Show all work. Answers given with incomplete reasoning will not receive full credit.

Question 1 (4 points) Let \(f(x) = x^5 - 5x \)

For the function \(f(x) \), determine its:
(a): Domain; (b): Intercepts; (c): Symmetry; (d): Asymptotes; (e): Intervals of increase and decrease; (f): Local maximum and minimum values; (g): Concavity and points of inflection.

Then, using your answers to (a) through (g) above, sketch a graph of \(f(x) \).

- \(\mathbb{R} \) = all real numbers
- \(x - \text{int}: \ f(x) = 0 \Rightarrow x(x^4 - 5) = 0 \Rightarrow x = 0, \pm \sqrt[4]{5} \)
- \((0, 0), \left(\sqrt[4]{5}, 0 \right), \left(-\sqrt[4]{5}, 0 \right) \)
- \(y - \text{int}: \ f(0) = 0 \)
- \(f''(x) = 20x^3 = 0 \Rightarrow x = 0 \)
- \(x = 0 \) is a point of inflection
- \(IP \) at \((0, 0) \)
- \(f(x) = 5x^4 - 5 \Rightarrow 5(x^4 - 1) = 0 \Rightarrow x = \pm 1 \)
Question 2 (2 points) Find the point on the line
\[f(x) = 2x - 3 \]
That is closest to the origin.

We want to minimize:

\[d(x) = (x-0)^2 + [(2x-3)-0]^2 \]
\[= x^2 + (4x^2 - 12x + 9) \]
\[= 5x^2 - 12x + 9 \quad \text{(1)} \]

Now, \(d'(x) = 10x - 12 \) and \(d'(x) = 0 \) gives

\[10x - 12 = 0 \implies x = \frac{12}{10} = \frac{6}{5} \quad \text{(2)} \]

This is a min, \(\text{min} \): \[\frac{d}{dx} d'(x) \]

So, the point is \((\frac{6}{5}, f(\frac{6}{5})) \)
\[= (\frac{6}{5}, 2 \cdot \frac{6}{5} - 3) \]
\[= (\frac{6}{5}, \frac{12}{5} - \frac{15}{5}) \]
\[= (\frac{6}{5}, -\frac{3}{5}) \quad \text{(3)} \]