard form

y′′ − 2t

1− t2
y′ +

2

1− t2
y = 0.

Remember that discontinuities at t = ±1 force us to look for so-
lutions either on (−∞, 1), (−1, 1), or (1,∞). The problem specifies
that we are searching on (1,∞). Now the reduction of order formula
gives us

y2 = y1

∫
e−

∫
p(t) dt

(y1)2
dt

y2 = t

∫
e
−

∫ −2t

1−t2 dt

t2
dt

y2 = t

∫
e− ln |1−t2|

t2
dt

Since t > 1 we have |1− t2| = t2 − 1 and

y2 = t

∫
1

t2(1− t2)

This is where you do partial fractions to get

y2 = −1 +
t

2
ln

(
t + 1

t− 1

)
Then the general solutions is

y = k1t + k2

(
−1 +

t

2
ln

(
t + 1

t− 1

))
.

(5) Solve the IVP

y′′ + 5y′ + 6y = sin(t) , y(0) = 1, y′(0) = −1.

The general solution is y = yh + yp. The roots of the characteristic
polynomial are r = −2,−3 so yh = k1e

−2t + k2e
−3t is the general

solution. To find yp, we use the method of undetermined coefficients.
The form is

yp = A sin(t) + B cos(t)

and so,

y′p = A cos(t)−B sin(t)

y′′p = −A sin(t)−B cos(t)

Plugging into the ODE gives

sin(t) [−A− 5B + 6A] + cos(t) [−B + 5A + 6B] = sin(t).
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By equating coefficients on the left and right, this gives rise to the
linear system

5A− 5B = 1

5A + 5B = 0

We can solve this to obtain A = 1/10, B = −1/10. So the general
solution is given by

y =
1

10
sin(t)− 1

10
cos(t) + k1e

−2t + k2e
−3t

and its derivative is

y′ =
1

10
cos(t) +

1

10
sin(t)− 2k1e

−2t − 3k2e
−3t

.
Now we adjust k1, k2 to match the initial conditions. Plugging

in y(0) = 1 we get 1 = − 1
10 + k1 + k2. Plugging in y′(0) = −1

gives −1 = 1
10 − 2k1 − 3k2. We solve this linear system to get

k1 = 11/5, k2 = −11/10. So the solution to the IVP is

y =
1

10
sin(t)− 1

10
cos(t) +

11

5
e−2t − 11

10
e−3t.


