
MAP 2302, Exam IV, Spring 2015
Name:

Student signature:

Turn in all relevant work with final answers circled on separate
sheets. Full work is required for full credit.

(1) [25] Solve the following symbolic IVP

y′′ + 2y′ + 2y = δ(t− 2π) ; y(π) = 2, y′(π) = 1

First, shift the initial conditions by setting w(t) = y(t+π). Then the
shifted IVP (don’t forget to shift the right hand side too) becomes

w′′ + 2w′ + 2w = δ(t− π) ;w(0) = 2, w′(0) = 1.

Taking L we get

s2W − 2s− 1 + 2(sW − 2) + 2W = e−πs

W (s2 + 2s+ 2) = e−πs + 2s+ 5

And so we obtain that

W = e−πs
1

s2 + 2s+ 2
+

2s+ 5

s2 + 2s+ 2

The denominator is not factorable over the real numbers (22−4∗2 <
0), so our goal is to complete the square in the denominator and
match the form of the transforms of eat sin(bt) and eat cos(bt).

W = e−πs
1

(s+ 1)2 + 1
+ 2

(s+ 1)

(s+ 2)2 + 1
+ 3

1

(s+ 1)2 + 1

Taking L−1 we have

w = u(t− π)e−(t−π) sin(t− π) + 2e−t cos(t) + 3e−t sin(t)

Shifting back by y(t) = w(t− π) we get

y = u(t− 2π)e−(t−2π) sin(t− 2π) + 2e−(t−π) cos(t− π) + 3e−(t−π) sin(t− π)

Or,

y = u(t− 2π)e−(t−2π) sin(t)− 2e−(t−π) cos(t)− 3e−(t−π) sin(t)

(2) [25] Answer the following questions about the ODE

y′ + 4xy = 0

• [15] Find a recurrence relation that determines the coefficients
an of a power series for the solution y.



Set y =
∑∞

n=0 anx
n so y′ =

∑∞
n=1 nanx

n−1. Then the ODE
becomes

∞∑
n=1

nanx
n−1 + 4x

∞∑
n=0

anx
n = 0

∞∑
n=1

nanx
n−1 +

∞∑
n=0

4anx
n+1 = 0

Normalizing the exponent of x we get

∞∑
k=0

(k + 1)ak+1x
k +

∞∑
k=1

4ak−1x
k = 0

a1 +
∞∑
k=1

[(k + 1) ak+1 + 4a(k − 1)]xk = 0

Equating coefficients of powers of x on both sides yields the
recurrence relation

a1 = 0

ak+1 =
−4ak−1
k + 1

, k ≥ 1

• [5] What is the radius of convergence for that power series?

Since 4x is analytic everywhere, R =∞.

• [5] Use the recurrence relation to find an explicit formula (closed
form) for an.

Note that since a1 = 0 for every odd n an = 0. For even n
we keep multiplying by (−4) and dividing by the “next” even
number. For example

a0 = a0

a2 = a0
−4

2

a4 = a2
−4

4
= a0

(−4)2

2 ∗ 4

a6 = a4
−6

6
= a0

(−4)3

2 ∗ 4 ∗ 6

We conclude a2n = a0
(−4)n

2∗4∗···∗(2n) = (−2)n
n! .

• [+5] Find an explicit (non-series) formula for y.

Either compare to the series for ex or use Exam I material to

see y = e−2x
2
.



(3) [25] Find a recurrence relation for the coefficients of a power series
for a general solution to

(x2 + 1)y′′ + y = 0

centered around x = 1. Use the recurrence relation ([15]) to find the
first four nonzero terms ([5]) of the series. What is the minimum
radius of convergence ([5]) of the series?

Shift by taking w(x) = y(x+ 1). Then the shifted ODE becomes

((x+ 1)2 + 1)w′′ + w = 0

(x2 + 2x+ 2)w′′ + w = 0

Set w =
∑∞

n=0 anx
n, w′′ =

∑∞
n=2 n(n− 1)anx

n−2. Then after multi-
plying the powers of x through the ODE becomes

∞∑
n=2

n(n− 1)anx
n +

∞∑
n=2

2n(n− 1)anx
n−1 +

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=0

anx
n = 0

Normalizing the powers of x we get

∞∑
k=2

k(k − 1)akx
k +

∞∑
k=1

2k(k + 1)ak+1x
k +

∞∑
k=0

2(k + 2)(k + 1)ak+2x
k +

∞∑
k=0

akx
k = 0

We remove the k = 0, 1 terms and combine sums to obtain

4a2 + a0 + (4a2 + 12a3 + a1)x+

+

∞∑
k=2

[
(k2 − k + 1)ak + 2k(k + 1)ak+1 + 2(k + 2)(k + 1)ak+2

]
xk = 0

This yields the recurrence relation

a2 =
−1

4
a0

a3 = −1

3
a2 −

a1
12

=
1

12
a0 −

a1
12

ak+2 =
−(k2 − k + 1)ak − 2k(k + 1)ak+1

2(k + 2)(k + 1)
, k ≥ 2

Thankfully we only need a0 to a3 to get the first four terms. Looking
above we have

w = a0 + a1x−
1

4
a0x

2 +
1

12
(a0 − a1)x3

And since y(x) = w(x− 1)

y = a0 + a1(x− 1)− 1

4
a0(x− 1)2 +

1

12
(a0 − a1) (x− 1)3

The singular points occur then (1 + x2) = 0. So x = ±i. The
distinace from 1 to ±i is

√
2 so the minimum radius of convergence

is R =
√

2.



(4) [25] Find the first four nonzero terms of a power series solution cen-
tered at x = 0 to the IVP

y′′ − sin(x)y = cos(x) ; y(0) = 1, y′(0) = 1.

Recall that

sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1, cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n

a0 = y(0) = 1 and a1 = y′(0) = 1. We can use the “bootstrapping”
method to find a3, a4. We have

y′′ = cos(x) + sin(x)y

Differentiating yields

y′′′ = − sin(x) + sin(x)y′ + cos(x)y

Plugging in 0 into these gives y′′(0) = 1 and y′′′(0) = y(0) = 1. Since

an = y(n)
n! our approximation is

y = 1 + x+
1

2
x2 +

1

6
x3 + · · ·

(5) [+5] Use the root test to show that the power series Σ∞n=1nanx
n−1

has the same radius of convergence as the power series for Σ∞n=0anx
n.

In other words, the series for y′ has the same radius of convergence
as the series for y.

(6) [+5] Give an example of a function f for which the nth derivative

f (n) is continuous for all n but f is not analytic at 0. For full credit,
provide justification.



f(t) L{f}(s)

1
1

s

tn, n = 0, 1, 2, . . .
n!

sn+1

sin(bt)
b

s2 + b2

cos(bt)
s

s2 + b2

u(t− a)f(t− a) e−asL{f(t)}(s)

δ(t− a) e−as

eatf(t) L{f(t)}(s− a)

f ′(t) sL{f(t)}(s)− f(0)

tnf(t) (−1)n dn

dsnL{f(t)}(s)

f(t) (period T )
L{fT (t)}
1− e−Ts

(g ∗ h)(t) L{g(t)}(s)L{h(t)}(s)


