Show all work. Answers given with incomplete reasoning will not receive full credit.

Question 1 (2 points) Calculate the following limit, if it exists. If the limit does not exist, explain why.

\[
\lim_{x \to -1} \frac{x^2 - 6x - 7}{|x + 1|}
\]

The limit DNE as the LHT and RH limits do not agree.

Question 2 (2 points) Sketch a graph of a function:
 a.) \(f(x) \) such that \(\lim_{x \to a} f(x) \) exists but \(f \) is not continuous at \(a \)
 b.) \(g(x) \) such that \(g \) is continuous from the right at \(b \) but not from the left at \(b \)
Question 3 (2 points) Let

\[f(x) = \begin{cases}
\frac{x + 3}{|x + 3|} & \text{if } x < -3 \\
-4(x + 4)^2 + 4 & \text{if } x \geq -3
\end{cases} \]

Find \(\lim_{x \to -3^-} f(x) \) and \(\lim_{x \to -3^+} f(x) \). Is \(f(x) \) continuous at \(x = -3 \)? Explain why or why not.

\[
\lim_{x \to -3^-} f(x) = \lim_{x \to -3^-} \frac{|x+3|}{x+3} = \lim_{x \to -3^-} -(x+3) = -(-3+3) = 0 \quad \left(\frac{1}{2} \right)
\]

\[
\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} -4(x+4)^2 + 4 = -4(-3+4)^2 + 4 = -4 \cdot 1 + 4 = 0 \quad \left(\frac{1}{2} \right)
\]

\(f(x) \) is continuous at \(x = -3 \) since the above shows that \(\lim_{x \to -3} f(x) = 0 \) AND because \(f(x) \) is defined at \(x = -3 \) and we have

\[
f(-3) = -4(-3+4)^2 + 4 = 0 = \lim_{x \to -3} f(x) \quad (1)
\]