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S U M M A R Y
We investigated a new technique for aquifer characterization that uses cross-correlation of
ambient seismic noise to determine seismic velocity structure of the Floridan aquifer system
(FAS). Accurate characterization of aquifer systems is vital to hydrogeological research and
groundwater management but is difficult due to limited subsurface data and heterogeneity.
Previous research on the carbonate FAS found that confining units and high permeability flow
zones have distinct seismic velocities. We deployed an array of 9 short period seismometers
from 11/2013 to 3/2014 in Indian Lake State Forest near Ocala, Florida, to image the hy-
drostratigraphy of the aquifer system using ambient seismic noise. We find that interstation
distance strongly influences the upper and lower frequency limits of the data set. Seismic
waves propagating within 1.5 and 7 wavelengths between stations were optimal for reliable
group velocity measurements and both an upper and lower wavelength threshold was used.
A minimum of 100–250 hr of signal was needed to maximize signal-to-noise ratio and to
allow cross-correlation convergence. We averaged measurements of group velocity between
station pairs at each frequency band to create a network average dispersion curve. A family of
1-D shear-wave velocity profiles that best represents the network average dispersion was then
generated using a Markov Chain Monte Carlo (MCMC) algorithm. The MCMC algorithm was
implemented with either a fixed number of layers, or as transdimensional in which the number
of layers was a free parameter. Results from both algorithms require a prominent velocity
increase at ∼200 m depth. A shallower velocity increase at ∼60 m depth was also observed,
but only in model ensembles created by collecting models with the lowest overall misfit to the
observed data. A final round of modelling with additional prior constraints based on initial
results and well logs produced a mean shear-wave velocity profile taken as the preferred so-
lution for the study site. The velocity increases at ∼200 and ∼60 m depth are consistent with
the top surfaces of two semi-confining units of the study area and the depths of high-resistivity
dolomite units seen in geophysical logs and cores from the study site. Our results suggest
that correlation of ambient seismic noise holds promise for hydrogeological investigations.
However, complexities in the cross-correlations at high frequencies and short traveltimes at
low frequencies added uncertainty to the data set.
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1 I N T RO D U C T I O N

Cross-correlation of ambient noise has been widely used to de-
termine crustal seismic velocity structure (Campillo & Paul 2003;
Shapiro & Campillo 2004; Yao et al. 2006; Moschetti et al. 2007;
Yang et al. 2007; Lin et al. 2008; Gallego et al. 2010; Bremner
et al., in preparation). Ambient noise sources produce seismic sur-
face waves that propagate within the earth’s crust. Heterogeneities
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within the earth scatter these waves. In theory, the wide distribution
of noise sources combined with this scattering effect produce a ran-
dom, diffusive wavefield that operates continuously through time
(Sabra et al. 2005). Records of waves that travel between two seis-
mic stations can be cross-correlated to extract the impulse response
(or empirical Green’s function, EGF) of the subsurface between
those stations: in effect, the first station becomes a virtual source
for the seismic wave recorded at the second (Shapiro & Campillo
2004; Shapiro et al. 2005). The cross-correlation function of ver-
tical component records is interpreted as primarily the result of
fundamental mode Rayleigh wave energy, although other energy,
such as body waves and higher modes, may also be present. In a
heterogeneous media, Rayleigh wave energy is dispersive, mean-
ing that velocity differences between waves of differing frequencies
provide constraints on velocity variations with depth (Campillo &
Paul 2003).

The retrieval of EGFs from ambient noise is an efficient technique
that can sample 3-D Earth structure in the absence of earthquake
activity or an active source. This method has been successfully
applied to surface waves within the microseismic frequency band
(0.05–0.2 Hz) of strong signals produced by ocean waves (Bensen
et al. 2007; Lin et al. 2013; Ojo et al. 2017). Correlation of high
frequency (>1 Hz) ambient noise has been used to study earth
structure in the upper kilometre (Lin et al. 2013; Mordret et al.
2013; Pan et al. 2016), the shallow subsurface for geotechnical
purposes down to tens of metres (Halliday et al. 2008; Picozzi et al.
2009; Shirzad et al. 2015), and in monitoring applications (Sens-
Schönfelder & Wegler 2006; Brenguier et al. 2011; Mainsant et al.
2012; Gassenmeier et al. 2015; Chaves & Schwartz 2016). High
frequency seismic noise is produced by anthropogenic activities
such as vehicle traffic as well as natural sources such as wind and
ocean waves (Halliday et al. 2008; Picozzi et al. 2009; Zhang et al.
2009).

We examined whether high frequency ambient noise can be used
to image hydrostratigraphy of the upper several hundred metres of a
carbonate aquifer system. Low permeability confining units within
the Floridan aquifer system (FAS) were chosen as the primary target
of this pilot study. In general, the dense and rigid framework of low
permeability confining unit material exhibits faster seismic veloci-
ties relative to zones of high permeability. This relationship has been
recorded in prior studies using sonic logs in south Florida (Maliva &
Walker 1998; MWH Americas Inc. 2004). Due to scarcity of deep
boreholes and the heterogeneity of karst aquifers, the continuity of
confining units is uncertain. Correlation of ambient seismic noise
could provide a useful new technique for addressing this problem,
particularly in areas where costly, closely spaced borings or active
source methods are impractical or undesirable. In this study, we
demonstrate and evaluate the utility of ambient noise for hydro-
geological investigations, particularly in areas with limited prior
information.

We used a Bayesian inference approach to invert group veloc-
ity measurements from cross-correlations of ambient seismic noise
to determine 1-D vertical seismic velocity profiles. The level of
uncertainty and limited prior information in this study made this
inversion scheme advantageous since Bayesian inference quantifies
the posterior probability distribution based on the observed data
with few prior constraints. Resulting profiles were compared to the
known hydrogeological framework, as well as to electrical resistiv-
ity logs from the study site. We also investigated the dependence
of modelling results on whether the number of structural layers in
the 1-D velocity profiles was a fixed or a free parameter, as well
as the ensemble collection method. In addition, we address ques-

tions pertaining to the deployment logistics to inform future array
configurations and deployment duration.

2 B A C KG RO U N D : T H E FA S

The FAS consists of a thick sequence of Cenozoic carbonate units
overlain by siliciclastic deposits. The degree of dolomitization and
occurrence of evaporite layers within the FAS generally increases
with depth (Miller 1986). The base of the FAS is defined as the
first occurrence of a massively bedded anhydrite layer within the
Cedar Keys Formation (Miller 1986; Tibbals 1990; Williams &
Kuniansky 2015). The FAS can be subdivided into an Upper Flori-
dan aquifer system (UFAS) and Lower Floridan aquifer system
(LFAS), separated by one or more lower permeability confin-
ing or semi-confining units (Miller 1986; Copeland et al. 2009;
Williams & Kuniansky 2015). The UFAS is a confined aquifer ex-
cept where the overlying low permeability siliciclastic layers within
the Hawthorn Group have been removed by erosion.

Differences in depositional conditions and diagenetic alteration
processes, such as degrees of cementation, dissolution, dolomi-
tization and recrystallization result in complex heterogeneity of
the FAS. The diagenetic processes also form unique rock fabrics
which alter the elastic properties of the rock. The associated ve-
locity patterns do not simply reflect compositional variations but
are instead largely controlled by the amount and type of poros-
ity present. Zones of microcrystalline dolomite and fine grained
limestone have been shown to yield faster seismic velocities com-
pared to more porous sucrosic dolomite and coarse grained lime-
stone (Anselmetti & Eberli 1993). Rayleigh wave velocity is pri-
marily a function of shear-wave velocity (Shapiro et al. 2005).
Laboratory and borehole measurements show compressional-wave
velocities range from 1 to 6.77 km s−1 and shear-wave velocities
range between 0.75 and 3.4 km s−1 (Anselmetti & Eberli 1993;
MWH 2004; Kazatchenko et al. 2006; Parra et al. 2006, 2009).
The wide range of seismic velocities reflects the extreme variabil-
ity in physical properties of diagenetically altered carbonate rock,
and represents hydrogeologically relevant variation in porosity and
permeability.

2.1 Study area

Our study was conducted within Indian Lake State Forest, near
Ocala, Florida (Fig. 1). The state forest is located within the Ock-
lawaha River surface water drainage basin and the Silver Springs
springshed of the UFAS (Tibbals 1990). Through collaboration with
the St. Johns River Water Management District, the site was se-
lected based largely on accessibility, availability of well data, and
its importance as a recharge zone for the Silver Springs group. In
central Marion County, Florida, the UFAS is the primary source of
municipal water; however, recent increases in water demand have
motivated research into exploring the LFAS as an additional wa-
ter resource. Therefore, understanding the extent, thickness and
number of confining units at the study site can help determine the
hydraulic connection between the upper and lower aquifer and con-
sequently the viability of the LFAS as an alternative water source.

The base of the FAS is approximately 610 m below ground
surface (mbgs) in central Florida and the FAS consists of the
Ocala limestone, Avon Park Formation, Oldsmar Formation and the
Cedar Keys Formation (Fig. 2; Miller 1986; Tibbals 1990; Williams
& Kuniansky 2015). Within central and western Marion County,
Florida, the Ocala limestone occurs at or near land surface. Scattered
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Figure 1. The study region is within Indian Lake State Forest which lies
approximately 8 km northeast of Ocala, Florida and ∼2 km north of Silver
Springs. The locations of the nine seismic stations within the study site
(red circles) along with the two deep boreholes with geophysical logging
information (M-0650 and M-0738 – crossed grey circles) are shown.

remnants of the Hawthorn group and thin (<10 m) units of uncon-
solidated sands, silts and clays cover the Ocala limestone in places.
Lithologic information, caliper logs, natural gamma ray logs and
electrical resistivity logs are available from two deep (>300 m) bor-
ings, M-0650 and M-0738, within the study site (Fig. 3). Electrical
resistivity logs in particular can be useful when compared to seis-
mic velocity profiles as both are dependent on formation porosity.
Based on information from M-0650, the top of the Ocala limestone
is at 6 mbgs. Two lower permeability units (labelled either middle
confining units or semi-confining units) have been recognized from
∼60 to 125 mbgs and ∼200 to 270 mbgs (Miller 1986; Williams &
Kuniansky 2015).

3 M E T H O D S

3.1 Field acquisition

Nine short-period Sercel L-22 seismometers (on loan from the In-
corporated Research Institutions for Seismology (IRIS) Portable
Array Seismic Studies of the Continental Lithosphere (PASSCAL)
Instrument Center in Socorro, New Mexico) were deployed in In-
dian Lake State Forest for 17 weeks. Five seismic stations were in-
stalled on 2013 November 5 and the remaining four were installed
on 2013 November 7. Station maintenance and data downloading
occurred on 2013 December 23 and 2014 January 21. On 2014
March 9 all nine stations were removed from the study site.

The sensors have a corner frequency of 2 Hz (Fig. S1). Ground
motion was recorded on three channels at a sampling rate of 100
samples per second. The seismic array was configured such that the
majority of the stations were organized in an east–west line but also
ensured that some stations were located near the two boreholes on
the site. In particular, stations 1–5 were arranged at close interstation
spacing near the M-0650 borehole (Fig. 1). The stations were spaced
at varying distances between 0.18 and 2.6 km. This array design
was expected to limit data quality for inversion, but was needed
to test the relationship between interstation distances and coherent
frequencies.

3.2 Data processing

Hour-long records for the vertical component, 100 samples per sec-
ond data stream, were pre-processed by removing the mean, trend,
and instrument response. The instrument response was removed us-
ing poles and zeros for the sensor type provided by IRIS-PASSCAL.
We used the method described in Bensen et al. (2007) to calculate
the cross-correlations. To remove the possibility of bias toward large
amplitude events, such as earthquakes and other high energy events
from passing vehicles, temporal normalization was done by con-
verting each record into one-bit signals. The frequency spectrum
was then flattened through spectral whitening. Cross-correlations
for each station pair were conducted for each hour-long record and
the results were stacked.

Theoretical studies of ambient seismic noise have shown that the
empirical Green’s function of the subsurface between stations A
and B (GAB), and the reverse (GBA), can be estimated from the time
derivative of the cross-correlation of the diffuse noise records of
those stations (CAB and CBA) (Lobkis & Weaver 2001; Lin et al.
2008). Taking the time-derivative is more relevant for phase velocity
studies since it causes a π /2 phase shift but does not impact the cross-
correlation waveform and associated group velocity (Roux et al.
2005; Sabra et al. 2005). There is also a risk of introducing high
frequency noise when using the derivative (Sabra et al. 2005), but we
found no significant impact so kept the time-derivative calculation
in our procedure for completeness. The stacked cross-correlated
signals for each station pair were generally asymmetric. We made
them symmetric by averaging the positive (causal) and negative
(acausal) time lag directions (Lin et al. 2008; Gallego et al. 2010;
Bremner et al., in preparation):

GAB (t) = GBA (t) = − d

dt

[
CAB (t) + CBA (t)

2

]
0 ≤ t < ∞. (1)

These symmetric EGFs were multiplied by a step function (Heav-
iside) to reduce the acausal branch to zero amplitude, which would
otherwise influence the causal signals by smearing from filtering.
The resulting one-sided correlation records were bandpass filtered
using a Butterworth filter (2 poles, 2 passes) at a total of 13 fre-
quency bands between 1 and 9 Hz. The width of each frequency
band was selected as a compromise due to the trade-off between
resolution in time and resolution in frequency. Each corner fre-
quency is plus or minus 10 per cent of the centre frequency for
that band, forcing the band widths to be scaled by frequency. Each
band overlaps with adjacent bands to ensure full depth coverage.
Group velocity measurements for each station pair were made by
measuring the traveltime at the peak of the envelope of the coherent
signal at each frequency band.

3.3 Markov Chain Monte Carlo (MCMC) modelling

Group velocity measurements at each frequency band were sub-
jected to quality control checks. The signal-to-noise ratio (SNR) of
each cross-correlation was calculated based on the rms amplitude of
the signal window compared to the rms amplitude of a noise window.
Measurements with SNR values below 6 were omitted. Estimated
wavelengths for each frequency were calculated and compared to the
interstation distances of each station pair. We omitted group velocity
measurements for frequency bands whenever interstation distances
were less than 1.5 wavelengths or greater than 7 wavelengths of
the particular frequency. The lower cut-off is a quality control step
commonly used in ambient noise studies to satisfy the far-field ap-
proximation (Bensen et al. 2008; Lin et al. 2008; Tsai 2009). The
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Figure 2. Generalized hydrogeological cross-section through the study area (black star). Adapted from Plate 20 of Williams & Kuniansky (2015).

upper cut-off of seven wavelengths was added with the assump-
tion that strong attenuation of higher frequency waves travelling
longer distances can degrade the signal (Shapiro & Campillo 2004;
Campillo 2006; Lawrence et al. 2013; discussed further in Results).
Shear-wave velocity bounds of 0.1–3 km s−1 were enforced such
that any measurements outside that range were considered unreli-
able and omitted. The realistic bounds on shear-wave velocity were
shifted toward slightly slower velocities compared to data available
from studies in south Florida in order to reflect the different setting
of the study site (i.e. higher degree of dissolution, shallower depths).
Due to these checks on quality, many measurements were eliminated
and the dispersion curves for individual station pairs were incom-
plete. Therefore, we averaged all remaining measurements at each
frequency band to create a network average dispersion curve.

We applied a MCMC scheme to the network average group ve-
locity measurements in order to generate a family of 1-D shear
velocity models that best fits the data. Two forms of the MCMC
algorithm were applied. The first used a fixed number of layers (ƙ)

and the second was transdimensional, meaning that ƙ was a free pa-
rameter (Bodin & Sambridge 2009; Bodin et al. 2012a,b). The
transdimensional form of the algorithm was developed to test
the degree of uncertainty in our results and to eliminate the de-
pendence of model structure on a fixed number of layers imposed
ad hoc. In both cases the total model depth was fixed, and a lower
half-space of constant velocity was included as another free param-
eter. The interface depth between layers and the shear-wave velocity
of each layer were free parameters in both versions of the algorithm
(Fig. 4). The initial model parameters for each chain were drawn
from the prior distribution of each parameter (Table S1). The al-
gorithm then proceeded iteratively. Only one model parameter was
perturbed in each iteration to generate a new model and to explore
the distribution of models that adequately fit the observed data.
We used the program surf96 from Computer Programs in Seismol-
ogy (Herrmann & Ammon 2002) to solve the forward problem
to generate dispersion curves based on the newly created model.
The predicted group velocity dispersion, dpre, from surf96 was then
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Figure 3. Geological cross-section between the M-0650 and M-0738 bore-
holes within Indian Lake State Forest. Caliper (yellow) and electrical resis-
tivity (dark blue) logs for each borehole are shown. Continuous zones of
high resistivity are shaded grey and connected between the two boreholes.
The top of the shallowest high resistivity zone has previously been defined
as the top of a semi-confining unit (MCU-1 of Miller 1986) (St. Johns River
Water Management District, Hydrogeologic Information System).

compared to the measured dispersion curve, dobs. The misfit for
each data point was calculated and weighted by one over the vari-
ance for that frequency band, σ 2

d. The overall error of the model,
φ(m), was calculated as the sum of the squares for each weighted
misfit. The acceptance criterion, α(m′|m) is defined as:

α(m′|m) = min

[
1, exp

{−φ (m′) − φ (m)

2

}]
(2)

φ(m) =
N∑
i

(
dpre

i − dobs
i

σ d
i

)2

, (3)

where m is the previous model, m′ is the proposed model, m′|m
indicates m′ conditional on m, and min[a, b] is a function that
returns the minimum of values a and b. The acceptance term was
then compared to a random number, w, drawn from a uniform
distribution between 0 and 1. If the acceptance term is less than w,
then the model was rejected and the iteration repeated. Otherwise,
the process advances to the next iteration. This step allows the
chance for a model with a lower acceptance term, that is a poorer
fit, to be retained which prohibits the search of the model space from
becoming trapped within local minima. The posterior distribution
of models approaches the conditional probability density function
(PDF) given the observed data.

The fixed-ƙ MCMC algorithm was run for 10 chains of 1000
iterations each. The models’ total depth constraint and number of
layers were fixed while the interface depths and shear wave velocity

Figure 4. 1-D vertical shear-wave model parameterization with ƙ layers.
Each layer has a uniform shear-wave velocity (Vs). The interface depths be-
tween layers (z) are restricted between the user defined minimum and maxi-
mum depths, zmin and zmax, respectively. In the transdimensional approach,
ƙ is restricted between user defined ƙmin and ƙmax. The non-transdimensional
approach uses a constant ƙ. Adapted from Malinverno (2002).

of each layer and the half-space were perturbed by a random amount
drawn from a Gaussian distribution centred on the current value.
We tested standard deviation values from 0.001–0.2 and monitored
the model acceptance rate to select values that optimize the trade-
off between exploration of the model space and computing time
(Table S1). The variance values selected resulted in an average
model acceptance rate of 55 per cent. An ensemble of retained
models was created by taking the 500 models with the lowest error
in each chain. The ensemble was then culled a final time to retain
the best 1000 models from all chains. A variety of initial parameter
combinations were imposed, spanning the total depth range of 200–
600 m and two to five layers, to test the sensitivity of the modelling
results to ƙ and the total depth constraint.

The transdimensional version of the algorithm was implemented
based on the method of Bodin et al. (2012a,b), with a slight mod-
ification in the calculation of the data covariance matrix, Ce, to
include the standard deviations of the network average dispersion
curve. In the Hierarchical Bayesian formulation, the hyperparam-
eter, h, serves to scale the complexity of the model solutions to
the uncertainty of the data. This eliminates the need to optimize
the solution complexity manually by fixing the number of layers
or adjusting the level of smoothing. Instead, the level of noise in
the data determines the level of complexity required to fit the data
(Bodin et al. 2012b). In other words, when data uncertainty is high
a simple model is favoured. To implement the level of data noise as
an unknown in the inversion, we defined the variance values in the
diagonal of Ce as follows:

σ 2
T =

√
σ 2

d + h2, (4)
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Figure 5. (a) Comparison of the cross-correlation for stations 6 and 9 for all hours of the data set and only night-time hours. (b) Record section for 3 Hz centre
frequency. Cross-correlations are mostly asymmetric. (c) Cross-correlations were made symmetric by averaging the positive and negative time lags. Signals at
positive time were isolated by multiplying cross-correlations by a step function to avoid smearing from negative time lags due to filtering.

where σ 2
T is the total estimate of data uncertainty, and σ 2

d is the vector
of squared standard deviation values of the individual measurements
at each frequency band. In the transdimensional case, model error
is weighted by σ T instead of σ d, as in the non-transdimensional
case.

For the transdimensional scheme as adopted from Bodin et al.
(2012a,b), each iteration begins by drawing a random integer be-
tween 1 and 5 to select the type of perturbation to be done. Thus,
each change option has the same probability, p = 1/5: (1) Change
a velocity value. Randomly select a layer, reassign its velocity ac-
cording to a Gaussian probability distribution q(v′

i|vi) centred at the
current value vi and with user defined variance θ2

1. (2) Change an
interface depth. Randomly select an interface, perturb its depth ac-
cording to a Gaussian probability distribution q(z′

i|zi) centred at the
current depth zi and with user defined variance θ2

2. (3) Birth. Add a
new layer by creating a new interface at a depth randomly selected
from the prior distribution of interface depths. The velocity of the
new layer was then assigned from a Gaussian proposal probability
centred on the velocity of the layer in which the interface was added,
with user defined variance θ2

3. (4) Death. Delete an interface at ran-
dom, in effect removing the layer above the chosen interface. (5)
Change the hyperparameter. Perturb the current hyper-parameter
value according to a Gaussian probability distribution q(h′|h) cen-
tred at the current value h and with user defined variance θ2

h .
In the transdimensional MCMC algorithm, the acceptance cri-

terion for a model is not strictly dependent on the model error, as
in eq. (2), but is calculated differently depending on the type of
change proposed (Bodin et al. 2012a, appendix C). Therefore, the
method of selecting models for the ensemble based on their error
was no longer suitable. Instead, models from initial iterations were
designated as part of the ‘burn-in’ period, after which the posterior
probability distribution is assumed to be suitably represented and
every Mth model is added to the ensemble. The increment M was
chosen as a balance between maximizing sampling of the posterior
distribution while excluding dependent samples. The number of
iterations was increased to sample the posterior distribution more
thoroughly. To optimize the trade-off between thoroughness of sam-
pling and computing time, the number of iterations was tested by
running the algorithm for 1000, 5000, 10 000, 20 000 and 50 000

iterations for each chain. The ensemble PDF was found to converge
after 10 000 iterations, beyond which additional iterations filled in
the PDF, smoothing the function but the form of the underlying
structure was unchanged. In the interest of computing time, 10 000
iterations, was chosen. The first 5000 models were discarded as
burn-in period, after which every 5th model was added to the en-
semble. Verification tests were run to assess the accuracy of the
algorithm (the Appendix).

4 R E S U LT S

4.1 Data quality and deployment logistics

Initial cross-correlations were obscured by a non-localized ∼3 Hz
signal from an unknown source. Correlation of only night-time
hours, between 10 pm and 6 am (local time), effectively minimized
this dominant signal from a daytime source (Fig. 5a). The remainder
of processing used only the 10 pm to 6 am data. The asymmetric
cross-correlations were causal when the master station was to the
west and/or south (Fig. 1); therefore, the noise wave-field prop-
agated mostly from the southwest to the northeast. This finding
is consistent with the location of the study site in relation to the
city of Ocala, FL; given the likelihood that anthropogenic activity
was the main source of noise in the frequency range of interest to
this study. Averaging the causal and acausal branches of the cross-
correlations and isolating the causal side improved signal clarity
and identification, particularly when plotted in a record section
(Figs 5b and c).

Frequencies were recorded in the range of 0.1–40 Hz. Cross-
correlations filtered at frequencies lower than ∼1 Hz were centred
at zero and resulted in spurious velocities—either negative or much
greater than 3 km s−1. At higher frequencies (>5 Hz), correlations
included multiple signals, either due to shallow complex scattering
or increased noise due to higher attenuation at high frequencies.
The frequency bands nearest 2 Hz, the corner frequency of the
sensors, resulted in clearly observed single arrivals that produced
velocity estimates within the expected bounds. The lower and up-
per frequency limits of usable data were selected at 1 and 9 Hz,
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respectively, based on the complications encountered with multiple
signal arrivals at high frequencies and zero-centred arrivals at low
frequencies.

The SNR of the cross-correlations was inversely related to station
distances and frequency (Fig. S2). Station pairs separated by less
than 0.5 km resulted in the highest SNR values. The inverse trend for
frequency versus SNR was weaker than the distance relationship.
Overall, the shortest interstation distances and lowest frequencies
exhibited the highest SNR values. During the quality control steps
in the processing, 91 per cent of measurements for short interstation
distances and low frequencies (<2 Hz) were discarded either be-
cause they yielded unrealistically high velocities or the interstation
distance was less than a minimum of 1.5 wavelengths of propaga-
tion. To test the necessity of this wavelength cut-off, wavelengths
were calculated for each frequency band, using the measured net-
work average velocities, and were compared to SNR (Fig. 6a). The
resulting plot shows SNR values were greatest for station pairs and
frequencies correlating less than 2 wavelengths and decreased with
increasing wavelengths. To better understand the factors controlling
measurement quality, measurements were grouped into those that
were either retained or discarded on the basis of unrealistic shear-
wave velocities (Fig. 6a). The majority of discarded measurements
were for frequencies less than ∼2 Hz with separation of less than
∼1.5 wavelengths. The occurrence of discarded measurements at
higher wavelengths suggested that an upper wavelength limit was
needed as well. New network average dispersion curves were cre-
ated that discarded measurements for frequencies travelling greater
than 7, 10 and 15 wavelengths. The 10 and 15 wavelength cut-offs
resulted in practically no change in the dispersion curve, whereas
the 7 wavelength cut-off resulted in slightly lower velocities for the
two highest frequency bands and slightly greater standard deviations
(Fig. S3). Enforcing an upper wavelength cut-off of 7 slightly in-
creased the definition of shallow velocity structure (<100 m) during
modelling.

To determine the minimum number of hours needed to retrieve
a reliable velocity measurement, cross-correlations were stacked
in 8 hr increments for the first ∼2 months of the data set. SNR
was found to increase steadily for the first 50 hr (Fig. 6b). After
∼100 hr SNR values stabilized and stacking additional hours had
little effect on the SNR of the cross-correlation. This trend was
consistent for all frequency bands and station pairs. The minimum
number of hours needed to reach a stable waveform and velocity
estimate was found through visual assessment of cross-correlated
signals with increasing number of hours for all station pairs and
frequencies. No apparent trend with interstation distance was ob-
served. A relationship with frequency can be seen for a major-
ity of station pairs. On average, lower frequencies required more
hours for the cross-correlation to converge than higher frequencies
(Fig. 6c).

Over 900 hr were stacked to create the final cross-correlations
for each station pair. Measurements from all station pairs were
averaged at each frequency band to create a network average dis-
persion curve for use in the 1-D shear-wave velocity modelling.
The group velocity depth sensitivity kernels provided an idea of the
general range of sensitivity for these frequencies (Fig. S4). Gen-
erally, the highest sensitivity was between 20 and ∼300 m depth,
although the lowest frequency bands (≤2 Hz) retain some sensi-
tivity down to 600 m. There was some degree of variability be-
tween all station pairs. This variability may be the result of differ-
ences in correlation quality due to noise and scattering, or represent
true heterogeneity within the study site, or some combination of
both.

Figure 6. (a) The signal-to-noise ratio (SNR) of all the measured correla-
tions are plotted on a semi-log scale in comparison to number of wavelengths
travelled. The majority of measured velocities that were outside the accepted
velocity range of 0.1–3 km (black squares) occur for wavelengths fewer than
the lower cut-off criterion of 1.5. (b) SNR is shown in relation to the num-
ber of hours stacked. The average of all station pairs are shown for each
frequency band. (c) The average number of hours needed for the cross-
correlation to stabilize was averaged for all station pairs at each frequency
band. An inverse relationship with frequency is observed.

4.2 1-D shear-wave velocity models, non-transdimensional

The non-transdimensional MCMC algorithm resulted in a family
of 1000 models with the lowest error compared to the observed
dispersion curve. Modelling results and consistency were strongly
dependent on the number of model layers and total depth. When
models were restricted to three layers and 200 m maximum depth,
a high velocity zone develops that spans from ∼60 to 150 m depth
(Fig. 7b). A histogram of the depth to layer interfaces for the three
layer models indicates that layer boundaries in the best fit models
are most common at ∼70 and 120 m depth. When models were
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Figure 7. Results from the non-transdimensional algorithm, 3-layer models. (a) A histogram of interface depths, (b) model shear-wave velocity (VS) profiles
plotted in order of decreasing error and (c) their associated dispersion curves are shown for models constrained to a total depth of 200 m. The standard
deviations for each group velocity measurement are shown as the error bars in the dispersion curve. (d)–(f) Same as (a)–(c) but for models restricted to a total
depth of 600 m.

restricted to three layers, and 400 and 600 m depth, the top 200 m
is most commonly modeled as a single layer and velocity, and a
histogram of layer interface depths shows a dominant peak at 200 m
depth (Fig. 7d). The associated dispersion curves for the deeper
models fit the short period measurements poorly compared to the
200 m thickness models (Fig. 7f). Four-layered and five-layered
models returned very similar results. Probability density functions
for five-layered models at 200, 400 and 600 m depths showed the
dependence of velocity structure on total depth (Fig. 8). A velocity
increase is observed at ∼60 m depth in 200 and 400 m models but
is missing in 600 m models. The shallow 200 m models suggested
a discrete high velocity zone between 60 and 125 m depth, whereas
400 m models showed a step increase. Both 400 and 600 m models
contained a gradational velocity increase beginning around 200 m
depth and extending to about 300 m depth.

4.3 1-D shear-wave velocity models, transdimensional

The transdimensional PDFs were generally in good agreement with
those from the non-transdimensional algorithm. The 400 and 600 m
total depth ensembles both showed a similar gradational increase
from ∼200 to ∼300 m depth. Velocity values with depth in the
transdimensional PDFs were very similar to layer velocities in
the non-transdimensional models, with velocities of ∼1.3 km s−1

above 200 m and ∼2 km s−1 below 200 m depth (Fig. 9). The 600 m
total depth ensemble had roughly constant velocities below 400 m;

therefore only the 400 m results are presented. Some discrepancies
between the fixed-k and transdimensional results were, however,
observed. When models were restricted to 200 m depth, the most
probable structure was approximately constant velocity. The veloc-
ity increase at ∼60 m depth—resolved in the non-transdimensional
models—was not apparent in the transdimensional results.

The different ensemble collection methods of the two MCMC
algorithms may be the cause of the differing results. Models with
constant velocities in the upper 200 m have a poorer fit to the ob-
served data at the highest frequencies, 4–9 Hz (0.1–0.25 s). The
transdimensional acceptance criterion for perturbations that change
the model dimensions is balanced by the model misfit and the pro-
posal distribution ratio (Bodin et al. 2012a,b). Therefore, the trans-
dimensional algorithm can accept models with poorer fit at a higher
rate than the fixed-k algorithm.

To better compare results with the non-transdimensional PDFs,
the transdimensional algorithm was altered to save a separate en-
semble of models with the lowest misfit, in addition to the original
collection ensemble created at an even sampling rate of every Mth
model. A probability density function was then created based on
the 5000 models with the lowest misfit. Velocity profiles for the
400 and 600 m total depth models are similar to the evenly sampled
ensemble, though more tightly constrained. The 200 m models de-
veloped a slight curvature, with lower velocity values at the surface
that gradually increased up to ∼60 m depth (Fig. 9). The 600 m
models of both ensembles (lowest misfit or even sampling), tended
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Figure 8. Probability density functions for five-layered models restricted to (a) 200 m depth, (b) 400 m depth and (c) 600 m depth. Results are very similar to
the four-layered models so only the five-layered results are shown.

to select simple models with ∼4 layers (Fig. S5). The 400 m mod-
els of the lowest misfit ensemble were more commonly simpler
models compared to those in the even sampling ensemble, which
showed weaker preference for number of layers. The 200 m mod-
els of the lowest misfit ensemble also showed lower preference for
simpler models, whereas the even sampling ensemble strongly pre-
ferred 2 layer models (Fig. S5). Both ensemble collection methods
were verified using synthetic ‘true’ models, in which the associ-
ated dispersion curve was salted with random noise and treated as
the observed data (the Appendix). Both ensembles predicted the
true model velocities very well. The true interface depths were less
well resolved than velocities. The minimum error ensembles more
tightly constrained both the layer velocities and interface depths.

5 D I S C U S S I O N

5.1 Data quality and deployment logistics

The application of ambient seismic noise for high frequencies
(>1 Hz) entailed complications not encountered in lower frequency
ambient noise studies. Group velocity measurements were unusable
at low frequencies (apparent arrivals centred at zero traveltime) and
difficult to pick at high frequencies due to the presence of multiple
apparent arrivals. This finding precluded the use of automatic group
velocity picks, reducing the expediency of the method. Difficulties
in measurements were overcome by manually selecting true arrivals
by tracking signals within record sections (such as in Fig. 5c), and
using bounds of realistic velocities to guide arrival selection. Addi-
tionally, quality control metrics such as SNR and minimum wave-
length criterion were needed in order to remove low quality data. The
variability in group velocity measurements between station pairs,
visible in the large standard deviations within the network average

dispersion curve (Fig. 7), may reflect path dependent velocities due
to true heterogeneity and/or uncertainty due to low data quality. The
use of short-period seismometers instead of broad-band seismome-
ters reduced data quality due to low gain and limited response for
lower frequencies (Fig. S1). The high rejection of measurements
for frequency bands below ∼2 Hz, the corner frequency of the
sensors, suggests that the sensitivity of the sensors limited the low
frequency end of the data set. However, this instrumentation choice
was the most practical and cost effective. Another potential factor
influencing data quality is the ambient noise source distribution.
Fan & Snieder (2009) showed through numerical simulations that
the angular distribution and density of sources strongly influences
the quality of the reconstructed empirical Green’s Function.

The intentionally varied interstation distances of our array con-
figuration provided useful insights into the influence of interstation
distance on cross-correlations at different frequencies. Measure-
ments at short interstation distances and low frequencies had the
highest SNR, although many such apparent signals yielded unre-
alistic velocities. Therefore, the number of wavelengths may be a
better metric for reliable measurements than SNR. The high num-
ber of rejected measurements for short wavelengths indicates the
need for a minimum wavelength retention criterion. This also sug-
gests that the corner frequency of the sensors may not have been
solely to blame for poor data quality at low (<2 Hz) frequencies.
On the other hand, the drop in SNR values for increased station
distances and cluster of rejected measurements beyond ∼15 wave-
lengths suggests that increased attenuation of high frequency waves
resulted in noisier signals and larger uncertainties in velocity mea-
surements. Thus we observe a trade-off between placing stations far
enough apart to allow a sufficient number of wave cycles to propa-
gate but not far enough to allow wave energy at these frequencies
to attenuate. For this study we chose to apply an upper limit of



Hydrostratigraphy using seismic noise 885

Figure 9. Comparison of probability density functions between the non-transdimensional, fixed layer models and the two collection ensembles of the
transdimensional algorithm. Results for models constrained to 200 m total depth are shown for (a) the fixed 3-layer ensemble, (b) the transdimensional, even
sampling ensemble, and (c) the transdimensional, minimum error ensemble. (d)–(f) Same as in (a)–(c) but for 400 m models and 5-layer non-transdimensional
ensemble.

7 wavelengths which improved the constraint on shallow velocity
structure (<100 m) even though it yielded slightly larger standard
deviations. However, this improvement was minor and a higher limit
of 15 wavelengths also produced acceptable results.

To determine if this method is practical for hydrogeological inves-
tigations, we looked at how many hours of recorded ambient seismic
noise are needed in order to retrieve reliable traveltime picks. We
found that the SNR of cross-correlations was maximized for all
station pairs and frequencies at ∼100 recorded hours. However, the
time needed to reach stability of the cross-correlated waveform was
found to be frequency dependent, with highest frequencies (>5 Hz)
needing as little as 50 hr and the lowest frequencies (<2 Hz) re-
quiring up to 250 hr to converge. On average, 150 hr was needed
for the lowest frequency waveforms to become stable. This mini-
mum threshold suggests at least 6.25 d of ambient noise should be
recorded in order to obtain reliable group velocity measurements for
network scales and diffusive wave frequencies as in our study. The
limitation of only using nighttime hours in our data set increased
this threshold to 18.75 d. Nonetheless, our findings suggest that
ambient seismic noise can provide valuable data on submonth time
frames.

5.2 1-D shear-wave velocity modelling

The results of the non-transdimensional MCMC 1-D velocity pro-
files showed a consistent velocity increase at ∼200 m depth and,

less consistently, a velocity increase at ∼60 m depth. Electrical re-
sistivity logs from the M-0650 and M-0738 boreholes show high
resistivity zones from ∼60 to 80 m depth, ∼150–220 m, and high
resistivity below ∼280 m depth (Fig. 3). High electrical resistivity
generally corresponds to low porosity, high density zones. There-
fore, these high resistivity zones likely correspond to relatively
higher seismic velocity zones within the subsurface. The zone of
higher velocity in the three-layer, 200 m total depth models closely
matches the top depth of the shallowest high resistivity zone in
Fig. 3, and the top depth and thickness of the shallowest semi-
confining unit in Fig. 2. The strong velocity increase at 200 m depth
in the 1-D models roughly corresponds to the second high resistivity
package seen in the M-0650 and M-0738 borehole logs. This depth
also matches the second semi-confining unit seen in Fig. 2. The
difference in thickness between the first and second high resistivity
intervals likely explains the dominance of the second zone in the
MCMC models. The second semi-confining unit from ∼200 to 270
mbgs is also the confining unit believed to divide the UFAS from the
LFAS and is therefore important with regards to future groundwater
development plans (Williams & Kuniansky 2015).

Results from the transdimensional algorithm highlight the large
uncertainty in our vertical velocity models. However, the transdi-
mensional algorithm has the advantage of eliminating any bias in
the number of layers assigned by the user on model results and al-
lows the level of data uncertainty to scale the model dimensions. In
general, models with fewer layers occurred more frequently in the
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posterior distribution (Fig. S5). The parsimony inherent in Bayesian
inference, as well as the high level of uncertainty in our data set,
resulted in preference for simple 2–3 layered models. This pref-
erence explains the lower likelihood of a low velocity layer above
∼60 m in the 400 and 600 m deep models. Collecting an ensemble
based on models with lowest misfit had the potential drawback of
biasing results toward more complex models. This drawback was
observed by the less dominant peak of low-ƙ models in the 200 m
minimum error ensemble compared to the even sampling ensem-
ble. However, the 400 m minimum error ensemble showed a strong
preference for simpler models, more so than the even sampling
ensemble. Overall, PDFs showed a gradational velocity increase
below ∼150 m depth. This is consistent with the known geology
of the area in that the degree of dolomitization and occurrence of
evaporite deposits increase with depth in the FAS. Also, the vertical
resolution of our data set decreases with depth. The effect of this can
be seen in both MCMC approaches as widening of the probability
density function with depth. A different array design or sensor type
may have improved the resolution of the inversion; however, the
results from this experiment still allowed us to identify meaningful
structure.

The approach of this study was to use Bayesian inference to re-
cover vertical velocity structure using few prior constraints, and
then to compare and to validate results with known information.
This was intended to evaluate and to demonstrate the utility of am-
bient seismic noise in areas where borehole information is limited.
With little a priori information, modelling results agreed generally
well with the known stratigraphy of the area. However, some prior
constraints could have been added using information on hydros-
tratigraphic layers and their depths, supported by electrical resis-
tivity logs. In addition, the resulting PDFs (both transdimensional
and non-transdimensional) provide non-unique solutions. To ad-
dress these issues, we conducted a final round of modelling that
used previous results and additional a priori constraints to gener-
ate a final preferred solution. The hydrostratigraphy of the region
(Fig. 2) and resistivity logs from the site (Fig. 3) suggest a discrete
zone of high velocity should exist at shallow depths (<150 m).
This was supported by the 200 m models, but largely missing from
deeper models, which had poorer fit to the short period measure-
ments (Fig. 7f). To resolve the discrepancy between the 200 and
400 m models, we generated fixed 5-layer models for a total depth
of 400 m, but required the upper two interfaces to occur above
150 m and the second layer to have a greater velocity than adjacent
layers. The final PDF, created from the 1000 models with lowest
weighted misfit to the data, showed a velocity increase around 60 m
depth followed by a slight decrease and then secondary increase in
velocity below 200 m depth (Fig. 10a). We calculated the mean of
this PDF, that is, most probable velocity with depth, to create a sin-
gle, final, shear-wave velocity profile along with its 2σ confidence
bounds (Fig. 10b). This velocity profile best represents the features
seen in the other modelling results, and demonstrates the improve-
ment that can be gained by forcing tighter prior constraints, when
possible.

6 C O N C LU S I O N S

Overall, results from the correlation of ambient noise at high
(>1 Hz) frequencies show that coherent signals can be acquired
and used in estimation of group velocities. However, difficulties
were encountered at both low (<2 Hz) and high (>5 Hz) frequen-
cies. The interstation distance was found to be a strong control

Figure 10. Final preferred model based on previous results and added con-
straints. (a) Probability density function and its mean (white dashed line)
taken as the final velocity model for the study site (b). Both subplots show
the 2σ confidence bounds (dashed black lines) around the mean velocity
model.

of cross-correlation quality through its influence on the number
of wavelengths travelled between pairs of stations. For this study,
the range of 1.5–7 wavelengths was found to result in the most
trustworthy group velocity measurements and produce the most
well-defined seismic velocity structure during modelling. In addi-
tion, at least 150 hr was needed to maximize the SNR and retrieve
a stable cross-correlation.

Measurements from all station pairs were combined to generate
a network average dispersion curve for use in a Bayesian inference
scheme employing MCMC iteration. The goal of the MCMC in-
version was to retrieve an ensemble of models for interpretation of
1-D vertical velocity structure. Results from a fixed-layer approach
showed increases in seismic velocity at depths that are in good
agreement with the hydrostratigraphy of central Florida. The 60–
125 m depth range of the shallowest confining unit was most clearly
predicted by 3–5 layer models restricted to above 200 m depth.
When the depth constraint was lowered, the second semi-confining
unit, beginning around 200 m depth, dominated the velocity profiles.
This result was observed for both fixed-layer and transdimensional
approaches. The depths of high velocity zones interpreted as semi-
confining units are supported by the presence of high-resistivity
zones seen in boreholes at the study site. Therefore, meaningful
velocity structure was observable using little a priori information;
however, the addition of tighter prior constraints did help resolve
some of the discrepancy between models of different depths.

Results show that the non-transdimensional algorithm provides a
promising method for identifying high velocity zones correspond-
ing to confining units; however, profiles are highly dependent on
the number of layers. Using a transdimensional approach provided
a better understanding of the ensemble uncertainty, as well as re-
vealing the most robust features of the 1-D velocity profiles. By
freeing the ƙ parameter, we avoid bias in the inversion results. The
fixed-ƙ approach constructed more detailed structure, but the trans-
dimensional approach highlights what structure can be interpreted
with the greatest confidence. Therefore, we found the use of both
approaches useful for this study. Even though the nonunique aspect
of Bayesian inference provides important insights into data uncer-
tainty, a preferred solution can be more helpful for interpretation and
use of these results in future studies. Therefore, we used the mean
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of the final PDF to represent the preferred solution for shear-wave
velocity at our study site.

Modelling results of ambient seismic noise data matched a
known seismic velocity increase corresponding to an important
semi-confining unit of the FAS in central Florida. This suggests
ambient noise could prove a valuable new investigative technique
for groundwater studies. However, high levels of data uncertainty
from the ambient noise cross-correlations proved a disadvantage
to this technique. In this study, we identified key factors influenc-
ing cross-correlation quality (e.g. interstation distances, number
of hours stacked). However, other potential factors such as sen-
sor type or distribution and density of sources were not addressed.
This leaves open possibilities for future work in testing azimuthal
distributions of high-frequency (>1 Hz) ambient noise sources and
potential improvements to be gained through using broad-band seis-
mometers.

A C K N OW L E D G E M E N T S

Funding from the Gulf Coast Association of Geological Societies
through a student grant to Stephanie James made this project pos-
sible. We are very grateful to Noel Barstow and Pnina Miller of
the IRIS-PASSCAL Instrument Center for all their instruction in
the use and maintenance of the IRIS-PASSCAL seismic equipment
deployed during this project. We are grateful to George Slad of the
PASSCAL Instrument Center for his help with archiving the seis-
mic data collected. We would like to thank Jeff Davis at St. Johns
River Water Management District for assistance with the site selec-
tion and permitting, as well as helpful discussions. Thank you to
Florida Forest Service for use of their land in this study. We would
also like to thank Lanie Meridth at University of Florida for helpful
discussions.

R E F E R E N C E S

Anselmetti, F.S. & Eberli, G.P., 1993. Controls on sonic velocity in carbon-
ates, Pure appl. Geophys., 141, 287–323.

Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F.,
Moschetti, M.P., Shapiro, N.M. & Yang, Y., 2007. Processing seismic
ambient noise data to obtain reliable broad-band surface wave dispersion
measurements, Geophys. J. Int., 169, 1239–1260.

Bensen, G.D., Ritzwoller, M.H. & Shapiro, N.M., 2008. Broadband ambient
noise surface wave tomography across the United States, J. geophys. Res.,
113(B5), doi:10.1029/2007JB005248.

Bodin, T. & Sambridge, M., 2009. Seismic tomography with the reversible
jump algorithm, Geophys. J. Int., 178, 1411–1436.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJIRAS online.

Figure S1. Instrument response curves are shown for the L22 short-
period geophone used in this study as well as a common broad-band
sensor (STS2). The L22 geophone has a corner frequency of 2 Hz.
Frequencies less than 2 Hz require increasingly more energy to
produce the same response as frequencies greater than 2 Hz (‘Sensor
Comparison Chart’, IRIS PASSCAL).
Figure S2. The signal-to-noise ratio (SNR) of all the measured
correlations are plotted on a semi-log scale in comparison to the (a)
interstation distances, (b) frequency and (c) wavelength, assuming
a velocity of 1 km s−1.
Figure S3. Comparison of network average dispersion curves with
no upper wavelength limit (black) and an upper limit of 7 wave-
lengths (red).
Figure S4. (a) Representative shear-wave velocity model, based
on inversion results, and the associated (b) group velocity depth
sensitivity kernels for the 13 frequency bands used in this study.

The range of ∼20–300 m has the highest sensitivities. Vertical
resolution decreases with depth.
Figure S5. Histograms are shown for the number of layers, ƙ, in
posterior distribution of models from the transdimensional MCMC
algorithm. (a)–(c) Results from the evenly sampled ensemble for the
200, 400 and 600 m depth constraints, respectively. (d)–(f) Results
from the minimum-error ensemble for the 200, 400 and 600 m depth
constraints, respectively.
Table S1. Values of parameters defined in MCMC algorithm.
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A P P E N D I X : V E R I F I C AT I O N T E S T S

A series of verification tests were completed to test the accuracy and
resolution of the transdimensional modelling results. True models
were constructed and used to generate synthetic dispersion curves
using surf96 (Herrmann & Ammon 2002). Random noise was added
to each measurement in the dispersion curve to create the synthetic
observed data (dobs). The noise values added were also used as the
standard deviations (σ d) for weighting in the inversion. The transdi-
mensional algorithm was then executed with the same parameters as
before. Two final model ensembles are created: the first from evenly
sampling every Mth model of the posterior distribution, the second
from retaining the 5000 models from the posterior distribution with
the lowest weighted misfit, φ(m).

Figure A1. Probability density functions for verification test results of the
transdimensional algorithm. The true models are shown by the dashed lines.
Results for the 200 m models are shown for the (a) even sampling ensemble,
and (b) the minimum error ensemble. (c)–(d) Same as in (a)–(b) but for the
600 m models.

http://publicserver1.sjrwmd.com/vlpub/vlwebpub/
http://publicserver1.sjrwmd.com/vlpub/vlwebpub/
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Figure A2. Verification test results of the transdimensional algorithm. (a) Histograms of interface depths for both final ensembles of the 200 m models.
Interface depths of the true models are shown with dashed red lines. (b) Histograms of the number of layers for both final ensembles of the 200 m models.
Number of layers in the true models are shown with dashed red lines. (c)–(d) Same as in (a)–(b) but for the 600 m models.

A variety of true models were tested. The probability density
functions (PDFs) for two runs, 200 and 600 m depth constraints,
are shown in Fig. A1. The layer velocities were very well matched
for both runs, however the minimum error ensemble more tightly
resolved the layer velocities. The 600 m results show that layer
velocities below ∼350 m depth were poorly recovered. Interface
depths were also well matched, overall. The even sampling en-
semble for 200 m models show a large range in uncertainty of
the interface depth (Fig. A1a). This is also seen in the histogram
of interface depths (Fig. A2a). By retaining models best fit to
the observed data, the range of uncertainty surrounding the true
interface at 70 m depth is reduced (Figs A1b and A2a). Simi-
larly, the PDFs for the 600 m models show a better prediction
of the shallow 40 m interface in the minimum error ensemble.
However, the histogram of interface depths reveal that the 40 m
interface is well predicted in both ensembles (Fig. A2c). The
330 m interface is observed in both ensemble PDFs, however the
interface histograms show that the minimum error ensemble

contains a higher likelihood for this interface. Neither ensemble
recovered the 475 m interface. Both ensembles of the 200 m mod-
els show a preference for simple models (Fig. A2b). The deeper,
600 m, models have a higher likelihood for more complicated mod-
els, that is, more layers (Fig. A2d). For both depth constraints,
the minimum error ensembles better predict the true number of
layers.

Verification test results show that the transdimensional algorithm
is best able to recover layer velocities. Interface depths contain more
uncertainty but are generally well resolved. The lower range of depth
sensitivity can be observed in the poor recover of layer velocities
and interfaces below ∼350 m depth. Test results also highlight
the differences between the two ensemble collection methods. The
minimum error ensemble returns the best prediction of the true
models. However, the even sampling ensemble provides valuable
insights into the range of models within the posterior distribution
and therefore an assessment of the uncertainty in the modelling
results.


