
MAP 2302, Exam II, Spring 2015
Name:

Student signature:

Write final answers on this sheet. Turn in all relevant work on
separate sheets. Full work is required for full credit.

(1) [10] Use the method of undetermined coefficients to find the form of
a particular solution yp to the following ODEs. Do not solve the
equation!

(a) [5] y′′ − 2y′ + 5y = e−t

The characteristic polynomial is r2 − 2r + 5 which has roots
r = 1±2i. Following the method of undetermined coefficients we
have yp = tsA0e

−t. Since −1 is not a root of the characteristic
polynomial (equivalently e−t is not a homogeneous solution) we
choose s = 0 so that yp = A0e

−t.

(b) [5] y′′ − 2y′ + 5y = tet sin(2t)
Following the same reasoning in this case we have

yp = t
(
(A1t + A0) e

t sin(2t) + (B1t + B0) e
t cos(2t)

)
.

The factor of t at the beginning owes to the fact that 1 + 2i is
a root of the characteristic polynomial.

(c) [5] y′′ − 2y′ + 5y = e−t + tet sin(2t)
We already have a form to match tet sin(2t) and e−t. By the
superposition principle we can add these forms (being careful
not to resuse letters) to yield

yp = t
(
(A1t + A0) e

t sin(2t) + (B1t + B0) e
t cos(2t)

)
+ C0e

−t.

(2) [10] Is it possible for y1 = et and y2 = t + 1 to both be solutions to
y′′ + p(t)y′ + q(t)y = g(t) on (−∞,∞) if p, q, g are all continuous on
(−∞,∞)? Justify your answer. (Hint: Examine how the two
functions intersect.)
No. These two functions satisfy the same initial conditions at t = 0,
so if they were both solutions it would contradict the uniqueness
theorem.

(3) [20] Find the general solution to the ODE

y′′ − 4y′ + 4y = tet.

As always y = yp + yh. First we find yh. The characteristic polyno-
mial has a double root r = 2 so

yh = k1e
2t + k2te

2t.

To find yp we will use the method of undetermined coefficients. The
method gives us the form

yp = (At + B) et

1



2

and so,

y′p = (At + (A + B)) et

y′′p = ((At + (2A + B))et

Plugging this into the ODE gives

tet [A− 4A + 4A] + et [2A + B − 4A− 4B + 4B] = tet

Atet + (B − 2A)et = tet

Equating the coefficients on the left and right side we get the linear
system

A = 1

B − 2A = 0

which we can solve to obtain A = 1, B = 2 so

y = (t + 2)et + k1e
2t + k2te

2t.

(4) [25] Given that t2et and (t2 + 1)et are solutions to

ty′′ + (1− 2t)y′ + (t− 1)y = 4tet, t > 0,

find the general solution to the ODE on t > 0.
Once more, the general solution is y = yp + yh. Since this is neither
constant coefficient nor Cauchy-Euler, we need to develop a way to
find yh. Using the superposition principle, we find that
y1 = (t2 + 1)et − t2et = et is one homogeneous solution. To find the
y2 we use the reduction of order formula. In standard form the ODE
is

y′′ +
1− 2t

t
y′ +

t− 1

t
y = 4et.

Then the reduction of order formula becomes

y2 = y1

∫
e−

∫
p(t) dt

(y1)2
dt

y2 = et
∫

e−
∫

1−2t
t

dt

e2t
dt

y2 = et
∫

e− ln |t|+2t

e2t
dt

Since t > 0 we have ln |t| = ln(t) and

y2 = et
∫

t−1e2t

e2t
dt = et

∫
t−1 dt

y2 = et ln(t)

Finally, we may take yp = t2et so the general solution is

y = t2et + k1e
t + k2e

t ln(t).
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(5) [30] Solve the following Cauchy-Euler IVP:

t2y′′ − ty′ + y = t, y(−1) = 1, y′(−1) = 2.

We still have y = yp + yh. We find yh using the theory of Cauchy-
Euler equations. The characteristic polynomial is r2 − 2r + 1 which
has a repeated root r = 1. We observe that the intial condition is
given at t = −1 so we must use homogeneous solutions on t < 0.
Then

yh = k1(−t) + k2(−t) ln(−t).
For definiteness, call y1 = −t, y2 = −t ln(−t). We will find yp using
reduction of order. In standard form the ODE is

y′′ − 1

t
y′ +

1

t2
y =

1

t
.

The Wronskian

W = W [(−t),−t ln(−t)] = −t(−1− ln(−t))− (−1)(−t ln(−t))
= t + t ln(−t)− t ln(−t)
= t.

Then yp = v1y1 + v2y2 where

v1 =

∫
−y2g
W

dt =

∫
t ln(−t)t−1

t
dt

=

∫
ln(−t)

t
dt

=
1

2
ln(−t)2,

and

v2 =

∫
y1g

W
dt =

∫
−tt−1

t
dt

= −
∫

1

t
dt = − ln |t|

Since t < 0 ln |t| = ln(−t) and

v2 = − ln(−t).
Then

yp = − t

2
ln(−t)2 + t ln(−t)2 =

t

2
ln(−t)2.

and

y =
t

2
ln(−t)2 + k1(−t) + k2(−t ln(−t))

y′ =
1

2
(2 ln(−t) + ln(−t)2)− k1 + k2(−1− ln(−t))

Plugging in y(−1) = 1 we get −1 = k1. Similarly, y′(−1) = 2 Gives
2 = −k1 − k2 so k2 = −1. Then the solution to the IVP is

y =
t

2
ln(−t)2 + t + t ln(−t).


