Show all work. Answers given with incomplete reasoning will not receive full credit.

Question 1 (2 points) Calculate the following limit, if it exists. If the limit does not exist, explain why.

\[
\lim_{x \to -2} \frac{x^2 - x - 6}{|x + 2|}
\]

\[
\begin{align*}
\lim_{x \to -2^-} & \frac{x^2 - x - 6}{1} = \frac{(-2)^2 - (-2) - 6}{1} = 5 \\
\lim_{x \to -2^+} & \frac{(x+2)(x-3)}{1} = \frac{(-2+2)(-2-3)}{1} = -5 \\
\text{The limit DNE as the LH and RH limits do not agree.}
\end{align*}
\]

Question 2 (2 points) Sketch a graph of a function:

a.) \(f(x) \) such that \(f \) is defined at \(a \) but \(f \) is not continuous at \(a \)

b.) \(g(x) \) such that \(g \) is continuous from the left at \(b \) but not from the right at \(b \)
Question 3 (2 points) Let

\[f(x) = \begin{cases}
(x - 1)^2 + 1 & \text{if } x < 1 \\
2x + 1 & \text{if } x \geq 1
\end{cases} \]

Find \(\lim_{x \to 1^-} f(x) \) and \(\lim_{x \to 1^+} f(x) \). Is \(f(x) \) continuous at \(x = 1 \)? Explain why or why not.

\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x-1)^2 + 1 \\
= (1-1)^2 + 1 \\
= 0 + 1 \\
= 1 \quad (\text{5})
\]

\[
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2x + 1 \\
= 2 \cdot 1 + 1 \\
= 3 \quad (\text{5})
\]

\(f(x) \) is NOT continuous at \(x = 1 \) since the above shows that \(\lim_{x \to 1^-} f(x) \) \text{ DNE.} \quad (\text{1})