MAP 2302, Exam IV, Spring 2015

Name:

Student signature:

Turn in all relevant work with final answers circled on separate sheets. Full work is required for full credit.

(1) [25] Solve the following symbolic IVP

$$
y'' + 2y' + 2y = \delta(t - 2\pi) ; y(\pi) = 2, y'(\pi) = 1
$$

First, shift the initial conditions by setting $w(t) = y(t+\pi)$. Then the shifted IVP (don't forget to shift the right hand side too) becomes

$$
w'' + 2w' + 2w = \delta(t - \pi) ; w(0) = 2, w'(0) = 1.
$$

Taking $\mathcal L$ we get

$$
s^{2}W - 2s - 1 + 2(sW - 2) + 2W = e^{-\pi s}
$$

$$
W(s^{2} + 2s + 2) = e^{-\pi s} + 2s + 5
$$

And so we obtain that

$$
W = e^{-\pi s} \frac{1}{s^2 + 2s + 2} + \frac{2s + 5}{s^2 + 2s + 2}
$$

The denominator is not factorable over the real numbers $(2^2-4*2 <$ 0), so our goal is to complete the square in the denominator and match the form of the transforms of $e^{at} \sin(bt)$ and $e^{at} \cos(bt)$.

$$
W = e^{-\pi s} \frac{1}{(s+1)^2 + 1} + 2\frac{(s+1)}{(s+2)^2 + 1} + 3\frac{1}{(s+1)^2 + 1}
$$

Taking \mathcal{L}^{-1} we have

$$
w = u(t - \pi)e^{-(t - \pi)}\sin(t - \pi) + 2e^{-t}\cos(t) + 3e^{-t}\sin(t)
$$

Shifting back by $y(t) = w(t - \pi)$ we get

$$
y = u(t - 2\pi)e^{-(t - 2\pi)}\sin(t - 2\pi) + 2e^{-(t - \pi)}\cos(t - \pi) + 3e^{-(t - \pi)}\sin(t - \pi)
$$
Or,

$$
y = u(t - 2\pi)e^{-(t - 2\pi)}\sin(t) - 2e^{-(t - \pi)}\cos(t) - 3e^{-(t - \pi)}\sin(t)
$$

(2) [25] Answer the following questions about the ODE

$$
y' + 4xy = 0
$$

• [15] Find a recurrence relation that determines the coefficients a_n of a power series for the solution y.

Set $y = \sum_{n=0}^{\infty} a_n x^n$ so $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$. Then the ODE becomes

$$
\sum_{n=1}^{\infty} n a_n x^{n-1} + 4x \sum_{n=0}^{\infty} a_n x^n = 0
$$

$$
\sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{n=0}^{\infty} 4a_n x^{n+1} = 0
$$

Normalizing the exponent of x we get

$$
\sum_{k=0}^{\infty} (k+1)a_{k+1}x^{k} + \sum_{k=1}^{\infty} 4a_{k-1}x^{k} = 0
$$

$$
a_{1} + \sum_{k=1}^{\infty} [(k+1)a_{k+1} + 4a(k-1)]x^{k} = 0
$$

Equating coefficients of powers of x on both sides yields the recurrence relation

$$
a_1 = 0
$$

$$
a_{k+1} = \frac{-4a_{k-1}}{k+1}, k \ge 1
$$

• [5] What is the radius of convergence for that power series?

Since $4x$ is analytic everywhere, $R = \infty$.

• [5] Use the recurrence relation to find an explicit formula (closed form) for a_n .

Note that since $a_1 = 0$ for every odd $n a_n = 0$. For even n we keep multiplying by (-4) and dividing by the "next" even number. For example

$$
a_0 = a_0
$$

\n
$$
a_2 = a_0 \frac{-4}{2}
$$

\n
$$
a_4 = a_2 \frac{-4}{4} = a_0 \frac{(-4)^2}{2 * 4}
$$

\n
$$
a_6 = a_4 \frac{-6}{6} = a_0 \frac{(-4)^3}{2 * 4 * 6}
$$

We conclude $a_{2n} = a_0 \frac{(-4)^n}{2 \times 4 \times \dots \times (2n)} = \frac{(-2)^n}{n!}$ $\frac{(2)^n}{n!}$.

• $[+5]$ Find an explicit (non-series) formula for y.

Either compare to the series for e^x or use Exam I material to see $y = e^{-2x^2}$.

(3) [25] Find a recurrence relation for the coefficients of a power series for a general solution to

$$
(x^2 + 1)y'' + y = 0
$$

centered around $x = 1$. Use the recurrence relation ([15]) to find the first four nonzero terms ([5]) of the series. What is the minimum radius of convergence ([5]) of the series?

Shift by taking $w(x) = y(x + 1)$. Then the shifted ODE becomes

$$
((x + 1)2 + 1)w'' + w = 0
$$

$$
(x2 + 2x + 2)w'' + w = 0
$$

Set $w = \sum_{n=0}^{\infty} a_n x^n$, $w'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$. Then after multiplying the powers of x through the ODE becomes

$$
\sum_{n=2}^{\infty} n(n-1)a_n x^n + \sum_{n=2}^{\infty} 2n(n-1)a_n x^{n-1} + \sum_{n=2}^{\infty} 2n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n = 0
$$

Normalizing the powers of x we get

$$
\sum_{k=2}^{\infty} k(k-1)a_k x^k + \sum_{k=1}^{\infty} 2k(k+1)a_{k+1} x^k + \sum_{k=0}^{\infty} 2(k+2)(k+1)a_{k+2} x^k + \sum_{k=0}^{\infty} a_k x^k = 0
$$

We remove the $k = 0, 1$ terms and combine sums to obtain

$$
4a_2 + a_0 + (4a_2 + 12a_3 + a_1)x +
$$

+
$$
\sum_{k=2}^{\infty} \left[(k^2 - k + 1)a_k + 2k(k+1)a_{k+1} + 2(k+2)(k+1)a_{k+2} \right] x^k = 0
$$

This yields the recurrence relation

$$
a_2 = \frac{-1}{4}a_0
$$

\n
$$
a_3 = -\frac{1}{3}a_2 - \frac{a_1}{12} = \frac{1}{12}a_0 - \frac{a_1}{12}
$$

\n
$$
a_{k+2} = \frac{-(k^2 - k + 1)a_k - 2k(k+1)a_{k+1}}{2(k+2)(k+1)}, k \ge 2
$$

Thankfully we only need a_0 to a_3 to get the first four terms. Looking above we have

$$
w = a_0 + a_1 x - \frac{1}{4} a_0 x^2 + \frac{1}{12} (a_0 - a_1) x^3
$$

And since $y(x) = w(x - 1)$

$$
y = a_0 + a_1(x - 1) - \frac{1}{4}a_0(x - 1)^2 + \frac{1}{12}(a_0 - a_1)(x - 1)^3
$$

The singular points occur then $(1 + x^2) = 0$. So $x = \pm i$. The The singular points occur then $(1 + x^2) = 0$. So $x = \pm i$. The distinace from 1 to $\pm i$ is $\sqrt{2}$ so the minimum radius of convergence is $R=\sqrt{2}$.

(4) [25] Find the first four nonzero terms of a power series solution centered at $x = 0$ to the IVP

$$
y'' - \sin(x)y = \cos(x) ; y(0) = 1, y'(0) = 1.
$$

Recall that

$$
\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}
$$

 $a_0 = y(0) = 1$ and $a_1 = y'(0) = 1$. We can use the "bootstrapping" method to find a_3, a_4 . We have

$$
y'' = \cos(x) + \sin(x)y
$$

Differentiating yields

$$
y''' = -\sin(x) + \sin(x)y' + \cos(x)y
$$

Plugging in 0 into these gives $y''(0) = 1$ and $y'''(0) = y(0) = 1$. Since $a_n = \frac{y(n)}{n!}$ $\frac{n!}{n!}$ our approximation is

$$
y = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots
$$

- (5) [+5] Use the root test to show that the power series $\sum_{n=1}^{\infty} n a_n x^{n-1}$ has the same radius of convergence as the power series for $\sum_{n=0}^{\infty} a_n x^n$. In other words, the series for y' has the same radius of convergence as the series for y.
- (6) $[+5]$ Give an example of a function f for which the *nth* derivative $f^{(n)}$ is continuous for all n but f is not analytic at 0. For full credit, provide justification.

