
MAP 2302, Exam IV, Spring 2015
Name:

Student signature:

Turn in all relevant work with final answers circled on separate
sheets. Full work is required for full credit.

(1) [25] Solve the following symbolic IVP

y′′ + 2y′ + 2y = δ(t− 2π) ; y(π) = 2, y′(π) = 1

(2) [25] Answer the following questions about the ODE

y′ + 4xy = 0

• [15] Find a recurrence relation that determines the coefficients
an of a power series for the solution y.

• [5] What is the radius of convergence for that power series?

• [5] Use the recurrence relation to find an explicit formula (closed
form) for an.

(3) [25] Find a recurrence relation for the coefficients of a power series
for a general solution to

(x2 + 1)y′′ + y = 0

centered around x = 1. Use the recurrence relation ([15]) to find the
first four nonzero terms ([5]) of the series. What is the minimum
radius of convergence ([5]) of the series?

(4) [25] Find the first four nonzero terms of a power series solution cen-
tered at x = 0 to the IVP

y′′ − sin(x)y = cos(x) ; y(0) = 1, y′(0) = 1.

Recall that
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x2n

(5) [+5] Use the root test to show that the power series Σ∞n=1nanx
n−1

has the same radius of convergence as the power series for Σ∞n=0anx
n.

In other words, the series for y′ has the same radius of convergence
as the series for y.

(6) [+5] Give an example of a function f for which the nth derivative

f (n) is continuous for all n but f is not analytic at 0. For full credit,
provide justification.
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