Name:

Student signature:

Write final answers on this sheet. Turn in all relevant work on separate sheets.

- (1) Use the method of undetermined coefficients to find the form of a particular solution y_p to the following ODEs. Do not solve the equation!
 - (a) $y'' 2y' + 2y = e^t$

The roots of the characteristic polynomial $r^2 - 2r + 2$ are $r = 1 \pm i$. Looking at the right hand side of the ODE, we set $y_p = t^s A_0 e^t$. Since 1 is not a root of the characteristic polynomial, we set s = 0 so $y_p = A_0 e^t$.

(b) $y'' - 2y' + 2y = te^t \cos(t) + t^2 e^t \sin(t)$ The method says to use the form

$$y_p = t^s \left(\left(A_2 t^2 + A_1 t + A_0 \right) e^t \sin(t) + \left(B_2 t^2 + B_1 t + B_0 \right) e^t \cos(t) \right).$$

Since 1 + i is a root of the characteristic polynomial, we choose s = 1 and have

$$y_p = t \left(\left(A_2 t^2 + A_1 t + A_0 \right) e^t \sin(t) + \left(B_2 t^2 + B_1 t + B_0 \right) e^t \cos(t) \right).$$

(c) $y'' + 4y' + 4y = e^{-2t}$

For this equation, the characteristic polynomial has a double root r = -2. We set $y_p = t^s(A_0)e^{-2t}$ Since -2 is a double root, set s = 2 so $y_p = t^2(A_0)e^{-2t}$.

- (d) $y'' + 4y' + 4y = e^{-2t} + e^t$ By the superposition principle, we can solve separately for e^{-2t} and e^t . We previously found a form for when the right hand side is e^{-2t} . Following the same argument, the form for e^t is A_0e^t . Adding them together (and being sure not to reuse A_0) we have $y_p = t^2 A_0 e^{-2t} + B_0 e^t$.
- (2) Find the general solution to the following ODE for t < 0.

$$t^2y'' + 4ty' + 2y = \sin(t)$$

This is a Cauchy-Euler equation which can be written in standard form as

$$y'' + \frac{4}{t}y' + \frac{2}{t^2}y = \frac{\sin(t)}{t^2}$$

Recall that $y = y_p + y_h$ is the general solution where y_p is one particular solution to the ODE and y_h is the general solution to the associated homogeneous ODE. Since we need y_h to find y_p we will start by finding y_h . The characteristic polynomial for this Cauchy-Euler equation is $r^2 + 3r + 2$ which has roots r = -1, -2. So

$$y_h = k_1(-t)^{-1} + k_2(-t)^{-2}$$

. We will call $y_1 = (-t)^{-1} = -1/t$, $y_2 = (-t)^{-2} = 1/t^2$. The Wronskian (which we need for variation of parameters) is computed to be

$$W[y_1, y_2] = y_1 y_2' - y_1' y_2$$

= $(-t)^{-1} (2(-t)^{-3}) - (-t)^{-2} (-t)^{-2}$
= $(-t)^{-4}$
= t^{-4} .

Then by variation of parameters we have $y_p = v_1y_1 + v_2y_2$ where

$$v_1 = \int \frac{-gy_2}{W[y_1, y_2]} dt = -\int \frac{t^{-2}\sin(t)t^{-2}}{t^{-4}} dt$$
$$v_1 = -\int \sin(t) dt = \cos(t)$$

and,

$$v_2 = \int \frac{gy_1}{W[y_1, y_2]} dt = \int \frac{t^{-2} \sin(t)(-t^{-1})}{t^{-4}} dt$$
$$v_2 = -t \sin(t) dt = t \cos(t) - \sin(t)$$

Then $y_p = -t^{-1}\cos(t) + t^{-1}\cos(t) - t^{-2}\sin(t) = -t^{-2}\sin(t)$ and $y = -t^{-2}\sin(t) + k_1(-t)^{-1} + k_2(-t)^{-2}$

is the general solution.

- (3) If y₁, y₂ are solutions to y" + t²y' + e^ty = 0 on (-∞,∞) can W[y₁, y₂](t) = t be their Wronskian? No. The functions t², e^t are continuous on (-∞,∞). Then the Wronskian of two solutions on (-∞,∞) is either identically zero or never equal to zero. However, t is zero only for t = 0.
- (4) Verify that $y_1(t) = t$ is a solution to

$$(1 - t^2)y'' - 2ty' + 2y = 0.$$

Then find the general solution to that ODE for t > 1. Call $y_1 = t$. Then $y'_1 = 1, y''_1 = 0$. Plugging this into the above ODE gives

$$(1-t^2)(0) - 2t(1) + 2t = 0.$$

So $y_1 = t$ is a solution. To find the second linearly independent solution, we use reduction of order. First we put the equation in

$$y'' - \frac{2t}{1 - t^2}y' + \frac{2}{1 - t^2}y = 0.$$

Remember that discontinuities at $t = \pm 1$ force us to look for solutions either on $(-\infty, 1), (-1, 1)$, or $(1, \infty)$. The problem specifies that we are searching on $(1, \infty)$. Now the reduction of order formula gives us

$$y_{2} = y_{1} \int \frac{e^{-\int p(t) dt}}{(y_{1})^{2}} dt$$
$$y_{2} = t \int \frac{e^{-\int \frac{-2t}{1-t^{2}}} dt}{t^{2}} dt$$
$$y_{2} = t \int \frac{e^{-\ln|1-t^{2}|}}{t^{2}} dt$$

Since t > 1 we have $|1 - t^2| = t^2 - 1$ and

$$y_2 = t \int \frac{1}{t^2(1-t^2)}$$

This is where you do partial fractions to get

$$y_2 = -1 + \frac{t}{2} \ln\left(\frac{t+1}{t-1}\right)$$

Then the general solutions is

$$y = k_1 t + k_2 \left(-1 + \frac{t}{2} \ln \left(\frac{t+1}{t-1} \right) \right).$$

(5) Solve the IVP

$$y'' + 5y' + 6y = \sin(t)$$
, $y(0) = 1, y'(0) = -1.$

The general solution is $y = y_h + y_p$. The roots of the characteristic polynomial are r = -2, -3 so $y_h = k_1 e^{-2t} + k_2 e^{-3t}$ is the general solution. To find y_p , we use the method of undetermined coefficients. The form is

$$y_p = A\sin(t) + B\cos(t)$$

and so,

$$y'_p = A\cos(t) - B\sin(t)$$
$$y''_p = -A\sin(t) - B\cos(t)$$

Plugging into the ODE gives

$$\sin(t) \left[-A - 5B + 6A \right] + \cos(t) \left[-B + 5A + 6B \right] = \sin(t).$$

By equating coefficients on the left and right, this gives rise to the linear system

$$5A - 5B = 1$$
$$5A + 5B = 0$$

We can solve this to obtain A = 1/10, B = -1/10. So the general solution is given by

$$y = \frac{1}{10}\sin(t) - \frac{1}{10}\cos(t) + k_1e^{-2t} + k_2e^{-3t}$$

and its derivative is

$$y' = \frac{1}{10}\cos(t) + \frac{1}{10}\sin(t) - 2k_1e^{-2t} - 3k_2e^{-3t}$$

Now we adjust k_1, k_2 to match the initial conditions. Plugging in y(0) = 1 we get $1 = -\frac{1}{10} + k_1 + k_2$. Plugging in y'(0) = -1gives $-1 = \frac{1}{10} - 2k_1 - 3k_2$. We solve this linear system to get $k_1 = 11/5, k_2 = -11/10$. So the solution to the IVP is

$$y = \frac{1}{10}\sin(t) - \frac{1}{10}\cos(t) + \frac{11}{5}e^{-2t} - \frac{11}{10}e^{-3t}.$$