1. Write the MATLAB function $B = \text{badgauss}(A)$ and test this on $A = \text{rand}(5)$.

2. Write the MATLAB function $x = \text{backsub}(A, b)$ and test this on $A = \text{triu}(\text{rand}(5))$, $b = \text{rand}(5, 1)$. Check against MATLAB's $A \backslash b$.

3. Write a MATLAB function $x = \text{mysolve}(A, b)$ which finds the solution to $Ax = b$ using badgauss, and following with backsub. Test your mysolve on $A = \text{magic}(7)$, $b = A \ast \text{ones}(7, 1)$. Note: You know the true solution to the system $Ax = b$. What is it? Compare your mysolve answer with the outcome of MATLAB's $A \backslash b$.

4. Write the MATLAB function $B = \text{grmsch}(A)$ and test this on $A = \text{rand}(6, 4)$. Check that $B^T B = I_n$ Which is a better way to check this: $B^T B = \text{eye}(4)$ or $B^T B - \text{eye}(4)$? Why?

We will be using two important matrices. The Givens rotation, G, which is defined by five parameters n, i, j, c, s, where n is the size, c and s are the cosine and sine of some angle, and $i < j$ specify four locations, $G(i, i), G(i, j), G(j, i), \text{and } G(j, j)$.

$$G = \text{eye}(n); \quad G(i, i) = c; \quad G(j, j) = s; \quad G(i, j) = s; \quad G(j, i) = -s;$$

5. Write the MATLAB function $G = \text{givrot}(n, i, j, c, s)$ which makes the Givens matrix defined above. Check your givrot using $n = 3$, $i = 1$, $j = 3$, $c = \sin(pi/6)$ and $s = \cos(pi/6)$. Show that G is an orthogonal matrix. Now using givrot form all possible 3×3 Givens rotations with $c = \sin(pi/6)$ and $s = \cos(pi/6)$.

The other matrix is the Householder reflection. This matrix depends on an $n \times 1$ column vector w as a parameter and is defined by

$$H_w = I_n - 2/(w^T w)(w \ast w^T)$$

6. Write the MATLAB function $H = \text{house}(w)$ which will make the Householder matrix defined above. Let $w = \text{rand}(5, 1)$

$$H = \text{house}(w)$$

Show the following properties of Householder matrices for this H.

1. $H = H^T$
2. $H^2 = I_n$
3. H is orthogonal

7. Write a MATLAB function $p = \text{proj}(A, b)$ which computes the projection of b into Col(A). You can assume that rank(A) = n. Let $A = \text{rand}(5, 2)$ and $b = \text{ones}(5, 1)$.

1. Is $b \in \text{Col}(A)$? Note: this is equivalent to the question, is $Ax = b$ consistent?
2. Compute $p = \text{proj}(A, b)$. Make sure rank(A) = n.
3. Check that p is the projection of b into $\text{Col}(A)$. This entails showing $p \in \text{Col}(A)$ and $b - p \in \text{Col}(A)^\perp$.

8. Write a MATLAB function $x = \text{lstsq}(A, b)$ which computes the least squares solution by solving the normal equations $A^T A x = A^T b$. You may assume rank(A) = n. Let $A = \text{rand}(5, 2)$ and $b = \text{ones}(5, 1)$ and compute $x = \text{lstsq}(A, b)$. You can compute the residual with norm($A x - b$). Check that x is the least squares solution by showing $A \ast x - b \in \text{Col}(A)^\perp$.

9. MATLAB's solver $A \backslash b$ computes the least squares solution. Compare your lstsq with $A \backslash b$ on these systems. Which least squares solver gives the better residual $\|Ax - b\|$ in each of these?

1. $A = \text{rand}(6, 4); \quad b = \text{ones}(6, 1)$;
(2) \(A = \text{hilb}(6); A(:,1:4); b = \text{ones}(6,1) \);
(3) \(A = \text{vander}(1:8); A(:,1:5); b = \text{ones}(8,1) \);

10. Write MATLAB functions
 (1) \(E = \text{ele1}(n, i, j) \) which switches the \(i^{th} \) and \(j^{th} \) rows of an identity matrix \(I_n \)
 (2) \(E = \text{ele2}(n, r, i) \) which multiplies the \(i^{th} \) row of an identity matrix \(I_n \) by \(r \).
 (3) \(E = \text{ele3}(n, r, i, j) \) which multiplies the \(i^{th} \) row of an identity matrix \(I_n \) by \(r \) and adds it to the \(j^{th} \) row.

Let \(A = \text{magic}(5) \). Describe the outcome of each of the following multiplications:
 \(\text{ele1}(5, 2, 4)*A \)
 \(\text{ele2}(5, \pi, 3)*A \)
 \(\text{ele2}(5, -1, 3, 5)*A \)