—_

I A

@ N N
NI

L ©w
—_

9.1.
9.2.
9.3.
10.
11.
12.

12.1.

13.

13.1.
13.2.
13.3.
13.4.

14.

14.1.

15.
16.
17.

17.1.
17.2.
17.3.

CONTENTS

Integral formulas
Power Series Representations
Problems

The theorems of Morera and Goursat

Zeros of analytic functions and the fundamental theorem of algebra

The index
Cauchy’s Theorem and integral formula
Homotopic curves and Cauchy’s Theorem
Homotopy
Cauchy Thoerem for homotopic curves
Counting zeros
The Open Mapping Theorem
[solated singularities of analytic functions
Removable Singularities
Poles
Laurent Series and essential singularities
Residues
The Argument Principle
The algebras A(G) and H%(G)
Mappings of the disk;Schwarz Lemma
The topology“of uniform convergence on compact sets
Preliminaries
The space (C(Q, X)yp)
Normal Families
Arzela-Ascoli
The space of analytic functions on €2
Montel’s Theorem
The space of meromorphic functions on €2
The Riemann mapping theorem
Factorization of analytic functions
Infinite products
Weierstrass Factorization

Factorization of sine

co oo Ot W

10
12
14
16
16
17
21
22
23
23
23
24
27
28
30
32
33
33
34
36
37
38
39
40
41
43
43
45
47



18.
19.
20.

20.1.

21.
22.

22.1.

23.
24.

24.1.
24.2.

25.
26.
27.
28.
29.

29.1.
29.2.

30.

30.1.

31.

31.1.

32.
33.

33.1.

34.

34.1.

35.
36.
37.
38.
39.

Runge’s Theorem
The Schwarz reflection principle
Introduction to harmonic functions
Harmonic functions on an annulus
The maximum principle
The Poisson Kernel
Subharmonic functions revisited
Harnack’s inequality
The Dirichlet Problem
The method of Perron
Geometric sufficient conditions
Green’s function
Jensen’s Formula
Entire functions of finite genus
Entire functions of finite order
Hadamard Factorization
Proof of Theorem 29.1
The exponent of convergence and further results
Bloch’s Theorem
Proof of Theorem 30.1
Picard’s little theorem
Problems
The Montel-Caratheodory Theorem
The Great Picard Theorem
Problems
Harmonic Conjugates
Proofs
Gauss’s Theorem and Green’s Formula
The periods of a harmonic function

The reflection principle for harmonic functions

Harmonic measure, the period matrix and the Abel-Jacobi map

Appendix A

49
52
53
95
o6
29
61
62
64
64
65
66
67
70
73
74
75
7
78
78
81
84
85
85
86
86
87
88
89
91
93
95



MAAG6406-07 COURSE NOTES 2016-17 3

Index 96

MAA6406-07 COURSE NOTES
2016-17

1. INTEGRAL FORMULAS

Theorem 1.1 (Bounded Convergence). Suppose f, f, : [a,b] — C. If

(i) f, fn are continuous;
(i1) (fn) converges to f pointwise;
(111) there is an M such that | f,,| < M (uniformly),

then § f., converges to | f.

Remark 1.2. Uniform, rather than pointwise convergence, implies the uniform bound-
edness conditions. With this stronger hypothesis, the proof of the Theorem is very
straightforward. o

Theorem 1.3 (Leibniz Rule). If ¢ : [a,b] x [c,d] = C and s, the partial derivative
with respect to the second variable, exists and is continuous, then g : [c¢,d] — C defined

by

g(ty = f o(s.1) ds

1s continuously differentiable and

b
g(t) = J a(s,t)ds.
Proof. 1t suffices to prove the theorem in the case the codomain of ¢ is R. In this case the
codomain of g is also R. Since ¢y is continuous, there is an M such that |ps(s,t)| < M
for all s,t. Fix ty € [¢,d] and suppose (t,,) is a sequence from [c, d] that converges to t,
(with t,, # to). Define f, : [a,b] — R by

Fuls) = p(s,tn) — (s, to)
n t—to .
By the MVT, for each s and n, there exists a point ¢ between t,, and ¢y such that
[fa(s)] = la(s, )] < M.

Hence the sequence (f,) is uniformly bounded. By the differentiability hypothesis on ¢,
the sequence f,(s) converges pointwise to fy(s) = ¢(s,%p). The result now follows from
the bounded convergence theorem, Theorem 1.1. O

Date: March 2, 2017.
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Theorem 1.4 (An M test). Suppose (gn) is a uniformly bounded sequence series of
continuous C-valued functions defined on an interval [a,b]. If (a,) is a sequence from
C and if >, a, converges absolutely, then the series Y, an,gn(s) converges to a continuous
g : [a,b] — C and moreover,

fgdS—ZJgn s = lim ngnds.

Lemma 1.5. If |z| < 1, then S% ejp s = 2r. (If |2| > 1, then the integral is 0). 1

15 _ 5

Proof. In the case |z| < 1, apply the bounded convergence theorem to

1 —1is \".
T~ 2"

~ns and a,, = 2". The case |z| > 1 is similar. O

e, gu(s) =e

Theorem 1.6 (Cauchy Integral Version 0). Suppose f : G — C is analytic, y € C and
r > 0. If Bly;r) © G and ~y : [0,27] — G is.defined by v(s) ="y + re', then, for
|w - y| <,

),

2% z—w

flw) =

Alternately, letting F,(z) = ﬁiz,

w) =JFw = JFwovd'y.
v

On the other hand, if [w—1y| > r, then the integral on the right hand side of equation
(1) is 0.

(1)

Remark 1.7. The Lemma recovers the values f inside the circle traversed by ~ from
the values of f on 7. In particular, f(y) is the average value of f on the circle ~. o

Proof. Suppose, without loss of generality, y = 0 and r = 1 and let |w| < 1 be given. It

suffices to prove,
27 s
0 =J lf(w) — f(e ) eis] ds.

0 elS —w

Note, by convexity, for 0 < ¢ < 1, that |w + t(e’”* —w)| = |(1 — t)w + te**| < 1 and hence
we may define ¢ : [0,27] x [0,1] — C by
flw+t(e™ —w)) .,
plot) = LT 0D e g,
e —w

Define ¢ : [0,1] — C by
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It suffices to show ¢g(1) = 0. By Theorem 1.3,

() J " (s, 1) ds.

0
Now

wa(s,t) = f(w+t(e® —w))e™ =: Gy(s).
On the other hand, G;(s) = ®}(s) where

Bi(s) = (w0 + 16— w)),

for 0 <t < 1. Hence, for 0 <t < 1, by the FTC ¢'(t) = ®,(27) — ®,(0) = 0. Hence g is
constant on (0, 27| and thus, by continuity on all of [0, 27]. Hence g(1) = g(0). On the
other hand,

o0 = [ [~ st s = s [ s 1] s

The right hand side is 0 by Lemma 1.5. Hence g(1) = 0 as desired. O

2. POWER SERIES REPRESENTATIONS

Theorem 2.1 (Power Series Representation, Part I). Let 2 < C be an open set. If

f:Q—>C,yeQandr >0 and B(y;r) < Q, then there is an M (depending on r) such
that the sequence

£ 1 27 f(y_kreis)efins
or 0 rm

ds

Qn

M
n

satisfies |an| < 75 and hence the series

0

> o

n=0

has radius of convergence v and for |z — al <,

o0
f(2) =D an(z—y)™
n=0
In particular, the a, do not depend upon r.

Proof. Suppose, without loss of generality y = 0. In this case, if |z| < r, then by
Theorem 1.6,

1 [ f(w)
=— | —*d
f(w) 211 L w—z :
where v : [0,27] — G is defined by ~(s) = re’*. On the other hand,
2 is
J Jw) dz —J S Z) ds.
S W—2Z o 1— -5

re—ts
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The sequence g,(s) = f(re*)e”™* is uniformly bounded (on the interval [0,27]). An
application of Theorem 1.4 with a, = ()" gives

27 is N 27
) —1f£re Z) ds =i lim ZJ (reis)e’ms(g)” ds

N—o

0 27 1S\ ,—1ins
=3 Z [ %ds] 2",

O
Corollary 2.2 (Power Series Representations, Part II). Suppose Q2 < C is an open set,
f:Q — Cis analytic, y € Q, r > 0 and B(y;r) < .

(i) Letting R denote the distance from y to 0S), the function f has a power series
representation on B(y; R);

0
f(z2) =D an(z=y)" |z =yl <R
n=0
(ii) f is infinitely differentiable, and f™ (y) = nlay;

(111) further,

1

aﬂ:_fj_lﬁi_dm
2mi ), (w — y)md
where vy : [0,2r] — Q is the pathy(s) = y + re’s;
(iv) (Cauchy estimate) if |f| isuniformly bounded by M in B(y;r), then
. n!M
)l et

(v) there exists an analytic function F: B(y;r) — C such that f|py,) = F'; i.e., F
has a primitive on B(y;r);
(vi) if v : [a,b] — B(y;r) is a rectifiable curve, then

szo.

Proof. For item (v): f = Y a,(z — y)™ has radius of convergence r > 0. Hence so does
the series )} (2 —y)"* and thus

n

F(z) = 3, (e =y

defines an analytic function on B(y;r) whose derivative is f. Item (vi) follows from item
(v) by the fundamental theorem of line integrals, Corollary 1.22 in Conway. U

Recall a domain is a an open connected set G < C.

Proposition 2.3. Suppose G < C is a domain. For an analytic function f : G — C,
the following are equivalent.
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(i) there is an open set U < G such that f(z) =0 for all z€ U;

(ii) there is a point y € G such that f™(y) = 0 for all natural numbers n;
(iii) f™(y) = 0 for every point y € G and every natural number n;
(iv) f=0;i.e., [ is the zero function.

Remark 2.4. If natural numbers n are replaced with positive integers n, then, choosing
any point p € G and replacing f by f — f(p), the conclusion of item (iv) becomes f is
constant.

Proof. Let Z denote the set {w € G : f™(w) = 0 for all natural numbers n}. Given
w € Z, consider the power series expansion of f about w, valid for |z — w| < r,,, where
Ty 18 the distance from w to the boundary of G,

f(z) = Z an(z —w)".

Since w € Z, all the a,, = 0 and hence f vanishes on the open set {|z=w| < r}. Reversing
the process, if f vanishes on the open set U < G, then U < Z. Hence Z is open and it
contains all open sets on which f vanishes identically.

The equivalence of item (i) and item (iii), the equivalences of items (iii) and item (iv)
and the implication item (iii) implies item (ii) are all now evident. Thus, to complete
the proof, it suffices to prove item (ii) implies item (iii). If, for some y € G, all the
derivative of f at y are 0, then Z is not empty.” On the other hand, it is a closed set
(subset of (), being the countable intersection of the sets,

Zy =g, ({0}),

where g, is the continuous function (. It follows, by connectedness of G, that G =
Z. O

Theorem 2.5 (Maximum Modulus). Suppose G < C is a domain. If f : G — C is
analytic and not constant, then the function |f| : G — Rsq does not have a mazimum

on (.

Proof. Suppose f : G — C and there is a point y € G such that |f(y)| = |f(z)] for all
z € G and we may assume |f(y)| > 0. There is an R > 0 such that B(y; R) ¢ G. Fix
0 <7 < R and letting y denote the curve, v(s) = y+re®, s € [0, 27], observe by Remark
1.7,

1
 2im

/() LU@+M%B

Hence,
1 2m )
£ < 5 | 1l +re)lds <1 £(w).
T Jo
Hence, |f(y + re®)| = |f(y)| for all s € R and 0 < r < R. It follows that |f(2)] = |f(y)|
on B(y; R). If f(y) = 0, the proof is complete. Otherwise, the range of f lies in the
circle centered to 0 of radius |f(y)| and therefore, by Problem 2.1, f is constant. O
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2.1. Problems.

Problem 2.1. Show, if G < C is a domain and f : G — C is real-valued, then f is
constant. (Suggestion: use the Cauchy Riemann equations.)

Show if the range of f lies in a circle C, then f is constant. (Suggestion: Given a
point y € G, choose a neighborhood y € U < G such that f(U) is not all of C' (and be
sure to explain why this choice is possible), and then compose with a map taking f(U)
into the real line.

Suppose f,g: G — C. Show, if |f| = |g|, then there is a ¢ € C such that g = cf.

3. THE THEOREMS OF MORERA AND GOURSAT

Given an open set 2 < C and, a function f : Q2 — C and points z,y € Q) such that
the line segment [z,y] ={x +t(y—2) : 0 <t < 1} <, let

[[r=w-o[ swssts=anas

Hence this integral is the line integral over the path 4 [0,1] — Q defined by ~(s) =
z + s(y — x). Given points z,y,w € Q let. T, ,, denote the closed path [z,y, w,z] :=
[z, y] + [y, w] + [w,x] (assuming of course all these segments lie in ). We call T an
oriented triangle. We also let T denote the triangle 7" together with its interior (which
is intended will be clear from the context) and say T lies in Q if 7" < .

Theorem 3.1 (Morera). Suppose Q2 < C is open. If f : Q — C is continuous and if
ST f =0 for all oriented triangles in 2, then f is analytic. In fact, if y € Q, r > 0 and
B(y;r) < Q, then the function I : B(y;r) — C defined by

F(z) :f f (2)
is differentiable and F' = f|p.y; i-e, locally f has primitive.

Proof. Tt suffices to prove the function F of equation (2) is differentiable and F’(z) = f(z)
for z € B(y;r). Accordingly, fix y € Q and r > 0 such that B(y;r) < €. Define, for
z€ B(yr),

e - 1

)

Given z,w € B(y;r), consider the triangle 7" = [y, z, w, y]. By hypothesis,
P - Fw) = | f

Thus,
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and therefore
F(z) - Flw)
Z—w

)| < f Fw + s(z - w)) — f(w)| ds.

An appeal to the continuity of f shows F' is differentiable and F'(w) = f(w). Since
F’' = f and f is continuous, F' is analytic. Hence f is analytic on B(y;r) and the proof
is complete. O

Theorem 3.2 (Goursat). If Q < C is open and f : Q — C is differentiable, then f is
analytic; i.e., ' is continuous.

Sketch of proof. By Theorem 3.1, it suffices to prove ST f = 0 for every oriented triangle
T lying in §2. Accordingly, let an oriented triangle 7" lying in 2 be given. Divide T into
four triangles 71, ..., 7Ty using the midpoints of the sides of T".and oriented so that

-2l

Choose 1 < k < 4 such that, for each 1 < 7 <

|, 11> \ff\
|fo| <4 JT(I) Al

Continuing in this fashion, construct a nested decreasing sequence of oriented triangles
T such that

(1) the length L,, of the boundary of 7™ is 2=™L, where L is the length of the
boundary of T’
(2)

Letting T = Ty,

| sr<am | n
(3) the diameter D,, of the T(™ is 27D, Where D is the diameter of T'.

Since also each 7™ is closed, there exists a unique point p € N,, 7. Using differen-
tiability of f at p, given € > 0, choose § such that, for |z — p| < 4,

1f(2) = f(p) = f'(p)(z = p)| < elz—pl.

A direct calculation shows, for any triangle S,

[

Thus, for m sufficiently large,

| fl=

T(m)
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| i<

and the proof is complete. [l

It follows that

4. ZEROS OF ANALYTIC FUNCTIONS AND THE FUNDAMENTAL THEOREM OF
ALGEBRA

An entire function is an analytic function f: C — C.

Proposition 4.1. If f is entire, then f has a power series representation at the origin
with infinite radius of convergence.

The power series representation, with infinite radius of convergence, can actually be
taken about any point y € C.

Theorem 4.2 (Louiville). If f is entire and bounded, then f is constant.

Proof. Write the power series representation of f as

a0
f= Z a,z".
n=0

By hypothesis, there is an M € R.( such that | f(z)| < M uniformly in z. By the Cauchy
estimate, Corollary 2.2(iv), for every R € R,

M
™(0)| < nl—=.
700)] < nl
Hence £™)(0) is zero for each positive integer n. The conclusion now follows from Remark
2.4. O

Given a set X, a zero of a function f: X — C is a point y € X such that f(y) = 0.
A polynomial p is an entire function of the form, p(z) = Z?Zl p;jz7. It has degree d in
the case pg # 0. It is monic if p; = 1. Note that p is constant if and only if p; = 0 for
7 >0.

Theorem 4.3 (Fundamental Theorem of Algebra). A non-constant polynomial p : C —
C has a zero.

If p s a monic polynomial of degree d, then there exists a 1 < k < d, distinct

ai,...,a, € C and positive integers n; such that
k
p(z) = | [(z = a;)"
j=1

and Z?zl nj =d.

Lemma 4.4. If p is a non-constant polynomial, then for each C € R. there exists an
R e R such that |p(z)| = C for all |z| > R; i.e., lim.|_o p(2) = 0.
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Proof of Theorem /.3. Let p be a polynomial with no zeros. In this case f = p~! is

entire. By Lemma 4.4, there is an R € R such that |f(z)| <1 for |z] > R. On B(0; R)
the function f is continuous and hence (uniformly) bounded. Thus f is a bounded entire

function and hence, by Louivilles Theorem 4.2, constant. Thus p is constant.

We prove the second part by induction on the degree d of p. It is evidently true for a
monic polynomial of degree d = 1. Suppose the result is true for all polynomials of degree
d and p is a monic polynomial of degree d + 1. By the first part of the theorem, p has a
zero y. By a very special case of the Euclidean algorithm (we do need a little something
from algebra) there exists a polynomials s and r of degree d + 1 — 1 = d and at most
1—1 = 0 respectively such that p(z) = (z—a)s(z) +7(z). (Equivalently, write p in terms
of powers of (z —y)7 and observe p(y) = 0 implies p(z) = Z;l:l ¢j(z—y)’.) In particular
r is constant and from p(y) = 0 it follows that » = 0. Hence p-=(z — y)s, where s has
degree d. An application of the induction hypothesis completes this induction step. [

A subset D of a domain G < C is a determining set (for G) if the only analytic
function f : G — C that is zero on D is the 0 function. It immediately follows that any
two functions that agree on D are the same.

Proposition 4.5. Let G < C be a domain. If f : G — C is analytic, y € G and f(y) = 0,
then either f is identically 0, or there is ann and an analytic function g : G — C such
that g(y) # 0 and f(2) = (z — y)"g(z). Moreover, n is characterized by the property
fM(y) =0 form <n—1 and f™(y) # 0.

Proof. 1f f is not identically zero, but f(y) = 0, then there is a positive integer n such
that f(™(y) = 0 for m < n — 1 and f™(y) # 0 by Proposition 2.3 (ii). Thus, there is
an r > 0 such that f has the power a power series expansion,

O£
EEE

on B(y;r). Thus, there is an analytic function h defined on B(y;r) such that f(z) =
(z — y)"h(z) on B(y;r). Define g : G — C by g(z) = L9 for z # y and h(z) for

(z—y)™

z e B(y;r). O

J .

) 4 ®©
G = = 0" Y e — 0,

The order of a zero y of an analytic function f : G — C is the value n in Proposition
4.5. More general, if Q < C is open, f : Q — C is analytic and f(y) = 0, then the
proposition applies to the restriction of f to an open ball centered to y and the value n
is the order of the zero of f at y.

Proposition 4.6. Let D < C be a domain. If D < G has a limit point in G, then D 1is
a determining set.

Proof. Suppose f is analytic on G and zero on D and let a € D be a limit point of D.
In particular, f(y) = 0. Suppose f is not identically zero. In this case, by Proposition
4.5, there is an n and an analytic function g on G such that f(z) = (z — y)™g(z) and
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g(y) # 0. On the other hand, g must vanish on D\{y} since f does and (z — y)™ does
not. Since y is a limit point of D and g is continuous, g(y) = 0, a contradiction. O

Corollary 4.7. The zeros of an non-constant analytic function f : G — C are isolated;
i.e., if y € G and f(y) = 0, then there an r > 0 such that if z€ G and 0 < |z —y| <,
then f(z) # 0.

Proof. Suppose f has a non-isolated zero. In this case there exists a sequence (a,) from
G\{y} that converges to y. Hence D, the range of this sequence is a subset of G with a
limit point in D. Since f is zero on D, by Propostion 4.6, f is identically 0. 0

5. THE INDEX

Lemma 5.1. Suppose 2 < C is open, [l € C and ¢ : QO x I'— C. If

(i) ¥ is continuous;
(i1) for each fized w the function 1, : Q — C defined by, (z) = ¥(z;w) is analytic;
(111) there is a constant C € Rxq such that, for all  # z€ Q and w.€ 11,
1/}(C7 w) B w(Za U))
(—z
() v : [a,b] — 11 is a piecewise smooth curve,

then the function g : C\{~} — C defined by

ISC;

18 analytic and
oY
/
— _— d =
o= | SGwa
In particular, for each z, the function p,(v(s))y'(s) is integrable.

Proof. Without loss of generality, assume ~ is smooth. Thus,

g@=f¢@wmw$w

Fix z and suppose (, is a sequence from €2 converging to z with (, # z. Define f, :
[a,b] = C by
%U C’m/y S)) — %U Z, VS /
) = Pen(6) = U)o
Cn -z
By the hypothesis of item (iii) and the continuity of 4/, the sequence (f,) is uniformly
bounded. By item (ii) it converges pointwise on [a, b] to the function

£(5) = Yo (217 () = (A5 (9).
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In particular, f is integrable. By Theorem 1.1 (bounded convergence theorem),

i “22‘ an ds—f 7(s

and hence g is differentiable and its derivative is given by equation (3). By Theorem 3.2
(Goursat’s Theorem), ¢ is analytic. O

Suppose v : [a,b] — C is a (continuous) curve and let U = C\{y}. Since U is
open, its connected components are open sets. Further, there is an R > 0 such that
{v} < B(0;R). Hence, {|z| > R} lies in a single component called the unbounded
component of C\{~}.

Proposition 5.2. If v : [a,b] — C is a closed rectifiable path and 1) : {v} — C is
continuous, then f: C\{v} — C defined by

1
) = _f Y(w) d
2mi ), w—z
1s analytic.

If v : [a,b] — C is a closed rectifiable path, then the function n, : C\{y} — C

defined by

1 dw
ny(y) = i —w ydw

takes integer values, is constant on components and 1s zero on the unbounded component.

Proof. Suppose, for now ~ is piecewise smooth. By Lemma 5.1 applied to ¢ : (C\{~}) x

{y} — C defined by ¢(w) = z=—L= the function n, is analytic on (C\{fy} and, in
particular, continuous. To.show that n., takes integer values. Fix y € C\{v} and define
g:la,b] - C by
t /
g(t) = J ) ds.
a 7(8) -y
By the second fundamental theorem of calculus, ¢ is differentiable and
" (t
g(t) = ©_
V() —y
Thus,

(v=u)'=d(y-y) =0
This first order linear differential equation has solution,

Y=y =exp(— fg’) =Ce™?,
for some C € C. Observe g(a) and g(b) must differ by an integer multiple of 27 since
v(a) = v(b). Since g(0) = 0, we conclude that g(b) is an integer multiple of 27i.

For the general case, given ¢ > 0, choose a piecewise smooth path I' such that
y € C\{T'} and
ny(y) —nr(y)| <e
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It follows that n,(y) is an integer multiple of 27i. O

The number n,(y) is the index or winding number of «y with respect to a. Recall —y
is the function —v : [—b, —a] — C defined by —~v(s) = y(—s). From properties of line
integrals,

n—(y) = —ny(y).
Likewise, if v and § are equivalent paths, then

ny(y) = ns(y).

Finally, given two paths v : [a,b] — C and § : [b,¢] — C, let v+ ¢ denote the path with
domain [a, ¢] defined in the obvious way and note,

Ny15(Y) = 1 (y) + ns(y)-
Alternately, define n,,5(y) by this formula.

6. CAUCHY’S THEOREM AND INTEGRAL FORMULA

Given an open set 2 < C, an analytic function f: 2 — C and closed rectifiable
curves 7; in Q, let v = > v; and define, for.w € C\{~},

o) i= N g, ()

and
N
Jw), dw := Z Slw) dw.
yW Y m WY
The curve v is homologous to zero (in Q) if n,(w) = 0 for all w e C\Q.

Theorem 6.1. Suppose Q < C is open, [ : Q — C is analytic. If N € N* and
v; ¢ |a, b] — Q are closed rectifiable paths such that v = Y, ; is homologous to zero, then

forye i},
RN

ny(y) f(y) = o Vw——y w
Lemma 6.2. IfQ < C is open and f : Q — C is analytic, then the function ¢ : Q xQ —
C defined by
FE-Iw) oy,
7 — z—w 4
Uz w) {f@) e ()
15 continuous and has continuous partial derivatives. T

Proof. Let A = {(z,z) : 2z € Q}. Continuity of ¢ and of 2 on (€ x 2)\A is not in doubt.

Fix (y,y) € A and choose R > 0 such that B(y;2R) < Q. Let M denote a bound for
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|f| on B(y;2R). For w € B(y; R), Cauchy’s estimate (Corollary 2.2 (iv)) implies (since
B(w; R) = B(y; 2R)),
kE!M
(k) < )
790 < G
R

Fix 0 <r < 5 and let X = B(y;r) x B(y;r). For (z,w) € X, the sequence of partial
sums,

N e(b) ()
SN(z,w):Zf ( )(z—w)k

[
= K

converges uniformly to f(z) on X. Moreover, the sequence of partial sums

o f (w k—1
’;f kE )(z—w)

converges uniformly on X and hence to a continuous function F': X — C with contin-
uous partial derivatives. For z # w,

SN(Z7w) B f(w)

F(z,w) zlij{fn T ="z, w)
and for z = w, F(z,2) = f'(2) = ¥(z, 2). O

Proof Theorem 6.1 for piecewise smooth y. Suppose 7 is piecewise smooth. Since n, :
C\{y} — C is continuous and integer valued, the set H = {w € C\{v} : n,(w) = 0} is
open. By hypothesis C =Q u H.

By Lemma 5.1 the function ¢y : H — C defined by

q(C) = Qim i(—iu)gdw

is analytic. Define ¢ : ' x Q — C as in equation (4). It is an exercise to show, for
K < ) is compact, that Lemma 6.2 implies the hypotheses of Lemma 5.1 are satisfied
by v restricted to K x {v}. Hence g5 : 2 — C defined by

4a(C) = f (¢, w) duw

is analytic. If z € H n 2, then

w2) = [ =L - 102

w—z

because

LMZ dw:ﬂZ)L —dw = (2 (2) =0,

w — w—z

Hence ¢; and g, determine an entire function g. On the other hand, lim,_,, g(z) = 0 from
the definition of ¢g;. Hence ¢ is bounded and entire and hence constant by Theorem 4.2.
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Since lim,_,, g(z) = 0 this constant is 0 and the desired formula holds on H. Returning
to go, for z € Q\{v},

- [LtE,,

w—z
[ S 1
= ’Ymdw f(z)Lw_Zdw

= %dw — 2min,(2) f(2).

Finally to drop the piecewise smooth hypothesis, fix a y € C\{v} and choose an
open set U such that K = U < Q\{y}. Note the collection of functions F, : K — C
defined by F.(w) = = together with the function f(w)z =w is equicontinuous and
apply Lemma 39.1 0]

Corollary 6.3. Under the hypotheses of Theorem 6.1, for each k € N and w € C\{~v},

nv(w)f(k)(w) = EJ —f(z) dz.

C2mi ) (2 — w)krl
f
Sketch of proof. Verify that it is permissible to differentiate under the integral sign in
Theorem 6.1. U

Theorem 6.4 (Cauchy’s Theorem). Suppose Q. C is open and g : Q — C is analytic,
N e N* and v; are rectifiable curves with {y;}-< Q for j =1,2,...,N. Let v = > v;. If
ny(w) = 0 for each w € C\Q (7 is homologous to zero in ), then

fgdz=0.
.

Proof. Fix y € C\{7} and apply Theorem 6.1 to the function f = g(2)(z — y). O

7. HOMOTOPIC CURVES AND CAUCHY’S THEOREM

7.1. Homotopy. Let 2 ¢ C be an open set. Closed rectifiable paths v,4 : [0,1] — Q
are homotopic in €, if there exists a continuous function I : [0, 1] x [0, 1] — €2 such that

(i) I'(s,0) = 7(s);
(i) I'(s,1) = d(s);
(iii) I'(0,¢) = I'(1,¢) for all ¢.

Remark 7.1. The definition makes sense without the rectifiable assumption. On the
other hand, even assuming v and § are rectifiable, there is not the assumption that
the closed curves v:(s) = I'(s,t) are rectifiable for 0 < ¢ < 1. Homotopy defines an
equivalence relation on closed (rectifiable) paths in 2. ©
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An open set Q < C is star shaped if there exists a point y € ) such that the line
segment [y, z] lies in € for each z € Q. In this case, 2 is star shaped with respect to y.

Proposition 7.2. If Q < C s star shaped, then 2 is connected and every pair of closed
paths in ) are homotopic. T

Proof. Suppose (2 is star shaped with respect to y. Given z,w € Q, the path [z,y, w] =
[z, y] + [y, w] lies in 2. Hence ) is path connected and therefore connected.

To prove the second statement, it suffices to show that every curve v € € is
homotopic to the curve 6 : [0,1] — € defined by 0(s) = y. To this end, define
[':[0,1] x [0,1] = Q by T'(s,t) = ty(s) + (1 — t)y. O

As an example, consider the non-rectifiable closed path v [0,2] — C defined by
Y(t) =t +itsin(2) for 1 < ¢ > 0 and f(0) = 0 and y(t)’= t =1+ 0i for 1 < ¢ <
2. Choosing R € R large enough so that {v} € B(0;R), by Proposition 7.2, v is
homotopic to each constant curve in B(0; R). Thus, we can choose two constant curves
and construct a homotopy I' between them so that I'(s, 3) = v is not rectifiable.

A curve v in  that is homotopic to a constant curve is homotopic to 0.

7.2. Cauchy Thoerem for homotopic curves.

Theorem 7.3 (Homotopic version of Cauchy’s Theorem). Suppose Q@ = C is open and
f:Q — Cis analytic. If 7,6 : [0,1] — Q are homotopic closed rectifiable paths, then

LdeZLfdz.

If o,7:[0,1] — Q are rectifiable curves and there is an open ball B < 2 such that
the path

A=o+[o(1),7(1)] =7 —[0(0),7(0)]
lies in B, then by Corollary 2.2(vi), { A/ = 0. Equivalently,

7(0) (1)
[ESEENE ;.
o T a(0) sigma(1)
The proof of Theorem 7.3 involves repeated applications of this observation.

Lemma 7.4. Suppose Q < C is open, f:Q — C is analytic, v : [0,1] — Q is rectifiable
and P = {0 = sy < s1--- < sy = 1} is a partition of [0,1]. Let v; = 7|5, 1.s;]
for 1 < j < N and let o; denote the path v; + [v(s;),v(sj—1)]. Let 7 denote the
polygonal path [v(so),Y(s1),...,v(sn)]. If for each 1 < j < N there ezists an open ball
B; = Bj(y;; ;) such that B; < Q and o; lies in B;, then T lies in Q and

Lfdz=£fdz.
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Proof. By assumption, each line segment L; = [v(s;—1),7(s;)] lies in ©. Hence so does
the polygonal path 7.

Note that each 7; is a closed path in B; < Q. Hence, using Corollary 2.2 (vi) in the

last equality,
dez—ffdz—EJ fdz—f fdz
:ZLfdz:o.

O

Lemma 7.5. Suppose Q < C is open, f: Q c C — C is analytic, 7,0 : [0,1] — C are
rectifiable and P = {0 = sg < $1--- < sy = 1} is a partition of [0,1]. For 1 < j < N,
let I; = [sj_1,8;] and for 1 <0 < j < N let L; denote the line segment [(s;), (S])]].
Let A; denote the path

Aj = T|[j + Lj - 0'|]]. — Lj—l-
If for each 1 < j < N, there is a ball B; < Q such that A; lies in Bj, then

| raz=] s
f

Proof. Note that each A; is a closed rectifiable path lying in B; < Q and Y] A; = v — 0.
Hence, using Corollary 2 2 (vi)

dez—ffdz- f fdz=0.

Proof of Theorem 7.5. Since I' is'continuous with compact domain, its range is a com-
pact subset of €2. Hence there exists an » > 0 such that if x is in the range of I', then
B(z;r) < Q. Since T is uniformly continuous, there exists a positive integer n such that

if (s,t), (u,v) € [0,1] x [0,1] and |(s,t) — (u,v)| < 2, then
IT(s,t) — T'(u,v)| <r.

O

Let P denote the partition of [0, 1] determined by the points s; = % and, for 1 < j <n.
For 0 < j <n, let 7; denote the polygonal path

7] = [[F(507 8j)7 F(Sla Sj)a s 7F(3n7 50)]]-
Let Ajr = [['(sk-1,5j-1), (5%, 5j-1), T'(s5k,5;),[s,_, s;] and note that Aj;, is a closed
polygonal path whose vertices lie in the ball B;, = B(I'(s;,s;);7) < Q. Hence, by

Lemma 7.5,
J fdz = f fdz.
Yi—1 Vi
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Now consider the curves v and 7 and fix a 1 < k < n. For sp_1 < s < sy,
[D(sks 80) = ()] = [(sk, 50) = T'(s, 50) <,
since |(sk, so) — (s, 50)| < 2. Likewise, for some 0 < A < 1 depending on s,
IT(sk, 80) — 0(8)| = M (sk, 80) — ISk, S0) + (1 — X)) (T'(sk, $0) — T'(S0,80))| < 7-
Thus the path o; = V|5, ;0] — [Y(86=1),7(sx)] lies in the ball B(I'(sy,s0);7r) < Q.

Hence, by Lemma 7.4,
J fdz = f fdz
g 0

and likewise for § and ~,. The conclusion of the theorem now follows. OJ

We now collect several corollaries of Theorem 7.3.

Corollary 7.6. If Q < C s open, 7 is a closed rectifiable path homotopic to 0 in 2 and
f:Q — C is analytic, then
J fdz=0.
gl

In particular, v is homologous to 0 in Q (n(w) = 0 for all w e C\Q2). T

Proof. The first statement follows immediately from Theorem 7.3. The second follows
from the first by choosing f(z) = ﬁ and noting f is analytic in {2 (since w ¢ ©2). O

The Corollary 7.6 says, in part, if v is homotopic to 0, then ~ is homologous to 0
(in ©2). The converse is not necessarily true.

7.2.1. Independence of path. Suppose 2 c C is open. Rectifiable curves 7,6 : [0,1] — Q
are (fized endpoint) homotopic (in Q) if v(0) = §(0), v(1) = (1) and there exists a
continuous function I": [0, 1] x [0, 1] — Q such that

(1) T'(0,t) = ~(0) for all ¢;

(2) I'(1,t) = ~(1) for all t;
(3) I'(s,0) = 7(s); an
(4) T'(s,1) = d(s).

Remark 7.7. An exercise shows if v and ¢ are (rectifiable and) homotopic, then v — 4§
is a (rectifiable) closed curve homotopic to 0. o

Corollary 7.8. If Q < C s open, f : Q@ — C is analytic and ~,0 are homotopic

rectifiable curves in §), then
f fdz = J fdz.
107 1)
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7.2.2. simple connectedness.

Proposition 7.9. If G < C s open and connected and if y,z € G, then there is a
rectifiable curve 7 : [0,1] — G such that v(0) =y and v(1) = z. T

Sketch of proof. The proof that connected plus locally path connected is easily modified
to prove this proposition when one uses instead that an open set 0 < C is locally
rectifiable path connected. O

An open set 2 < C is simply connected if it is connected and every closed rectifiable
path in € is homotopic to 0. Thus a star shaped domain is simply connected. In
particular, an open ball is simply connected. Item (i) of Corollary 7.10 below thus
contains Corollary 2.2(vi) (which was used in the proof of Theorem 7.3) as a special
case.

Corollary 7.10. Suppose G is a simply connected and f: G — C is analytic.
(1) If v : [0,1] — G is a closed rectifiable path, then

| ra=-c

(i1) If v,6 : [0,1] — G are rectifiable paths such that v(0) = 6(0) and v(1) = 6(1), then

[ -1
(i1i) f has a primitive.

() If f never vanishes, then there exists an analytic function g : G — C such that

f=e9.

(v) If f never vanishes, then f has a square root in G.
f

Proof. Ttem (i) follows immediately from Corollary 7.6 and the definitions. Item (ii)
follows from item (i) by considering the closed rectifiable curve v — §. To prove item
(iii), fix y € G. Define a function F' : G — C as follows. Given z € G choose, using
Proposition 7.9, a rectifiable curve « : [0,1] — G such that v(0) = y and (1) = z and

define
2) = L f

By item (ii), F is well defined. Now fix a point w and an r > 0 such that B(w;r) < G.
Let v be a path from y to w and note, for z € B(w;r)

F(Z):Lﬂ[wz}]f ff+f Iz

By Theorem 3.1, Sfu f is analytic in B(y;r) and its derivative is f. Hence F' is analytic
and F' = f.



MAAG6406-07 COURSE NOTES 2016-17 21

To prove item (iv), note that the function h = fTI is analytic in G. Hence by item
(iii), there is an analytic function g : G — C such that ¢’ = h. Observe

(f exp(—g))" = f"exp(—g) — exp(—g)f" = 0.
Hence there is a non-zero constant ¢ € C such that f = cexp(g). In particular, choosing

d so that d? = ¢, the function h = dexp(1g) is analytic and h* = f, proving item (v). O

Remark 7.11. Note, in item (iv), f satisfies f' — ¢'f = 0. Formally, this first order
linear equation has solution,

f= exp(f g') = cexp(g),

motivating the choice of g in the proof. o

Remark 7.12. We will later see if any of the conclusions of Corollary 7.10 implies G is
simply connected. o

8. COUNTING ZEROS

The multiplicity of a zero y of an analytic function f is a synonym for the order of
the zero.

Proposition 8.1. Suppose €2 < C is open and f : Q — C is analytic with finitely many
2eros yi, ...y, (counted with multiplicity). If v : [0,1] — C is a closed rectifiable curve
that is homologous to zero and if {v} 0 {y1,.. ., y,} =, then

L ff
Z ny (Yy)= G L sz-

j=1
I

There is nothing special here about 0 and f(z) = 0. Given y € C, simply replace f
by f —y in Proposition 8.1 to count the zeros of the equation f(z) = y.

Proof. By Proposition 4.5, there is an analytic function g : {2 — C such that g is never
0 and

f(2) = [(z = wi)g(2).
=1
It follows that ’

'"(z S| "(z
OIS}
o c Y 9(2)
Since % is analytic in €2 and, by assumption, v is homologous to zero in €2, an application
of Theorem 6.4 and Proposition 5.2 hows

/

f CACHPT
5 9(2)

and the proof is complete. 0]
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8.1. The Open Mapping Theorem. A zero y of an analytic function f is simple if it
has order one.

Proposition 8.2. If ) < C s open, f : Q — C s analytic and y € €2 is a zero of f
of order m, then there exists r,0 > 0 such that B(y;r) < Q and if 0 < |w| < 9§, then
g(z) = f(2) — w has exactly m zeros in B(y;r) and they are all simple. T

Proof. By Theorem 4.6, y can not be an accumulation point for the zeros of f’ (as
otherwise f’ is constant on the component of {2 containing y and hence zero on this
component). By Corollary 4.7 y is not an isolated zero of f. Hence there is an r > 0
such that B(y,2r) < Q and y is the only zero of f in B(y;2r) and f'(z) # 0 for
0 < |z—y| < 2r too. Let v : [0,27] — Q denote the curve v(s) = y+re’. Let o = for.
It follows that 0 ¢ {o} and thus there is a 6 > 0 such that B(0;0) n {c} = &. For
w € B(0;9), the points 0 and w lie in the same component of C\{c} and therefore, by
Proposition 5.2 n,(w) is constantly equal to n,(0) on B(0;9).

Let y1,...,yq denote the zeros of f(z) —w in B(y;r). Since w ¢ {7}, the equation
f(2) —w = 0 has no solutions on {7} and thus there is an 0 < r <’ < 2r such that
Y1, ..., Yq are the zeros of f(z) —w on B(y;r’). By Proposition 8.1,

1 [ 1
nol) =omi ), 7= w

I 1 9 )
“omi | Foe—a Fi(s))y () ds
:L [ f/(Z) dZ
2mi ), f(z)—w

d
= Z n,(yj) = d.

Hence n,(w) = d for all w € B(0;0). Choosing w = 0 shows d = m. Finally, since
f'(z) # 0 on B(y;r), all the zeros'of f(z) —w in B(y;r) are simple. O

dz

Proposition 8.3. If Q@ < C is open and f : Q@ — C is analytic and one-one, then
f'(z) #0 for z€ Q. T

Proof. Arguing the contrapositive, suppose y € Q and f'(y) = 0. Let g(z) = f(2)— f(y).
It follows that ¢ has a zero of order at least two at y. In particular, by Proposition
8.1, there exists a w # 0 such that g(z) = w has at least two solutions. It follows that
f(z) = f(y) + w has at least two solutions and thus f is not one-one. O

Theorem 8.4 (Open Mapping). If G < C is a domain and f : G — C is analytic and
not constant and U < G is open, then f(U) is open. In particular, f(G) is open.

Assuming V < R? is open, if F' : V — R? is continuously differentiable and its
derivative is pointwise invertible, then F'(V') is open by the inverse function theorem.
Thus the open mapping theorem is perhaps stronger than one might expect as there is
no need to assume f’ never zero.
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Proof. Let ¢ € f(U) be given. Thus there is a point y € U such that f(y) — ¢ = 0. Let
g denote the function ¢g(z) = f(z) — (. Since f is not constant, g has a zero of finite
multiplicity at y. By Proposition 8.2 applied to g|y, there exists an r,d > 0 such that
B(y;r) < U and for each w € B(0;4) the equation g(z) = w has a solution in B(y;r)
and hence in U. Thus B(0;6) c g(U). Equivalently B((;0) < f(U) and hence f(U) is
open. [

Corollary 8.5. If G is a domain and g : G — C is analytic and one-one, then f(G) <
C is open and the inverse of the function f : G — f(G) defined by f(z) = g(z) is
analytic. T

Proof. Since f maps open sets to open sets, the inverse image of an open set under f~! is
open. Thus f~! is continuous. Since also z = f(f~!(z)) and f’ isnever 0 by Proposition
8.3, it follows that f~! is analytic by Proposition 3.2.20 in Conway. U

9. ISOLATED SINGULARITIES OF ANALYTIC FUNCTIONS

9.1. Removable Singularities. Suppose 2 < C is open and f : {2 — C is analytic.
A point y € C\Q is an isolated singularity of f; if there is an R > 0 such that {0 <
|z —y| < R} < €. The isolated singularity y is removable if there is an analytic function
g: Qu{y} - C such that g|lo = f. Equivalently, if there exists an r > 0 such that
B(y;r)\{y} < © and there is an analytic function ¢g : B(y;r) — C such that g and f

agree on B(y;r)\{y}.

Theorem 9.1 (Riemann). Suppose Q < C is open and f : Q — C is analytic and y is
an isolated singularity of f. The following are equivalent.

(1) y is removable;
(2)
b (= y) f(2) = 0

(8) there is an R > 0 such that B(y; R)\{y} < Q and |f| is bounded on B(y; R)\{y}.

Proof. Without loss of generality assume Q = B(y; R)\{y} for some R € R.q. Suppose
the indicated limit exists and is 0. Define h: Q U {y} — C by h(z) = (z —y)?f(z) for
z # y and h(y) = 0. It follows that h|g is analytic. Moreover, an easy computation
using lim,,,(z — y)f(2) = 0 shows h is differentiable at y (and A'(y) = 0). Thus h
is differentiable on B(y; R) and, by Theorem 3.2, analytic. Since h(y) = 0 = h'(y),
by Proposition 4.5, there is an analytic function ¢ : B(y; R) — C such that h(z) =
(z — y)%g(z). Tt follows that g is analytic and g = f on B(y; R)\{y}. Hence item (2)
implies (1). On the other hand the implications item (1) implies item (3) implies item
(2) are evident. O

9.2. Poles. Suppose ()  C is open and f : 2 — C. An isolated singularity y of f is a
pole if

lim |f(2)| = co.

zZ—y

An isolated singularity that is neither removable nor a pole is an essential singularity.
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Proposition 9.2. Suppose G = C is a domain, y € G and f is analytic on G\{y}. If f
has a pole at y, then there is an m € N and an analytic function g : G — C such that,

_9(3)
f(Z) - (Z—Cl)m‘
Moreover, there exists a_q,...,a_,, € C such that

f(z) = a0z = 9) 7 + o(2)
j=1
for an analytic function ¢ : G — C. T

The smallest such m is the order of the pole of f at y. In particular, g(y) # 0 for
this choice of m. The expression >}, a_;(z — y)’ is the singular part of f.

Proof. Since f has a pole at y, there exists an r > 0 such that if 0 < |z — y| < r, then
|f(2)] > 1. Hence f has no zeros on B(y;r). Moreover, because f has a pole at y, the
function h : B(y;r)\{y} — C defined by h(z) = ﬁ has a removable singularity at a and
hence extends, by defining h(y) = 0 to an analytic function, still denoted by h, on B(y;r).
Since h(y) = 0, but h is not identically zero, letting m denote the order of the zero of h
at y, there is an analytic function G : B(y;r) — C such that h(z) = (z — a)"G(z) and
G(y) # 0. Since G is never zero, it follows that, (z — y)™f(z) = % on B(y;r)\{aa}.
It follows that (z — y)™ f(z) has a removable singularity at y; i.e., there is an analytic
function g : Q — C such that g(z) =(z —y)" f(z) for z # y. Since g(y) # 0, we see that
m is as large as possible.

The moreover statement follows easily from what has already been proved by ex-
panding g(z) in a power series in a neighborhood of y. 0

Corollary 9.3. An isolated singularity y of f is either removable or a pole if and only
if there is an m € N such that lim,_,, f(z) = 0. Indeed, if m is the smallest such positive
integer, then y is removable if and only if m = 0 and otherwise is a pole of order m. T

Sketch of proof. If lim,_,,(2—y)™ f(z) = 0, then (z—y)™ f(z) has a removable singularity
at y and hence there is an analytic function g (even at y) such that g(z) = (z —y)" f(2).

Assuming m is as small as possible, g(y) # 0. In the case m > 1, it follows that
lim,_,, | f(2)] = . O

9.3. Laurent Series and essential singularities. An annulus (centered to the origin)
is a subset of C of the form {r < |z| < R} for some 0 < r < R. Given complex numbers
{a, : n € Z}, the expression >, a,z" is a Laurent Series. For a given z € C\{0}
the series converges absolutely if both Zfzo an,z™ and > a_,z~" converge absolutely.
In this case >, a,2" also denotes Y, ° ja,2" + >, a_p,z~". Given 0 < r < R, this
Laurent series converges uniformly on compact subsets of {r < |z| < R} if >, a,2" and
> a_n,z~" converge absolutely on the domains {|z| < R} and {|z| > r} respectively
and, for each 0 < r <1’ < R’ < R, these series converge uniformly on {|z| < R’} and on
{|z| = '} respectively.
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Proposition 9.4. Suppose 0 < r < R and A is the annulus {r < |z| < R}. If f: A— C
is analytic, then there exists complex numbers {a, : n € Z} such that the Laurent series
Zfz_m a,z" converges absolutely and uniformly on compact subsets of A to f. Moreover
the a,, are unique and, for any r < u < R, for each n € Z,

(e,

= y n+1
271 v 7

where v : [0,2m] — A is given by y(s) = ue®. i

Sketch of proof. Here is a sketch of the proof, leaving many details to be filled in and
assertions to be justified by the gentle reader. That the a, are independent of ~ is an
immediate consequence of the homotopic version of Cauchy’s Theorem.

Fix r < u < U < R and define ~,T" : [0,27] — A by ~(s) = wexp(is) and
I'(s) = Uexp(is). Let 7 =T —~. Observe,

)
(i) if |2| < u, then n,(2) = np(z) = 1 and n.(z) = 0;
(i) if |z| > U, then nr(z) = nr(z) = 0 and n.(z) =0;
(iii) if w < |2| < U, then np(z) = 1 and n,(z) = 0'and thus n,(z) ="1.

From (i) and (ii) it follows that 7 is homologous to zero C\{r < |z| < R}. Hence, by (iii)
and Cauchy’s integral formula, if u < |z| < U, then using |z| < |w| on I" and |z| > |w|
on v to see that the series converge uniformly to justify the interchange of summations
and integrals,

1 f(w) dw—i f(w) dw

2m Jpw — 2 2 ), w— z

w
Lo flw) dw+ 1 flw

y z - Z_
27T’LJF]_—EU) 2m ), 1 == 2

2 [am [ o] B [

To see that the (a,) are uniquely determined, suppose >,° _ b,2" is a Laurent
expansion of f in A = {r < |z| < R} with the expansion converging uniformly on
compact subsets of A. Using uniform convergence to justify the interchange of limits,

ak = k+1 ZJ kn+1dz b

O

Corollary 9.5. Suppose 2 < C is open and f : Q — C is analytic. If y is an isolated
singularity of f and

[es}

Sa

n=0
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is the Laurent expansion of f in some annulus in ) centered to y, then

(1) y is an isolated singularity if and only if a,, =0 for n < 0;
(2) y is a pole of order m if and only if a, = 0 for n < m; and
(8) y is an essential singularity if and only if a,, # 0 for infinitely many n < 0.

t

Proof. Ttem (1) is left as an exercise - and is essentially (pun intended) contained in
item (2). To prove item (2), suppose y is a pole of f of order m. By proposition 9.2,
there is an analytic g : 2 — C such that f(z) = (2 — y)"g(z). Expanding g in a power
series (near y) gives a Laurent expansion (and hence the Laurent expansion) > a,2" for
f where a,, = 0 for n < m. The converse is evident.

Item (3) follows immediately from items (2) and (1) (since an essential singularity,
by definition is one that is neither removable nor a pole). U

An isolated singularity y of f is essential if and only if lim,_,, | f(2)| does not exist
as an element of [0, o0].

Theorem 9.6 (Casorati-Weierstrass). Suppose Q2 < C s open, y € Q and f : Q\{y} — C
1s analytic. If f has an essential singularity at y, then for each 0 < r < 1 such that
B(y;r) < Q, the closure of the set f({0 < |z —y| < r}) is C.

Proof. We prove the contrapositive. Accordingly suppose there is an r > 0, a point ( € C
and an € > 0 such that f({0 < [z —y| <r} ) n{lz—(| <€} =T.;ie if0<|z—y| <,
then |f(2) — (| = e. It follows that the function g(z) = f(ZZT);C has a pole at y. Let m > 1
denote the order of this pole. Hence, by Corollary (9.3), lim,_,(z — y)™"'g(z) = 0.
Equivalently, lim,_,,(z— y)™(f(z) —¢) = 0. Thus lim, (2 — y)™f(2) = 0 too and
consequently f has either a removable singularity (if m = 1) or a pole at y. 0

Example 9.7. From Corollary 9.5, to exhibit a function with an essential singularity at
0 it suffices to write down a series >, a,2" with at most finitely many terms a,, and for
which there is an 7 > 0 such that the series converges absolutely for 0 < |z|. As a concrete
example, consider f : C\{0} — C defined by f(z) = exp(2). It has the series expansion
Yo 52 ™ It is also easy to see, for each r > 0, the set f({0 < [z] < r}) = C\{0} and
thus conclude 0 is an essential singularity by Casorati-Weierstrass. A

Problem 9.1. Fix r > 0. Suppose (a,,) is sequence from C\{0} that converges to 0 with
la,| < 7 and let G = {0 < |z] < r}\{ax : k}. Show, if f is analytic on G with poles at
the points ay, then for every w € C there is a sequence ()\y) from G converging to 0 with

k) = w.

Problem 9.2. Suppose f is analytic on {0 < |z| < r}. Show, if f has an essential
singularity at 0, then for every c € C, every € > 0 and every § > 0, there exits a y such
that |c—y| < e and f(z) = y has infinitely many solutions in {0 < |z| < d}. [Suggestion:
Consider f({0 < |z| < 1) and apply the Baire Category Theorem.]
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Problem 9.3. Suppose f is entire and n is a positive integer. Show, if there is an
R, M > 0 such that |f(2)| < M|z|™ for |z] > R, then f is a polynomial of degree at most
n.

Problem 9.4. Suppose f is entire. Show, if g(z) = f() has either a removable sin-
gularity or a pole at 0 (i.e., f has a pole or removable singularity at oo, then f is a
polynomial.

10. RESIDUES

Suppose 2 < C is open, y € Q and f : Q\{y} is analytic. Thus there is an R > 0
such that f has a Laurent expansion in {0 < |z — y| < R},

0

Z anz”.

n=—aoo

The residue of f at y is a_; and is denoted res(f;y). Note that, for 0 < § < R, a nonzero
integer m and with o : [0,1] — B(y; R)\{y} denoting the path o(s) = y + d exp(27wmis),

if f = mres(f;y). (5)

211

Theorem 10.1 (Residue Theorem). Suppose 2 = C is open and {yi,...,yqs} < Q. Let
G=MN{y1,...,ya}. If f: G — C is analytic and if v [0,1] — G is a closed rectifiable
path that is homologous to 0 in §2, then

1
271

[ > st et ).

Proof. Let m; = n,(y;). Choose ry,...;7q > 0 such that the balls B; = B(y;;2r;) are
pairwise disjoint and are subsets of Q. Let v; : [0,1] — G denote the path v,(s) =
Yk + 1 exp(—2mmyis). In particular,

d

ny(y5) + Z Ny (y;) = 0.

k=1
Further, for y ¢ €0,

d
n(y) + Z Ny (y) =040 =0,
k=1

since v is, by hypothesis, homologous to 0 in 2. Thus 7 = v — >, 7 is homologous to
zero in G. Since f is analytic in G, Theorem 6.4 (Cauchy’s Theorem) implies

0=Lf=LerZk:ka:Lf—kareS(f;yk)-
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Remark 10.2. Often the Residue Theorem is used to calculate integrals in terms of the
residues (rather than finding residues by calculating integrals). Suppose f has a pole
of order m at y. In this case there is an analytic function ¢ such that ¢ (y) # 0 and

9(2) = (z = a)"f(2) and

res(f;y) = 19" (y).

(m—1)!

11. THE ARGUMENT PRINCIPLE

Suppose €2 < C is open. A function f is meromorphic on 2 if there exits a subset
G of Q such that f : G — C is analytic and each point of Q\G is either a removable
singularity or pole of f. In this case, if K is a compact subset of €2, then f has finitely
many poles in K (exercise) and hence the accumulation points of the set of poles of f
do not accumulate in 2.

Theorem 11.1 (Argument Principle). Suppose Q@ < C is open, g : Q@ — C is analytic
and f is meromorphic on 0 with finitely many poles py, ..., pn and finitely many zeros
Qs - - - qn each counted according to multiplicity. If v : [0,1] — Q\{p1, -, Pms Qs - - - G}
s a closed rectiﬁable curve that is homologous to zero in 2, then

of dZ_vaqJ 9(a5) Zn'vpj 9(p;)

Proof. Let G = Q\{p1,...,pm}. Hence f : G — C is analytic. If f has a pole of order
m at y, then there is an analytic funetion h : G U {y} — C such that h(™ (y) # 0 and
h(z) = (z —y)"f(z). Thus

2m

12 —m oK)
fz) 2=y h(z)
Applying to the poles of f repeatedly, produces an analytic ¢ : 2 — C such that

9( 9( ¢'( Z)
ANy sy o) el
and the zeros of 1 are prec1sely those of f, namely ¢q,...,q,. Suppose ¥ has zero of

order m at y. There exists a meromorphic function h : G — C such that g(y) # 0 and
¥(z) = (z —y)"h(z). Thus

psi'(z)  m h(z)

= + :
v(z)  z—y  h(z)
Applying this result repeatedly produces an analytic function ¢ : 2 — C without zeros

such that
g(z g( ©'( Z)
I O

Z =gk
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Since 7 is homologous to zero in €2, Cauchy’s integral formula and Cauchy’s Theorem

imply
L[
2mi J,

dz = > g(ae)nq (k) — Zg(pj)nv(pj) +0.

O

Corollary 11.2. Suppose Q2 = C is open and ¢ :  — C is analytic and B(y; R) < Q.
If ¢ is one-one on B(y; R), then ¢ = ¢|p:r) — ¢(B(y; R)) has an analytic inverse ¢~
and moreover, for each r < R and w € p(B(y;T),

wil(’w)— 1 290/<Z> d

T 2mi Lo(z) —w =

where vy : [0,1] — Q is the curve y(s) = y + re*™s. .

Proof. Without loss of generality, suppose 2 = B(y; R). By Proposition 8.3, varphi’(z) #
0 for z € B(y;R). Fix 0 <r < R and w € ¢(B(y;7)): There is a unique ¢ € B(y; R)
such that ¢(¢) = w. In Theorem 11.1, choose g(z) = z and f(z) = ¢(z) — w. In par-
ticular f has no poles and only the one zero ¢ of multiplicity one in B(y;r). Note too
{v} < B(y; R)\{(} and is homologous to zero in B(y;R) and n,(¢) = 1. Hence, by
Theorem 11.1,

b w) = ¢ = g(OmO =% (47 - | ﬁ#d

_%vf_% (2) —w
U

Theorem 11.3 (Rouche’s Theorem). Suppose f,g are meromorphic on an open set
Q2 < C containing B(y; R) with-no zeros or poles in {7}, where v : [0,1] — Q is given
by v(s) = Rexp(2mis).. Let Z(f) and Z(g) denote the number of zeros of f and g in
B(y; R) counted with multiplicity (order) respectively and let P(f) and P(g) denote the
number of poles. If, for each z € {7},

1f(2) +9(2)| <[f(2)] + 19(2)]; (6)

then Z(f) = P(f) = Z(g) — P(g)-

Proof. The hypotheses imply there is an open set U containing {7} on neither f nor

g never vanishes. Define h : U — C by h = 5. Since f doesn’t vanish, A is never 0.

The inequality (6) implies the ratio % is not a positive real number. Hence h takes

values in C\[0,0). Let ¢ denote a branch of the logarithm on C\[0,0) and note the

®(2) = ¢(h(2)) is a primitive for %’ on U. Hence, by the fundamental theorem of line
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integrals and Theorem 11.1 (the argument principle),
1 h'

:27ri . h

_L(|Lg
w75
=(4(f) = P(f)) = (Z(9) = P(9))-
O

Remark 11.4. Often the hypothesis of Rouche’s Theorem has |f + g| < |g| in place of
[F+gl < [f]+1gl- o

Problem 11.1. Use Theorem 11.3 to give yet another proof of the fundamental theorem
of algebra. [Hint: If p is a monic polynomial of degree n and if R > 0 is sufficiently

large, then |pz(i) — 1l <1]

12. THE ALGEBRAS A(G) AND H*(G)

Given an open set {2 = C, let H*(Q2) and denote the bounded analytic functions
f:Q — C and let A(2) denote space of functions f : 4 — C such that f|g: Q2 — Cis
analytic. Both these spaces are algebras and, with the norms

[ =1l = sup{lf(2)] - z€ O},
are normed algebras such that

I£gll< 171 gl

It turns out that, appropriately interpreted, these norms are achieved on the bound-
ary of Q. Let 0,2 denote the boundary of 2 in the case that {2 is bounded; and let it
denote boundary of £ plus {c0} (in the extended complex plane) if €2 is not bounded.
For f:Q — C and y a limit point of €2, let

limsup f= “lim sup{|f(2)|:2z€Qn B(y;r)}.

2y r—0,r>0

The limit exists since the right hand side is decreasing with r. In particular, if p >
limsup,_,, f, then there is an r > 0 such that

sup{[f(2)] : z € Q@ n B(y;7)} < p.
Similarly, in the case ) is unbounded, let

limsup f = }%im sup{|f(2)| : z € , |z > R}.
—00

Z—00
Theorem 12.1. Suppose 2 < C is open (and nonempty) and f : Q2 — C. Let
Ly = {limsup|f(2)| : y € 0,9}

=Y

fe H® if and only if Ly is bounded and in this case
| flleo = sup(Ly).
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Further, if Q is a domain (connected) and f is not constant, then |f(z)| < | f|x for
z e .

The case where € is bounded and f € A(£2) more can be said.
Proposition 12.2. If Q < C is (nonempty) open and bounded and f € A(S)), then
[ flleo = max{|f(2)] : z € 0}

Further, if Q is a domain (connected) and f is not constant, then |f(z)| < | f|o for
z €.

Lemma 12.3. If Q < C is open and C < Q < C is a connected component of 2, then
0C < 09). T

Proof. Suppose x € 0C. Arguing by contradiction, suppose x € {2. Choose a connected
neighborhood V' of = such that V' < €. Since x € 0C, it follows that C' n'V # . Hence
C uV < Qis connected and therefore V u C' < () ite., V < C. But_then z is not a
boundary point of C', a contradiction. Hence x ¢ €2-and thus x € 0. O

Proof. Since 2 is bounded, © and 02 are both compact. Hence,

[fllec = max{]f(2)] : z € Q}.

In particular, there is a point p € Q such that |f(p)}= |f(z)| for z € Q. If p € Q, then
| fla| has a maximum in © and hence, by Theorem 2.5 (the maximum modulus theorem),
| f| is constant on the connected component €2, of 2 containing p. Hence |f(¢)| = |f(p)]
for ¢ € 0€2,. Since 0€2, < 0§, the result follows. O

Proof of Theorem 12.1. That f € H®({2) implies Ly is bounded is immediate. Suppose
f:Q — Cand Ly is bounded. Let M =sup(Ly). Given p > M, let

Hy = {ze Q:|f(2)] > o).
Since |f| is continuous, H, is open. Given y € 012, there exists an r > 0 such that
|f(2)| < pfor z e B(y;r) n Q. Thus there is an open set U o 02 such that H,nU = .
Hence H, = Q. Similarly, if Q is unbounded, then there is an R > 0 such that |f(2)] < p
for = € Q and |2|] > R. Thus, in any case, H, is bounded. It follows that H, is
compact and therefore, by Proposition 12.2 applied to f restricted to H,, assuming H,
is nonempty,

p<supl[f(2)|: 2 € Hy} = max{|f(2)| : 2 € 0H,} < p,

a contradiction. Hence H, is empty and |f(z)| < p for all z € Q@ and p > M. Hence
feH*®(Q) and | f|o = M. O

Remark 12.4. Note that we may view, A(Q2) < C'(02) in the case of bonded 2. When
Q=D = {|z| < 1} (the unit disk), A(D) is known as the disc algebra and H*(D) is
known as H®. Later we will see that these spaces are in fact complete and hence Banach
spaces. o
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12.1. Mappings of the disk, Schwarz Lemma. A complex number c is unimodular
if |e| = 1.

Theorem 12.5 (Schwarz Lemma). If f : D — D is analytic and f(0) = 0, then

(1) |f(2)| < |z] for all z € Dy
(i) [f'(0)] < 1;
(i1i) and if equality holds in either items (i) or (ii), then there is a unimodular ¢ such
that f(z) = cz.

Proof. By Proposition 4.5, there is an analytic function g : D — C such that f(z) =
2g(z). Fix 0 < r < 1. The function g is analytic on B(0;r), continuous on B(0;r) and
19(¢)| < £ on @B(0;r). Hence by Proposition 12.2, if |z| < r, then |g(2)| < +. Fixing z
and letting r > 1 tend to 1 gives |g(z)| < 1. Thus, |f(z)] < |z| for |z| < 1. To prove
item (i), note that [£&] = |g(2)] < 1, for z # 0.

Now suppose there is a w € D such that |f(w)| = Jw|. It follows that |g(w)| = 1 and
hence, by maximum modulus, g(z) = |g(w)]| for all z. Finally, suppose |f'(0)| = 1. In
this case |g(0)| = 1 and again maximum modulus applied to g shows f(z) = cz for some
unimodular c. O

Remark 12.6. von Neumann’s inequality. o

Given w € D, the mapping

Z—=w

PulEhE T,

is easily seen to give a mapping ¢,, : D — D that is an automorphism (one-one and onto)
by verifying |, (z)| <1 for z € D and that ¢_,, is its inverse. In particular, |p,(z)| =1
for |z = 1.

Proposition 12.7. If f : D = D is an analytic automorphism (one-one and onto), then
there is a w € D and a unimodular ¢ such that

f(2) = epu(z) = ¢

t

Proof. Since f is onto, there is a w such that f(w) = 0. Hence g = foyp_,, : D —> D
and ¢g(0) = 0. By the Schwarz Lemma, |g(z)| < |z| for z € D. Since g7! : D — D,

the Schwarz lemma also gives |z| = |¢g7'(g(2))] < |g(2)| for z € D. Hence, again by
the Schwarz Lemma, there is a unimodular ¢ such that g(z) = cz. The result now
follows. N

Problem 12.1. Show, if f : D — D is an analytic automorphism, then f has at most
one fixed point or f(z) = z.
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Problem 12.2. This problem generalizes Problem 12.1. The function p : D — D defined
by p(z,w) = Hf__;”;' is the Poincare metric or hyperbolic distance between z and w. Show,

if f:D— D and z,w e D, then
p(f(2), f(w)) < pl(z,w).

13. THE TOPOLOGY OF UNIFORM CONVERGENCE ON COMPACT SETS

13.1. Preliminaries. An exhaustion of an open set 2 < C by compact sets is a sequence
(K,,) of compacts sets such that

(i) Q = UK,;
(ii) for each n, K, < K

o1 (interior).

Lemma 13.1. If (K,,) is an exhaustion of Q and K < Q is compact, then there ezists

an N such that K < Ky. T
Proof. Observe Q = UK. Hence, if K < Q) is compact, then {K? :n} is an open cover
of K. Since K, = K, it follows that there is an NV such that K < K7}. O
Proposition 13.2. There is an ezhaustion (K,) of Q such that if n € N and C is a
connected component of Co\K,, then C contains a component of C\S. T
Proof. Let

1
K, ={|lz| <n} n{z:d(z,C\Q) > ﬁ}
Here d(z, C\Q?) is the distance from z to C\Q2. The set K, are closed and bounded and
hence compact. Let

Ur=flz| <} n {z: d(z,C\Q) > %}

and note each U, is'an open subset of 2. Since K, < U, < K, it follows that

K, c K, . Since Q = UU, we conclude () € UK too.

Now fix n and suppose C' is a connected component of C,\K,. Since C,\K, >
Cy\ (2, the result is true if C' is the unbounded component (the component containing o)
of C,\K,,. Note too, that the unbounded component contains {|z| > n}. Now suppose
C'is a bounded component and z € C. In particular, |z| < n and thus d(z,C\Q) < +.
Hence there is a point w € C\Q such that |z — w| < 2. Now z € B(w; 1) c C\K,, as
w € C\Q. The set B(w; +) is connected subset of C\K,, that contains z € C. Therefore,
B(w; %) c C and in particular w € C. Let C’ denote the component of C\{2 containing
w. Since w € ¢ < C\K,, and w € C, it follows that C' < C. O

Let X be a set. A function 7: X x X — [0,00) is a semi-metric if it satisfies all the
axioms of a metric except for 7(x,y) = 0 does not necessarily imply = = y.

Lemma 13.3. If d is a semimetric on X, then so is 7 : X x X — [0,00) defined by

d(z,y)

(@, y) = 1+d(z,y)
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f
Sketch of proof. Compute, for a,b = 0,
a+b a b
l4a+b 14+a 1+0b
O

13.2. The space (C(£2, X), p). Recall that C,, is a metric space with the metric

__ﬁﬂL__7 z,weC
d(zw) = {%*'Z'W”“ ec (7)

1+]22]

Given 2 < C open and X a complete metric space (usually either C or Cy), let
C(€, X) denote the space of continuous functions f : Q- — X. Given a compact set
K < Q, the function dg : C'(2, X) x C(Q, X) — [0, 00) defined by

dg(f,g) = sup{d(f(2),9(2)) : z € K}
is a semimetric on C(2, X).
Given an exhaustion (K,) of Q, let d,, = dg, and let
dn(fsg
pu(f.9) ™

C 1+da(f,9)
Thus p, is a semimetric by Lemma 13.3. Note, that for each f, g, the series

A pa(f19)
275

converges with value less than 1. Define p(f, g) by this series. It of course depends upon
the choice of exhaustion.

Proposition 13.4. p is a metric on C(Q, X). T

Proof. Standard arguments show each d,, is a semimetric and thus, by Lemma 13.3, so
is each p,, and therefore p. It remains to show p is positive definite; i.e., if p(f, f) = 0,
then f = 0. If p(f, f) =0, then d,(f, f) = 0 for each n. Hence f = 0 on each K, and
since ) = UK, it follows that f = 0. U

Proposition 13.5. If 0 > 0 and K < () is compact, then there exists a € > 0 such that
for each ¥ € C(Q, X),

{9:p(,9) <€} :=B,(;¢) € Bg(;6) :={g€ C(Q,X) : dg (¢, 9) < 0}.

In particular, for each K < Q compact, each v € C(Q,X) and each 6 > 0, the set
By (1;0) is open in (C(Q, X), p).

Conwversely, for each € > 0 there is a compact set K and § > 0 such that for each 1),
By (;0) < B,(;€).
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In particular, if O is open in (C(, X)), then for each 1) € O there is a compact K < Q
and 6 > 0 such that Bk (1;0) < O.

Finally, O is open in (C(, X)) if and only if for each 1) € O there is a compact set
K and an € > 0 such that By (¢;€) < O. In particular, the open sets in (C (€, X), p) do
not depend on the choice of exhaustion (Kp).

Proposition 13.5 says the collection of sets {Bg(f;0) : K, f,0} is a base for the
topology of (C(€2, X), p).

Sketch of proof. Suppose K < ) compact and > 0 are given. There is an N such that
K < Ky by Lemma 13.1. Now there is a constant C' such that pn(f,g9) < Cp(f,g).
Choose € > 0 so that 1 = Ce < 1 and £, < 4. If ¢ € C(Q, X) and p(4, g) < ¢, then

t = pn(¥, g) < Ce and hence

1
dn (¥, g) = T-7° % <.

Thus {g : p(v,g9) < €} < {g: dn(¥,g) < 6} < Bg(;d) and hence By (1);4) is open in
(C(Q,X),p). In particular, if O < C(Q2, X) andfor each ¥ € O there is a compact set
K and § > 0 such that Bg(1,0) < O, then O is open.

Conversely, let € > 0 be given. Choose /N _such that
> Do
n=N+1 2n 2

Choose K = Ky and § < se. Suppose ¢ € C(Q,X) and dx (¢, g) < 0, then pg (¢, g) <6
too and hence

N
p(w,g) < Z pn(;ia g) +
n=1

N

2—n+

n=1

Thus B (v, 9) < B,(¢¥5€). O

Proposition 13.6. A sequence (f,) in (C(Q,X),p) converges to an f € (C(2),X)
if and only if for each compact subset K — €, the sequence (f.|x) converges to f|k
uniformly. Similarly, (f,) is Cauchy in C(2, X) if and only if for each compact K < Q
the sequence (fn|k) is Cauchy in C(K,X). T

<pn(¥) <e€

1=
—_
(NN e}

The conclusion of Proposition 13.6 is often expressed less formal as: (f,,) converges
uniformly on compact sets to f.

Proof. Suppose (f,,) converges to f uniformly on compact sets to f. Let € > 0 be given.
By Proposition 13.5, there is a compact K and § > 0 such that Bi(f;d) < B,(f;0) =
{g : d(f,g) < p}. Since (fn|xk) converges uniformly to f|x, there is an N such that
dg(fn, f) <0 for n = N. Hence (f,) converges to f in (C(£2, X), p).
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Now suppose (f,) converges to f in (C(£2, X), p) and let K <  compact and € > 0
be given. By 13.5, there is a ¢ > 0 such that B,(f;0) < Bx(f;€¢). Hence, there is an
N such that if n = N, then f, € Bg(f;€); i.e., di(f, fn) < €. Thus (f,|x) converges
uniformly to f|g.

The second part of the proposition is left as an exercise. 0J

Theorem 13.7. C(Q2, X) is complete.

For K a compact set and X complete, it is well known from advanced calculus that
C(K, X) (the continuous X-valued functions on K in the supremum norm is complete).

Sketch of proof. Suppose (f,,) is Cauchy in C(€, X). Since {z} < Q is compact, (f,.(2))
is a Cauchy sequence in the complete metric space X and thus converges in X. Hence
there is a function f :  — X such that (f,) converges to f pointwise. Fix K <
compact. It follows that there is a continuous function fx : K — X such that (f,|x)

converges uniformly to fx. It follows that fx = f|x and hence (f,,) converges to f in
C(€, X), by Proposition 13.6. O

13.3. Normal Families. Recall, that for a metric space Y, compactness and sequential
compactness are equivalent. A subset % of C(Q, X) is normal if every sequence from
Z has a convergent subsequence. Thus . is normal if and only if . (closure) is
(sequentially) compact. In the old days, a set with compact closure was said to be
precompact.

Recall a subset Z of a metric space Y is totally bounded if for each § > 0 there
exists a positive integer N and pointsyi,...,yny € Z such that Z < UB,(y;;0); and Z
is compact if and only if it is complete and totally bounded.

Proposition 13.8. A (nonempty) subset F of C(2, X) is normal if and only if for
each K < € compact and 0 > 0, there exists a positive integer N and f1,..., [y € F
such that

F < Uil B (f530).
f

Since C(€), X) is complete, the proof amounts to showing the inclusion condition is
equivalent to total boundedness of .%.

Proof. Suppose .% is normal and let K compact and 6 > 0 be given. Choose ¢ > 0
as in Proposition 13.5 so that for each ¢ the inclusion {g : p(v,g) < €} < Bg(1;9)
holds. By hypothesis .% is compact and therefore totally bounded. Thus, there exists
G1,-..,gn € Z such that

— €
F < olg:plgsy)
Choose f; such that f; € # and p(f;,g;) < 5. Thus,

F < ulg:p(fjie) © UBK(f;0).
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Conversely, .# has the inclusion property and let € > 0 be given. There is a § > 0
such that Bg(1;d) < B,(v; §5) independent of ¢ € C(£2, X). By hypothesis, there is an
N and fi,..., fxv € C(Q, X) such that

F < UBk(f;;9).

Hence . c UB ,(fj;€) and we conclude that Z is totally bounded and hence compact.
O

13.4. Arzela-Ascoli. A subset .# < C(,C) is equicontinuous on a subset E < ) if

for every € > 0 there is a 6 > 0 such that if ¢ € Q, peEand lg—p| <dand f e ZF,

then |f(q) — f(p)] < €. In the case E = ), we say % is equicontinuous; and in the case
= {p}, we say .Z is equicontinuous at p. Finally, .Z is pointwise equicontinuous if .F

is equlcontmuous at each point of €.

The following lemma is the uniformly over .# version of the statement that a con-
tinuous function on a compact set is uniformly continuous.

Lemma 13.9. If # < C(2,C) is pointwise equicontinuous, then F is equicontinuous
on each compact subset K of ). T

Proof. Let K < €2 compact and € > 0 be given. For each point w € K there is a J,, such
that if |z — w\ < 0y (and z € Q) and f € Z, then [f(z) — f(w)| < §. The collection

= {B(w; %) : we K} is an open cover of K. Let & be the Lebesgue covering number
for 0. Thus for each p € K there is a w € K such that B(p;d) = B(w;%). Now
suppose ¢ € 2 and |p — ¢| < 0. It follows that |¢ — w| < |¢ — p| + |p — w| < d,,. Hence
[p—wl, [w—q| < b, and therefore | f(p) — fl@)| < [f(p) — f(w)| +[f(w) = f(@)] <e O

Before proceeding further, we recall a standard version of the Arzela-Ascoli theorem
from undergraduate analysis. Recall, for K a compact metric space, C(K,C) is the
space of continuous functions with the metric d(f, g) = max{|f(z) — g(x)| : z € K} and
that this space is complete. A subset .# c C(K,C) is pointwise bounded if for each
p € K the set {f(p) : fe F} < C is bounded.

Lemma 13.10. A subset F' of a metric spaceY is precompact if and only if each sequence
from F has a convergent subsequence (in'Y" ). T

Proof. If F is precompact, then F is compact and the result follows from the equivalence
of compactness and sequential compactness in a metric space.

Conversely, suppose every sequence from F' has a convergent subsequence and sup—
pose (f,) is a sequence from F. For each n there exists a g,, € F such that d(f,, g,) < *
The sequence (g,,) has a subsequence (g,, ) that converges to some g € Y. It follows that
(fn,) converges to g too. O

The following version of Arzela-Ascoli is one often encountered in undergraduate
analysis.
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Theorem 13.11 (Arzela-Ascoli I). If K is a compact metric space and F < C(K,C)
is pointwise bounded and equicontinuous, then every sequence from % has a subsequence

that converges in C(K,C) (that is uniformly). In particular, F is compact in C(K,C).

Theorem 13.12 (Arzela-Ascoli II). If % < C(Q2, C) is pointwise bounded and pointwise
equicontinuous, then # is normal.

Sketch of proof. By Lemma 13.9, % is equicontinuous on compact subsets of K. Let
(fm) be a sequence from .#. Fix an exhaustion (K,) of Q. Note that .# (restricted
to K;) satisfies the hypotheses of Theorem 13.11. Hence there is a subsequence (fi ;)
of (fm) such that (fi;|k,) converges uniformly (on K;) to some continuous function
g1 on Kj. Likewise, there is a subsequence (fs ;) of (f1;) such that (fs;|x,) converges
uniformly (on K3) to some continuous function g, on Ky with go]x, = ¢;. Continuing
in this fashion, gives sequence (fy ;) converging uniformly to'a continuous function g in
K} (and hence on K, for each ¢ < k) with gi|x, = g¢ for £.< k and such that (fx;1,) is a
subsequence of (f; ;). In particular, there is a continuous function g : 2 — C such that
9li, = ge for each £. Let h; = (f;;). Thus (h;) is, for each k, eventually a subsequence
of (fx,;). In particular, (h;) converges to g € C(€2,C) uniformly on each K} and hence
in the space C(£2,C). |

14. THE SPACE OF ANALYTIC FUNCTIONS ON {2

Given an open set 2 < C, let H(f2) denote the subspace of C(2,C) consisting of
analytic functions. In particular, the algebra H () is endowed with the metric it inherits
from C(2,C).

Theorem 14.1. If (f,) is a sequence from H(Q2) that converges to an f € C(2,C), then

f € H(Q2) and moreover, for each 'k, the sequence (fT(Lk)) converges to f*) (in the metric
of C(Q,C)). In particular, H(Q) is complete.

Proof. Given a triangle T' contained in €2 (meaning 7' and its interior are contained in
2), there is a compact set K such that T'< K° < Q. Since (f,) converges to f uniformly
on K, it follows, from Cauchy’s Theorem, that

o=tip ], =], 1

Thus, by Morera’s Theorem, f is analytic. In particular, H(f2) is a closed subset of the
complete metric space C'(§2,C) and is therefore itself complete.

Fix y € Q and a positive integer k and an R > 0 such that B(y;2R) < . Let

M, = {|f(w) — f(w)| : we B(y;2R). Since (f,) converges uniformly to f on compact
sets, M,, converges to 0. Given z € B(y; R), Cauchy’s estimate (Corollary 2.2 (iv)) gives

|
7)) < o
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Hence ( f,S’“)) converges uniformly to f on B(y; R). If K < Q is compact, then (as K is
totally bounded) there is an R > 0 and points yi, ...yx such that K is covered by the

balls B(y;; 2R). It follows that ( f,(lk)) converges uniformly to f on K. O

Theorem 14.2 (Hurwitz). Suppose Q@ = C is an open set, (f,) is a sequence from H ()
that converges to f (in H(Y)) and R > 0 and y € G. If B(y; R) < Q and f does not
vanish on {|z —y| = R}, then there is an N € N such that for all n = N the functions
fn and f have the same number of zeros in B(y; R).

In particular, if Q = G is a domain and each f,, does not vanish in G, then either
f s identically 0, or f does not vanish in G.

Proof. Let n = {|f(2)| : |z —y| = R}. By compactness and the hypotheses, n > 0. Since
(fn) converges uniformly to f on compact sets, there is an /N such that for n > N and
’Z - y’ = R7

n
[ful2) = f(2)] < 5 < |f(2)l.
Thus, by Theorem 11.3, (f,,) and f have the same number of zeros in B(y; R).

Now suppose the f, never vanish, () = G is a domain and f is not identically 0.
Because G is a connected, it follows that, given y € G, there is an R > 0 such that
B(y; R) < G and f does not vanish on {|z —y| = R}. Hence, by what has already been
proved, f has no zeros in B(y; R) and in particular, f(y) # 0. Hence f has no zeros. [

14.1. Montel’s Theorem. A set .% < C(£2,C) is bounded on a subset U of Q if the
set {|f(2)|: z€ U, fe.Z} is bounded. It is locally bounded if for each y € §2 there is an
open set y € U such that .# is bounded on U.

Lemma 14.3. If .% islocally bounded, then % is bounded on each compact K < ).

Theorem 14.4 (Montel’s Theorem). A subset F < H(2) is normal if and only if it is
locally bounded.

Proof. Arguing by contradiction, suppose % is normal, but not locally bounded. In this
case there is an y €  and a bounded open set y € U such that U < 2 such that

sup{|f(z)| : z€ U, fe F} =o0.

Thus there exists, for each n € N, a point z, € U and f, € % such that |f,(z,)| = n.
Since .# is normal, there is a subsequence (f,, ) of (f,,) that converges to some f € H(f2).

In particular, (f,,) converges to f uniformly on U. Since also f is bounded on U, it
follows that (f,, (2n,))x is @ bounded sequence, a contradiction.

Now suppose % is locally bounded. The plan is to show that .# is pointwise
equicontinuous and apply Arzela-Ascoli (Theorem 13.12). Accordingly, fix y € 2. By
the local bounded hypothesis, there exist r, M > 0 such that B(y;r) <  and, for all

ze€ B(y;r) and f e F,

[f(2)] < M.
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Let y(s) = y + rexp(2ins) (0 < s < 1). For z € B(y; ) and f € %, Cauchy’s formula

gives,
" '\f o) -9
[7(s) y||7 s) — 2|
|J Mr | |4M
z— = 2yl —
0(5)2 r

Hence .7 is equicontinuous at y and the proof is complete. 0

Corollary 14.5. A subset # < H()) is compact if and only if it is closed and locally
bounded. T

15. THE SPACE OF MEROMORPHIC FUNCTIONS ON {?

Recall the metric d on Cy from equation (7). The topology induced by this metric
is one point compactification of C; i.e., neighborhoods of oo are complements of compact
subsets of C.

Proposition 15.1. A subset O = Cq, is open if and only if O\{o0} is open in C and, if
o € O, then there exists a compact set K < C such that K < O. T

Suppose 2 < C is open. Given f meromorphic on €, define f(p) = o if p is a
pole of f. In this way, f determines a function (still denoted by f) in C(2,Cy) (by
the definition of pole and Proposition 15.1). Let M(Q2) <« C(Q2,Cy) denote the set of
meromorphic functions on . Observe, If g € M(Q2), then é e M() too.

A key feature of the metric d is
d, L) zweC

27w

d =
(z,w) {d(%,oo) zeC,w = 0.

with the following lemma as an immediate consequence,

Lemma 15.2. Suppose G < C is a domains. If (f,) € H(Q) converges to f € M(Q),
then (fln) converges to % in M(9). T

Proposition 15.3. If (f,) is a sequence from M(G) < C(G,Cy) (resp. H(G) <
C(G,Cy)) and if (f,) converges to f in C(G,Cy), then either f is meromorphic (resp.
fe H(G)) or f is identically equal to 0. T

Proof. Fix y € G. First suppose f(y) # 0. Since the set U = {w : |f(y) —w| < 1} is

open in C, there is a 6 > 0 such that V' = {w : d(w, f(y)) < 6} = U by Proposition 15.1.

Choose r > 0 such that B = B(y;r) < G and so that d(f(2), f(y)) < § for z € B. Since

(fn) converges to f uniformly on B, there is an N such that if n > N and z € B, then
d(fn(2), f(2)) < 5. It follows that, for n> N and z € B,

d(fn(2), f()) < d(fn(2), [(2)) + d(f(2), f(y)) < p
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and therefore |f,(z)] < |f(y)| + 1. Hence, for n > N, the function f, is analytic in
B(y;r). By Theorem 14.1 (applied to G = B(y;r), f is analytic in a neighborhood of y.

Now suppose f(y) = o0. Using Lemma 15.2, the argument of the previous paragraph

shows % is analytic in a neighborhood U of y. If f is not identically oo, then, since G is

connected, f is not identically oo on U. It follows that the zeros of % in U are isolated
and hence f is meromorphic in U.

In the case each (f,) is analytic, the functions ﬁ have no zeros. Hence, by Theorem

14.2 (Hurwitz), % is either identically zero or not zero in a neighborhood of y. O

Corollary 15.4. The subspace M () u {0} of C(Q,Cy) is complete. T

16. THE RIEMANN MAPPING THEOREM

Recall, from Corollary 7.10 item (v) that, if G is simply connected, then every
nowhere vanishing analytic function on GG has an analytic square root.

Theorem 16.1 (Riemann mapping). If G < C is a'domain (open and connected), every
nowhere vanishing function on G has a square root and G # C and y € G, then there
1s an analytic bijection f : G — D. Further, given y € G, there is a unique analytic

bijection f: G — D with f(y) =0 and f'(y) > 0.

The proof of uniqueness is a consequence of Theorem 12.5 (Schwarz’s lemma). The
details are left as an exercise.

Lemma 16.2. There exists a one-one analytic function f : G — D such that f(y) =0
and f'(y) > 0. T

Proof. Choose a point w ¢ G. Since h(z) = z — w does not vanish in G, there is an
analytic function g on G such that ¢> = h = z —w. If g({) = g(2), then ( —w = z —w
and hence ( = w. Thus g is one-one.

Fix p € g(G). There is a ¢ € G such that g(¢) = p. If g(z) = —p, then {( —w =
p? = z —w and consequently ¢ = w, a contradiction. Theorem 8.4, g(G) is open. Hence
there is an r > 0 such that B(p;r) < g(G) and therefore B(—p;r) < C\g(G). This latter
inclusion implies [g(z) — (—p)| = r for z € G and therefore |, | < 1. Hence
r

F(z) = 2

9(z) +p)
defines a one-one analytic function on GG with values in D. Since F' is one-one, its de-
rivative never vanishes by Proposition 8.3. Thus, post composition with an appropriate

mobius mapping ¢, = 1Z—_Ebz (b = F(y)) followed by a rotation produces the desired f. [

Proof of Theorem 16.1. Let
F={f:G—->D: fisoneone, f(y) =0, f'(y) > 0}.

By Lemma 16.2, % is not empty. By construction, .# is locally bounded. Hence, by
Theorem 14.4 (Montel), .# has compact closure in C'(G,C). Suppose (f,,) is a sequence
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from .7 that converges to some f. Since each f! does not vanish (by Proposition 8.3),
either f’ is identically 0 or f’ is never 0 by Theorem 14.2 (Hurwitz). In the former case,
f is constant and thus constantly equal to 0 and is in .%. In the latter case, f(y) = 0 and
f'(y) # 0 and thus f'(y) > 0. Moreover, since each f,, is one-one and f is not constant,
another application of Theorem 14.2 (Hurwitz) implies f is one-one. Finally, it is evident
that f maps into D. On the other hand, since f is one-one, the open mapping theorem
implies f (G) is open and thus a subset of . We conclude in any case f € % u {0}.
Hence .# U {0} is the closure of .% and is therefore compact in C(G, C).

The mapping . U {0} 3 f — f'(y) € C is continuous by Theorem 14.1 and takes
values in [0, 00). Since .% U {0} is compact, this map attains its maximum M. Let f € &
be any such that f'(y) = M. Suppose, by way of contradiction, there is a w € D not in
the range of f. Consider

be) = palf() = L

Since ¢,, doesn’t vanish and G is simply connected; there is an analytic function h :
G — C such that h? = 9. Let

h(z) =h
INOEY 0N

1= h(y)h(z)
where \ is unimodular and chosen so that ¢'(y) > 0. Compute,

, @)
9= T ()P

9 = APn(y)

and
7oA - JwP)

|w]

|7 (y)l =

Combining these last two equations gives the contradiction

f'(y) > f(y),

1+ |wl

J'(y) = 5

and completes the proof of the theorem. O

jw]

Corollary 16.3. Suppose G < C is open. The following are equivalent.
(i) G # C and if f: G — C is analytic and ~y : [0,1] — G is a closed rectifiable path,

then
J fdz=0.
¥

(ii)) G # C and if f : G — C is analytic and if 7,9 : [0,1] — G are rectifiable paths
such that v(0) = §(0) and (1) = §(1), then

=1

(i1i) if G # C and f : G — C, then f has a primitive.
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(w) If G # C and f : G — C is analytic and never vanishes, then there exists an
analytic function g : G — C such that f = e9.

(v) If G # C and f : G — C is analytic and never vanishes, then f has a square root
mn G.

(vi) There is an analytic bijection f : G — D.

t

Sketch of proof. 1t is easy to show, if G < C and if there is an analytic bijection f : G —
D, then G # C and G is simply connected; i.e., item (vi) implies item (i). On the other
hand, the proof of Corollary 7.10 showed (without the assumption G # C) that item
(i) implies item (ii) implies item (iii) implies item (iv) implies item (v). Theorem 16.1
shows item (v) implies item (vi). O

17. FACTORIZATION OF ANALYTIC FUNCTIONS

17.1. Infinite products. Given a sequence (z,) from C, let H;’;l z; denote the sequence
Pn = ]_[?:1 z; and also the limit of this sequence, called the infinite product, if it exists.

Lemma 17.1. If none of the z, are zero and if the infinite product exists (converges)
and 1is not zero, then (z,) converges to 1..-On the other hand, with |y| < 1 fized and
zn = y", the product [ [ z, and (z,) both converge to 0. T

Proof. Let 0 # p = limp,. Since none of the z, are zero, none of p, are 0. Hence
Pntl and it follows that(z,) converges to 1. O

n

Zn+l =

Let ®(z) = log(|z|) 4 if; where =7 < § < 7. In particular, exp(®(2)) = 2.

Proposition 17.2. The infinite product | ]z, converges to a non-zero number if and
only if the series >, ®(z,) converges. i

Proof. Continue to let p, = [[;, 2; and let s, = 37| ®(z,). In particular, exp(s,) =
pn. Hence, if (s,) converges to s, then p,, = exp(s,) converges to exp(s) # 0.

Now suppose (p,,) converges to p # 0. Let ¢ denote a branch of the logarithm that is
continuous at p. In particular, there is an N such that, for each n > N, the point p, is in
the domain of ¢ and (¢(p,))n=n converges to ¢(p). From here on we take n > N. Since
exp(s,) = pn, it follows that there exists integers m,, such that s, = ¢(p,) + 2m,mi. On
the other hand, since $,41 — s, = ®(2,) and (P(z,)) converges to 1 by Lemma 17.1, it
follows that there is a K € N and an integer k such that if n > K, then m,, = k. Hence
(s,) converges to p(p) + 2mik. O

Remark 17.3. If [ | z,, converges to a non-zero number, then $(z,,) > 0 for n sufficiently
large. Hence, eventually, ®(z,) = log(z,) (the principal branch). ©

Given a sequence of non-zero complex numbers,; the infinite product [ | z,, converges
absolutely if the series > ®(z,) does.
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Proposition 17.4. If the product ||z, converges absolutely, then the product itself
converges to a non-zero number p. T

Proof. 1f [ | z, converges absolutely, then Y ®(z,) converges absolutely (by definition).

Hence > ®(z,) and by Proposition 17.2, the infinite product converges. O
Lemma 17.5. Let ¢(z) = log(1 + z) (with domain R(z) > —1). If |z| < 3, then
1

S12l < [o(2)] < 212l
T

Proof. Let log denote the principal branch. The function ¢(z) = log(1 + z) has a power
series expansion convergent in B(0; 1),

0 n
1 n+1Z_

n=1

It follows that, for |z| < %,

- = < 2)2.
E Z o = T 2l

Likewise for |z| < 3,

NPT
=g 2||— o <5l

Hence, for |z| < 3,

1
Pp(2)| = 12] = |z = 9 (2)| = 5 |z].
U

Lemma 17.6. Suppose (z,) is a sequence of complex numbers none of which are 1. The
series >, ®(1 + z,) converges absolutely if and only if > z, converges absolutely. T

Proof. Suppose ) z, converges absolutely. In this case there is an N such that |z,| < ;
for n = N. For these n, ®(z) = log(z). Hence, by Lemma 17.5, > |®(1 + 2,,)| converges
by comparison to )| \zn|

Conversely, if > |®(1 + z,)|, then there is an N such that if n > N, then |z,| < 5
Again ®(z) = log(z) for these n. Hence, the other inequality of Lemma 17.5 and the
comparison test imply Y| |z,| converges. |

Proposition 17.7. Suppose (z,) is a sequence of non-zero numbers. The product | | z,
converges absolutely if and only if the series > (2, — 1) does. i

Lemma 17.8. Let (X,d) be a compact metric space and suppose (g,) is a sequence of
continuous C-valued functions on X. If the series Y |gn| converges uniformly, then

(a) the product [ [(1 + gn) converges uniformly to some f;
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(b) the product [ [(1 + ¢,) converges pointwise absolutely;
(c) there is an N such that f(x) = 0 if and only if there is an n < N such that

gn(z) = —1.
T

Proof. Pointwise absolute convergence follows from combining Lemma 17.6 and Propo-
sition 17.7.

Since Y| |g,| converges uniformly, there is an N such that if n > N, then |g,| < 5
By Lemma 17.5, for n > N,
| log(1 + gn)| < 2[gnl.
By comparison, Y\ ®(1 + g,) converges uniformly.

Let s, = 375y zj and let t, = 37\ ®(1 + g,) and let s and ¢ denote their uniform
limits respectively. Since (s,,) is a sequence of continuous functions converging uniformly,
its limit s is continuous. Since X is compact the sequence (s,) is uniformly bounded.
Hence the sequence t, = >y ®(1 + g,) is also uniformly bounded; i.e., there is a
compact set K < C such that, for each n > N, the range of ¢, lies in K. Since the
exponential function is continuous on K, it is uniformly continuous on K. It follows

that exp(t,) converges to exp(t) uniformly and thus the full product

N-1 Q0 N-—1
F=1]0+g) =] +g) [[@+g) =[]0 +g;) exp(t)
j=1 j=N J=1

converges uniformly too. Moreover, if f(z) = 0, then there is an n < N such that
1+ gn(2) = 0. O

Proposition 17.9. Suppose Q2 < C is open and (f,) is a sequence from H(S). If
S fa = 1| converges-uniformly on compact subsets of 0, then f = ] fn converges
in H(S)) and pointwise absolutely. Moreover, if Q@ a domain and if none of the f, are
identically zero, then f is not identically zero and in this case if f(y) = 0 then the
multiplicity of this zero is the sum of the multiplicity of the zeros of the f, aty. T

Proof. By Lemma 17.8, || f,; converges uniformly on compact sets of {2 and hence, by
Theorem 14.1, this product f is in H(2). Lemma 17.8 also implies, given a compact
subset K < (2, that there exists an N such that if z € K and f(z) = 0, then there is an
n < N such that f,(z) = 0. Hence, if none of the f, are identically zero, then the zero
sets of f and F' = ]_[ivzl fn in K are the same. In particular, for n > N each f, is never
0 on K and of course f is not identically zero on K. Now suppose €2 is connected and
f(y) = 0. Choose r > 0 such that K = B(y;r) < . Thus f is not identically zero on
K and hence is not identically zero on 2. Moreover, since f and F' have the same zero
sets, the conclusion about the multiplicity of the zero of f at y follows. O

17.2. Weierstrass Factorization. Let Ey = 1 — z and, for p € NT, let

u|N'

E,=(1-2) expzp:
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These functions are the Weierstrass elementary factors. They have a simple zero at 1
and no other zeros.

Lemma 17.10. If |z| < 1, then |1 — E,(2)] < |z[P™. T

Proof. The case p = 0 is evident. Accordingly, suppose p = 1. Observe

E'(z) = —2Pexp Z% = —ibjzj
=1 Jj=p

where b; > 0 and the power series has infinite radius of convergence. Since E,(0) = 1,
the elementary factor E, has a power series

ee]

E,(z)=1- Z ;2

Jj=p+1

with a; = 0 for all j. Since E(1) = 0, we find ) a; = 1. Thus, for |2| <1

0
Bp(2) =1 < 2P )] af = |2

Jj=p+1
l

Proposition 17.11. Suppose (a,,) is a sequence from C\{0} -and (p,) is a sequence from
N. If

(i) a, # 0 for each n;
(i) lim |a,| = o0; and

(iii)

converges for all r € C,

then

(0
£ = [T B )

converges in H(C) (uniformly on compact sets) and pointwise absolutely;

(b) the zeros of f are exactly the (a,) and each zero a occurs with multiplicity equal to
the number of times a = a,,;

(c) if p, = n — 1, then the series of equation (8) does converge for all r € R.

In particular, if lim |a,| = oo, then there is an entire function with zeros exactly a,
(counted with multiplicity). T

Proof. Fix r > 0 and choose an N so that |a,| = r forn = N. If |z| < r and n > N,
then [ =| < 1 and hence, by Lemma 17.10,

z r
| By, (2) — 1] < |4 < |t

n aTL
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Hence )] |E,, (2)—1]| converges uniformly on B(0; ) and therefore uniformly on compacts

subsets of C. Hence, by Proposition 17.9 the infinite product [ E,, (%) converges in

H(C) and its zeros are precisely the zeros of the factors (counted with multiplicity) and

hence the a, (counted with multiplicity). O

Theorem 17.12 (Weierstrass factorization). If f : C — C is entire with zeros (a,) and
if (pn) is a sequence from N such that

0

2 |L|pn+1
a

n=1 n

converges for all v € C, then there exists an m € N and an entire function g such that
z
z)=2z"e z E, (—),
f(2) xp(9(2) | | n(an)

with the product converging in H(C) and pointwise absolutely. Moreover such a sequence
(pn) does ezist.

Proof. By Proposition 17.11, there is an m € N such that f and
m z

have precisely the same zero set counting according to multiplicity. Hence the ratio
% defines an entire function with no zeros. Since C is simply connected, by Corollary

7.10(iv) there is an entire function g such that % = exp(g). O

Proposition 17.13. Suppose Q2 = Cis open. If (a,,) is a sequence from G with no limit
points in G, then there is-an analytic function f : G — C whose zeros are precisely the
a, counted with multiplicity. T

Corollary 17.14. If Q2 < C is open and f : Q0 — C is meromorphic, then there ezists
analytic functions g, h : Q@ — C such that f = {. T

Proof. Let (p,) denote the poles of f counted according to their orders. Since the poles
of a meromorphic function do not have a limit point in €2, by Proposition 17.13 there
exists an analytic function h : Q — C with zeros precisely (p,). It follows that g = fh
is analytic. 0

17.3. Factorization of sine.

Proposition 17.15. Suppose Q2 < C is open and (f,) is a sequence from H(Q2). If[] fn
converges in H () to f and if z€ Q and f(z) # 0, then

foy ot
7(Z)_7;1f7,1()

pointwise. T



48 MAAG6406-07 COURSE NOTES 2016-17

Actually the convergence is uniform over compact sets where f doesn’t vanish (that
is, if K is compact and f doesn’t vanish on K the the series converges uniformly on K),
but this stronger conclusion is not needed for what follows.

Proposition 17.16. For z € C\Z,

7TCOt 7TZ =—+

f

Sketch of proof. For positive integers n, let v, denote the rectangular path, oriented
counterclockwise, connecting the points +(n + %) + in. Fix a y € C\Z and consider the
meromorphic function

cot(mz)

22— g2

It has poles at integers k and also at +y. The residue of cot(wz) at k€ Z is = and hence
the residue of F' at k is T . The residues of F' at +y are +°°t(+”y) Hence by the
residue theorem,

| cot(my)  cot(—m Y.
LnFnzzml T Z

F(z) =

Y 2y =7
U rcot(rg) — [ £ 42 i
=— | meot(my) — | =
y y. APk
On the other hand,
lim F=0
n—ao0 Yn
since cot z is bounded uniformly on U,{7,} and 1= behaves like & for |z| large.
Thus,
mweot(nz) = ——|—2Z 2 k2
U
Proposition 17.17. sin(72) = 72 [ [[2, (1 - 2. T

Proof. The zero set of f(z) = sin(rz) = o (exp(irz) — exp(—inz)) is precisely the set Z
(each with multiplicity 1). Since

W

=1 n

converges for each r, we may choose p, = 1 in Theorem 17.12 (Weierstrass factorization)
and conclude there is an entire function g such that, using the absolute convergence to
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rearrange the product,

f(2) =z exp(g H E1
n#0
=z exp(g) [ (1 - §>.
n#0

For z not an integer (and thus not a zero of f), Proposition 17.15 gives
f 1
meot(nz) = f()z——I—g +222_n2

Comparing with Proposition 17.16 shows ¢’ = 0 and hence g = ¢ € C. Rearranging

sin(mz) _ e ﬁ(l B 2_2)
TZ ot n?
Letting 2z tend to 0 gives .
s
0

18. RUNGE’S THEOREM

The proof of Runge’s theorem presented follows the rather elementary argument of
Sarason.

Proposition 18.1. If K < Q'c C where K is compact and ) is open, then there exists
an N and a path ' = Zjvzl I'; where each T'; is a closed curve made of line segments
each parallel to either the real or imaginary axis such that

(i) np(z) =1 for z € K;

(ii) nr(z) =0 for z ¢ §);
(i11) if f:Q — C is analytic and w € K, then Cauchy’s integral formula holds; i.e.,

F(w) 1 [,

2m Jpz —w

f
Sketch of proof. Choose > 0 strictly less than the distance from K to 0€). For k,( € Z,
let Ry, denote the rectangle in C = R?
Rie = [0k, 0(k + 1)] x [6€,5(¢ + 1)].
Reusing notation slightly, let % = {R;,..., R,} enumerate those rectangles R;
that intersect K. By the choice of §, we have R; < () for each j. Let o; denote the

boundary of R; as a counterclockwise oriented closed path and let o = > ;. Thus o is
a (sum of) closed path(s) with the property that for each z € K\{o},

ne(z) =1
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and for z ¢ (),
ne(z) = 0.

Let . denote the sides (considered for the moment without orientation) of rectangles
from Z# that lie on only one rectangle from % viewed as a path with the orientation
inherited from the rectangle in & it lies in. The key property of . is: for each vertex
v = (ko,€6) the number of sides from .7 terminating at v equals the number of sides from
S terminating at p. This number is either 0, 1 or 2. Further, any side of a rectangle
in Z that is not in . is a side of exactly one other rectangle from Z#, but with the
opposite orientation. Hence, letting I' denote the oriented path built from . (we don’t
yet know T is closed), if z € K\{c} or if z ¢ €, then

i, ! dwzi, ! dw = ny(2).
21 Jpw — 2 2mi ), 2 —w
By continuity,
1 1 ) lifze K
2mi rw—2z C|0if z¢ Q.

Thus it remains only to show that I' is a closed path.

Let (S1,...,Sp) be a chain from .#; i.e., the terminal point of S; is the initial point
of Sj;1. By the critical property if this chain is maximal, then Z§:1 S; is a closed path.
Accordingly, suppose (S, ...,S,) is maximal. The collection .#\{S1,...,S,} also has
the key property. Thus an induction argument shows that the sides from . can be
arranged as I' = > I';, where the I'j are closed paths. 0

Lemma 18.2. Let L ¢ C be a (closed) line segment of length ¢ (thought of as a path)
with midpoint p. If f is continuous on L, then F defined on C\L by

R ric)

2 Jp 2 —w

dz

F(w) =

is analytic on A = {|w = p| > £} and hence has a convergent Laurent series expansion,
o0
F(z) = Z an(z—p)™",
n=1

. ¢ . .
valid for |z — p| > 5 with uniform convergence on compact sets. T

Proof. Analyticity of F' follows from Proposition 5.2. It is possible to prove this result
by appeal to Proposition 9.4, but a simple direct proof (and essentially half of the proof
of Proposition9.4) results from considering the function G : {|¢| < 2}\{0} defined by

G(0) = F<§ ).

Observe that GG has a removable singularity at 0 because F' vanishes at oo, and after
removing this singularity, G(0) = 0. Hence, G has a power series expansion,
e}
G(C) = Z ajCJ7

=1
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valid for |z| < 2. Using F(w) = G(ﬁ) completes the proof. O

Theorem 18.3 (Runge). Suppose K < ) < C where K is compact and 2 is open. If
f:Q — C is analytic, then for each € > 0 there is a rational function r with poles off
K such that

¢ > |f =7l = max{[f(z) = r(2)| : z € K};

i.e., f is the uniformly approximable on K by rational functions with poles off K.

Proof. Let I' be a closed path as in Proposition 18.1. Let 0 denote the distance from
K toI'. Write I' = Z]Ail 7v; where the «; are sub-line segments (intersecting only at
endpoints) of the line segments comprising I' and such that each -, has length less than
0. It follows that, for w € K,

M
v L f(z)
f(w)_Z%J,z—wdz'
j=1 Vi
For 1 <j< M and w¢Tl, let

1 (2)
fi(w) = i), o——t
J
and note that each f; is analytic on C\{I'} and }}f; = f on K. Thus, it suffices to
show each f; is uniformly approximable on K by rational functions with poles off K.
Let p; denote the midpoint of ;s By Lemma 18.2, each f; is uniformly approximable
by rational functions (with poles at p;) on compact subsets of |z — p;| > $ and hence on
K. O

Remark 18.4. It is possible to improve the statement of Runge’s theorem given here.
For instance, the complement U of K will have at most countably many connected
components. Choose any subset £ < U such that each bounded component of U contains
at least one point from E. If f is'analytic in a neighborhood of K, then f is uniformly
approximable by rational functions with poles in A. As a special case, if U is connected
(as is the case if K is simply connected), then f is uniformly approximable on K by
polynomials. The remarkable theorem of Mergalyan’s says: if K < C is compact and
U = C\K has finitely many components, then functions f that are continuous on K and
analytic in the interior of K can be uniformly approximated on K by rational functions
with poles off K. o

Given a compact set K < C, a set {2 © K and a continuous function f : 2 — C, let
| f|x denote the sup norm of f (on K). The polynomially convex hull of K is the set,

K = {weC: |p(w)| <|p|x, for all polynomials p}.

The set K is polynomially convex if K = K. By Remark 18.4 a compact set with
connected complement (e.g. D) is polynomially convex. The notion of the polynomially
convex hull is more interesting in several complex variables.
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Proposition 18.5. Suppose K is compact and let X denote the complement of the
unbounded component of C\K. If K = K° and & = J°, then the polynomially convex
hull of K is U = C\U, where U is the unbounded component of C\K. T

Proof. By the maximum modulus theorem (Proposition 12.2), if p is a polynomial and
C'is compact with C' = C°, then |p|c = |p|soc. Observe that # > K and 0.% < 0K.
Hence, for polynomials p,

Iplx < llplae = lplox < lplox = lplx

It follows that .# < K. On the other hand, since the complement of .# is connected
(is its unbounded component) J# is polynomially convex; i.e., # = . Hence K c

H . O

19. THE SCHWARZ REFLECTION PRINCIPLE

Given an open set 2 < C, let
Q*={Z:2€
and, assuming 0 ¢ €, let
Q_*:{%:zeﬁ}.
Thus Q* and 27* are the reflections of €2 about the real axis and unit circle respectively.
The proof of the following lemma is left as‘an (easy) exercise.
Lemma 19.1. Let Q < C be an open set. If f :Q — C is analytic, then
(i) f(z):Q* = C defined by [ (z)= f@);and )
(it) assuming 0 ¢ Q, the function f Q™ * — C defined by f(z) = f(1)

are analytic. T

For notational convenience, let Q, = {z € Q:Imz >0} and Qg = {2 € Q: |z| < 1}.
Theorem 19.2. Let 2 < C be an open set.
(i) If Q = Q* and f : Qy — C is continuous, the restriction of f to {z € :Rez > 0}
is analytic and if f(z) is real for z € Q with Imz = 0, then g : Q — C defined by
f(Z), 2z€Q, Rez<0
9(z) =
f(2) z€€, Rez>=0

1s analytic; and

(i1) assuming 0 ¢ Q, if Q = Q™ and [ : {z € Q1 — C is continuous, never 0, the
restriction of f to {z € Q : |z| < 1} is analytic and |f(z)| = 1 for z € Q with
|z| =1, then g : Q — C defined by

L 2eQ, |2]>1
9(z) = § 11
flz)  z2eQ, |z <1
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15 analytic.

Proof sketch. We prove the first statement only as the second is similar. By the pasting
Lemma, ¢ is continuous. To prove g is analytic it therefore suffices to verify the hy-
potheses of (Morera’s) Theorem 3.1. Accordingly suppose T is an oriented triangle lying
(including its interior) in Q. The restriction of g to €2 intersected with either the open
upper or open lower half plane is analytic by assumption and Lemma 19.1 respectively.
Hence if T lies entirely in either the upper or lower half plane,

JTf:O7

by Cauchy’s Theorem. Since T' can be written as an oriented sum of finitely many
oriented triangles such that each lies in either € intersect the closed upper half plane
or in () intersect the lower half plane. Without loss of generality suppose the triangle
T = [a,b, ] (including its interior) lies in I" = {z € Q : Rez = 0} and at least one vertex
lies on the real axis. Without loss of generality, assume Imc > 0. Letting A denote
T along with its interior, note that f is continuous, and hence uniformly continuous,
on A. Choose sequence (a,) and (b,) converging to a and b respectively and so that
(T,) = [[an, bn,c] € A n {Im z > 0}. It follows that

NENT

Problem 19.1. State and prove a version of the Schwarz reflection principle where f(z)
is real-valued for z €  with |z] = 1.

O

Problem 19.2. Prove, if f € — C is entire and |f(z)| = 1 for |z| = 1, then there is
an n € N and unimodular constant ¢ so that f(z) = c2".

20. INTRODUCTION TO HARMONIC FUNCTIONS

Suppose 2 < C is open.. A function u : Q — R is harmonic if it has continuous
second partial derivatives and

B 0u N 0%u B
Cox2 0 0y?
Proposition 20.1. If f : QO — C is analytic, then u = Re f and v = Sf are twice differ-
entiable and satisfy the Cauchy Riemann equations. In particular both are harmonic. T

Au 0. 9)

As an example, if f : Q — C is analytic an never 0, the log(|f|) is harmonic.
To prove this statement one can write f = u + v and use log(|f]) = 1log(u® + v?)
to compute the second partials directly. A more abstract (and easier) argument is to
observe it suffices to assume the domain of f is an open ball (and in particular simply
connected) and appeal to Corollary 7.10(iv) to write f = €9 for some analytic function
g. Thus |f| = exp(Rg) and log(|f|) = Rg is harmonic.
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A pair (u,v) satisfying the Cauchy-Riemann equations are harmonic conjugates.
Similarly, if « is harmonic and (u,v) are harmonic conjugates, then v is a harmonic
conjugate of u. It is easy to verify, if v is harmonic on a connected set, then, up to an
additive constant, v has at most one harmonic conjugate.

Proposition 20.2. Suppose G is either D or C. Ifu : G — R is harmonic, then there is
an harmonic function v : G — R such that f = u+1v is analytic; i.e., u has a harmonic
conjugate. T

Proof. Because of the geometry of GG, we may define, v: G — R by
Y ou T ou
= | —(x,t)dt— | —(s,0)ds.
o) = | Send | S0
First suppose z,y = 0 and (x,y) € G. There is a § > 0 such that R = [-§,z + J] x

[—d,y+ 0] = G. Since the second partials of u are continuous on R, Theorem 1.3 allows
for differentiating under the integral signs to obtain,

Yy N2
) - [ e~

ox o 022 oy
Y 0%u ou
—— | =z t)dt——
0 ayg(xﬂ ) ay(xﬂ())
ou
= - a_y(xay)7

where both fundamental theorems of calculus were used. Of course,

ov ou

The cases where not both z,y are non-negative are similar. Hence (u,v) satisfy the
Cauchy-Riemann equations. It follows that f = u + v is analytic and Re f = . O

Lemma 20.3. Suppose Q,1I' = C are open sets. If h: T' — € is analytic and v : 2 - R
18 harmonic, then wo h : I' = R 4s harmonic. T

Proof. The lemma can be verified by direct computation. Alternately, fix a point y € '
and an r > 0 such that B(h(y);r) < €. There is a § > 0 such that h(B(y;d)) <
B(h(y);r). The function u has a harmonic conjugate v on B(h(y);r) and thus f =
u+iv : B(y;r) — C is analytic. It follows that f o h|p(ys) @ B(y,d) — C is analytic.
Hence, uoh|p(y,) = Re foh|p, is a harmonic by Proposition 20.1. Since y is arbitrary,
w o h is harmonic. 0

Theorem 20.4. If G < C is a simply connected domain and v : G — R is harmonic,
then there is an analytic function f: G — C such that u = Re f.

Proof. The case G = C is covered by Proposition 20.2. Accordingly, suppose G # C. In
this case, by Theorem 16.1 (the Riemann mapping theorem) there is a one-one analytic
mapping (with analytic inverse) h : D — G. Let U = wo h. By Lemma 20.3, U is
harmonic in D. Thus, by what has already been proved, there is a harmonic function
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V : D — R such that FF = U + iV is analytic. It follows that f = Foh™' : G — C is
analytic and therefore Re f = u is harmonic. U

20.1. Harmonic functions on an annulus. Fix 0 <r < landlet A, = {r < |z| < 1}.
Let H, = {log(r) < Rez < 0} and note that exp : H, — A, is analytic and onto.

Example 20.5. The function u : A, — C defined by u(z) = log(|z|) is harmonic, but
not the real part of an analytic function. A

Lemma 20.6. If f : H, — C is analytic and 2w periodic, then there is an analytic
function f : A, — C such that f = f oexp. T

Lemma 20.7. Suppose f : D — C s analytic except for an isolated singularity at 0. If
Re f is bounded above (or below), then 0 is a removable singularity. T

Proof. Let D = {0 < |z| < 1}. Without loss of generality, we may assume Re f(z) < 0
for all z € D. Let H = {Rez < 0}. There is a mobius map ¢ mapping H bijectively to
D. In particular ¢ = ¢ o f : D — D is analytic (and bounded). Hence g extends to an
analytic map § : D — D. On the other hand, § is either constant or (D) is open. In
either case, g maps into ID. It follows that ¢! 0 g : D — C is analytic and agrees with
fonD. 0

Proposition 20.8. If h : A, — R is harmonie, then there is an analytic function f
such that

h(z).=Re f(z) + clog(|z|).

Moreover, in the case r = 0, if h is bounded, then h extends to a harmonic function
on all of D. T

Proof. Since h is harmonic and exp is analytic, by Lemma 20.3, the function u = hoexp :
H, — R given by

u(z) = h(e?)
is harmonic and 27 periodie. Since H,. is simply connected, by Theorem 20.4, u has
a harmonic conjugate v. Further, since u is 2m¢ periodic, so is its gradient. By the
Cauchy-Riemann equations, the gradient of v is also 27i periodic; i.e.,

Vu(z + 2mi) — Vu(z) = 0.
It follows that there is a constant ¢ € R such that
v(z + 2mi) —v(z) = c.
Define g : H,, — C by
, c
g(z) = u(z) +iv(z) — Pyt
By construction ¢ is analytic and 27 periodic. By Lemma 20.6, there is an analytic
function f : A, — C such that g = f oexp. We conclude that u(z) — 5=z = Re f(e?);
ie.,

h(e*) — % Rez = Re f(e?).
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Letting y = e gives
c
h(y) — 5 log(lyl) = Re f(y). (10)

The context of the moreover part of the result is the case r = 0 where A, is the
punctured disc {0 < |z| < 1}. Suppose ¢ > 0 in equation (10). In this case Re f is
bounded above and therefore 0 is a removable singularity for f. But then both h and
Re f are bounded in D and therefore ¢ = 0. The case ¢ < 0 is similar. It follows that
h(y) = Re f(y) extends harmonically to all of D. O

21. THE MAXIMUM PRINCIPLE

Proposition 21.1. Suppose Q@ < C is open, r > 0 and B(y;r).c Q. Ifu:Q — R is
harmonic, then
1 21 )
u(y) = Py Jo u(y + re') dt.

t

Proof. There is an 0 < r < R such that B(y; R)'< Q. By Proposition 20.2, there is an
analytic function f : B(y; R) — C such that Re f = u (on B(y; R)). Thus, by Cauchy’s
integral formula,

fly) = L

2m ), w—y

Y

where (s) = a + re', for 0 < s < 27. Hence,

1 21 )
fly) = - fo fla+re?)ds.
Taking real parts completes the proof. ([l

Suppose (2 < C is an open set and v : {2 — R is continuous. For y € 2 and r > 0
such that B(y;r) < Q, let

1 27 )
Adit) = Alyr) = 3= | uly + re) ds.

The function u has the mean value property if u(y) = A(y;r) for all such y and r. Likewise
u is subharmonic (resp. superharmonic) if u(y) < A(y;r) (resp. u(y) = A(y;r)) for all
such y and 7.

As a provisional definition, a continuous function u : 2 — R is locally subharmonic

if for each y € G there is an r, > 0 such that B(y;r,) € G and u(y) < A,(y;r) for each
0<r<m,.

Theorem 21.2 (Maximum principle). If G is a domain and v : G — R is (continuous
and) locally subharmonic, then either u is constant, or u does not attain its supremum.

If G is a bounded domain, u : G — R is continuous and u|q is locally subharmonic,
then w attains its maximum on 0G. In particular, if u|oqg = 0, then u < 0 on G.
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Proof. Suppose u does attain its supremum in Gj i.e., there is a point y € GG such that
u(y) = u(z) for all z € G. It suffices to prove u(z) = u(y) for all z € G. Let

Q={zeG:u(z) =uy)}.
Since u is continuous, () is closed in G. Let z € € be given. Fix r, > 0 as in the

hypothesis of the theorem. For 0 < r < r,, by subharmonicity of u,

1 21

2 ), [u(z) — u(z + re*)]ds < 0.

Since the integrand is continuous and non-negative (as z € ), it follows that the inte-
grand is identically zero. Thus B(z;r,) and therefore, by connectedness, d = G. O

Of course, this maximum principle for subharmonic functions is also the minimum
principle for superharmonic functions. In particular, a function satisfying the mean
value property satisfies both the maximum and minimum principles.

Given Q < C, recall 0,0 = 09 in the case Q is’bounded and 0x€2 = 0Q U {0} in
the case {2 is not bounded. Suppose u : 2 — R. For a point 00 # w € 0,2,

limsup u(z) = 61i%1 sup{u(z): 0 < [z =w| <9, z € Q}
z—w -0+
and, assuming () is unbounded,

limsupu(z) = Clim sup{u(z) : |z| > C, z € Q}.
—00

zZ—00

As expected, lim sup(u + v) <limsup w+ limsup v and limsup(—u) = — lim inf w.

Theorem 21.3. Suppose G < C is a domain and u,v : G — R. If u is subharmonic, v
is superharmonic and for each w € 0, G,

limsup u(z) < liminf v(z2),

z—w Zow

then u(z) < v(z) for all z € G or u = v.

Proof. By properties of the lim sup and the hypothesis, for w € 0,,G,

lim sup(u(z) —v(z)) < 0.
Further, u — v is subharmonic. Thus, it suffices to prove if u : G — R is subharmonic
and
limsupu(z) <0
for all w € 0,,G, then u(z) < 0 for all z € G and if there is a point y € G such that
u(y) = 0, then w is identically zero. Arguing by contradiction, suppose a € G and
u(a) > 0. Let

Az{zeG:u(z)>uTa)}.



58 MAAG6406-07 COURSE NOTES 2016-17

If G is not bounded, then, since limsup,_,, u(z) < 0, there is a C' > 0 such that if
|z| > C and z € Q, then

Hence A < B(0,C'). Thus, whether A is bounded or not, there is a C' > 0 such that
A c B(0,C). The set B = 0G n B(0,C) is compact. For each w € B, there is a §,, > 0
such that u(z) < # for z € G n B(w;d,). The collection {B(w,d,) : w € B} is an
open cover of B. Hence, by the Lebesgue number lemma, there is a § > 0 such that for

each b € B there is a w such that B(b,d) < B(w,d,). In particular, if d(z, B) < 4, then
u(z) < @ and hence z ¢ A. Thus,

Ac{zeG:d(z,B) =20} n{z:|z| < C} =K.

It follows that

Az{zeK:u(z)>%a)}
and since u is continuous and K is compact, A is compact. It follows that u attains
its maximum on A; i.e., there is a point p € A such that u(p) = u(z) for all z € A.
Thus, u(p) = u(z) for all z € G and by Theorem 21.2 w is constantly equal to u(p) > 0
a contradiction (since then the limsup would be constantly equal to u(p) > 0). Hence
u(z) <0 for all z € G. Finally, if u(z) = 0 for some z € G, then Theorem 21.2 implies u
is identically 0. 0

Example 21.4. Define f : D — R by
1+z

2
z —
i) =625
and let u = Im f. Sinee u is the imaginary part of an analytic function, u is harmonic.

Moreover, u extends to be continuous on C\{1} and hence, for |z| = 1 and z # 1,

lim wu(tz) = 0.

t—1,0<t<1

On the other hand, the limit above is also 0 for for z = 1 and 0 < ¢t < 1, since f(tz)
is real. However, limsup,_,; u(z) = o0 as can be seen by approaching 1 along the circle
1 o1

= +i5e'. A
2 T

The following corollary says that a harmonic function is determined by its boundary

values.

Corollary 21.5. Suppose G is a bounded domain and v : G — R is continuous. If u
satisfies the mean value property on G. If u =0 on 0G, then u is identically zero. T

Proof. Choose v = 0 in Theorem 21.3 to conclude +u < 0 on G. O

Proposition 21.6. Let Q < C be an open set. If uy,us : @ — R are subharmonic, then
s0 is v = max{uy, us}. T
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Proof. Fix y € Q and r > 0 such that B(y;r) < 2 and note that for i = 1,2,
(y) < 1f7r (y +re™) dt < L (y +re')dt
ui(y) < — U re < — v re :
Y 21 Jo 1y o )y Y

Hence,

1 21 ]
v(a) < —J v(y + re) dt.

2m Jo
O
22. THE PoOISSON KERNEL
The function P : [0,1) x R — R defined by
0
P(r,t) = Po(t) = > rlrle™
n=—aw
is the Poisson kernel.
Lemma 22.1. For (r,t) € [0,1) x R,
1+ ret 1—=r?
P.(t) =R — = .
®) e(l—re”) 1 — 2rcos(t) + r?
f

Lemma 22.2 (Approximate identity). The Poisson kernel has the following properties.
(i) P.(t) =0 for all (r,t) € [0,1) x R;
(11) For 0 <r <1,
27

f Pu(t)dt =1,

0
(117) if 0 < § < [t| < =, then P.(t) < P.(0);
(iv) for each 0, > 0 there exists an n > 0 such that if 0 <1 —1r <n and ™ = |t| = 0,
then
e > P.(t).

Proof. Ttem (i) follows from Lemma 22.1.
Item (ii) is immediate from the definition of P,(t).
Item (iii) follows from writing,
1—1r?

Bi(t) = (1—7)%+2r(1 — cos(t))’

Finally, to prove item (iv), estimate
1—r? - 1—r? 1
(1—7r)2+2r(1—cos(t)) = 2r 1—-cos(d)

0< P(t) =
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U
Proposition 22.3. Ifu: [—7, 7| — R is continuous and periodic (u(mw) = u(—m)), then
for each € > 0 there exists 6, > 0 such that if |« — | <6 andn>1—1r >0, then

w(B) — %Lﬁma ~ Hult)dt| < e

f

Proof. Extend u to all of R by periodicity. Let ¢ > 0 be given. By uniform continuity
of u, there is an § > 0 such that if [p — ¢| < J, then |u( ) —u(q)| < e. Using Lemma
22.2(iv), choose i > 0 such that € > P,(s) for 7 > [s| > £ and n > 1 —r > 0. Thus, for
n>1-r>0and |o—f| <2, and using |(a — s) — 3| <5for |sf.< 2

U:ﬂﬂa—ﬂwﬂ—uWHﬁk=fwﬂﬂﬂwa—ﬂ—uWH%

<f”awnwa—@—uwnw

0

il
w>ls|=§  JlsI<§

=2

«j”mm—wn+mwmw+ﬁR@mm—$—wmws

0
<L27(M + 1)e,

where M is an upper bound for |u|. To complete the proof, observe

u(ﬁ)—%fowlj(a—t =—f (t — a)u(t) — u(B)] dt.
0

Theorem 22.4 (Dirichlet problem for D). Ifv : 0D — R is continuous, then there exists
a continuous function u : D - R such that

(1) u|p is harmonic; and
(1) ulop = v.
Moreover, f : D — C defined by

1 27 1 i(a—t) )
J rre v(e™) dt

Jlre®) = o Jy 1+ reile+t)

is analytic in D and u|lp = Re f.
Proof. Define ¢ : [—7, 7] — R by 9(t) = v(e?). Define u : D — R by,

(o) = {% o Pa—p(t)ydt z=re 0<r<1

v(e') z = e
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Proposition 22.3 says u is continuous at each point in JD.

To complete the proof, it suffices to establish the moreover part of the theorem.
Toward this end, define g : D x R — C by
1+ ze
1— ze it

i(t).

g(Z,t) =

An application of Lemma 5.1 shows

f(z) = j " g(zb) dt

0
is analytic. Hence f is analytic and consequently u|p = Re f is harmonic (and in
particular continuous). U

Corollary 22.5. IfU : D — R is continuous and harmonic on'D, then, for z = re'® e D,
[ .
Uiz)==—| Pla—t)U(e")dt
0 =5 | Pla=tUE

f

Proof. Let v = Ulop and let u denote the function produced by Theorem 22.4. Thus u
and U are both continuous on ¢ID, are continuous on D and are harmonic in D. Therefore,
by Corollary 21.5, u = U. O

Theorem 22.6. If Q < C is open and u : Q — C is continuous and has the mean value
property, then u is harmonic.

Proof. Fix y € Q and r > 0such that B(y;r) < Q. From Theorem 22.4, there is a

continuous function w on B(y;r) such that w agrees with v on {|z — y| = r} and w
is harmonic in B(y;r).” In particular, w has the mean value property and therefore

u — w has the mean value property on B(y;r), is continuous on B(y;r) and is zero on
the boundary of B(y;r). Thus, by Corollary 21.5, u —w = 0 in B(y;r). Thus w is
harmonic. 0

22.1. Subharmonic functions revisited.

Proposition 22.7. Suppose G is region and u : G — R is continuous. If, u is locally
subharmonic, then u s subharmonic. T

Proof. Fix y € G and R > 0 such that B(y; R) = G. We are to show u(y) < A,(y; R).
Let B = B(y; R). There exists a continuous function ¢ : B — R such that ¢|sp = u|sp
and ¢|p is harmonic. It follows that ¢ = (u — ¢)g satisfies the hypothesis of Theorem

21.2. Thus, u < ¢ on B since ¥|s5 < 0. Consequently,

u(y) < ¢(y) = Ap(y; R) = Au(y; R).
O

Proposition 22.8. Suppose G < C is a bounded domain, v : G — R is subharmonic
and B = B(y;r) € G. Let 4 denote the solution to the Dirichlet problem
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(a) G : B — R is continuous;
(b) u|op = ulop; and
(¢) U|p(yy) s harmonic.

The function v : G — R defined by

is subharmonic and u(y) < v(y).

In particular, if u : G — R is continuous, u|q is subharmonic and B(y;r) < G, then
there is a continuous function v : G — R such that v|gy. is harmonic, u(y) < v(y) and
vloa = ulac- T

Proof. The strategy is to show v is locally subharmonic and apply Proposition 22.7. If
w € B(y;r), then v(s) = A,(w;s) for all 0 < s < r =]y — w| sinee v is harmonic on
B(w;r — |y — w|). Likewise, if w € G\B(y;r), then

A’U<w7 S) = Au(wa S) = U’<w) v U(w)7

for 0 < s < ry := min{|ly — w| — r, dist(w, dG)}, since u = v on B(w;y,).

Now suppose w € ¢B(y;r) and observe v(z) = u(z)'in B(y;r) by Theorem 21.2.
Thus v < v. For s sufficiently small,

A, (w;s) = Ay(w; s) = u(w) = v(w).

23. HARNACK’S INEQUALITY

Remark 23.1. Let Hary (D) denote the set of harmonic functions v on D with positive
real part (Reu(z) = 0 for all z€ D) and normalized by u(0) = 1 viewed as a subset of
Har(DD), the set of harmonic functions on D. It is immediate that Harj (D) is a convex
set. It is a bit of an exercise to show, for each o € R, the function
i 1+ ei@t) 1+ ze ™
Ua(Z =re > = Rem = Rem
is an extreme point of the Har{ (D). Theorem 22.4 says, if u € Harj (D) extends to be
continuous on I, then u is not an extreme point. As a generalization of Theorem 22.4,
if u € Harg (D), then there is a probability measure p on 0D such that, for z € D,

u(re®) = ! JPT(a —t)du(t).

S om

In particular, the functions u, are exactly the extreme points of Harj (D) (and they
correspond to p equal to point mass at e'®). o
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Theorem 23.2 (Harnack’s inequality). Fiz y € C and r > 0. If u : B(y;r) — R is
continuous, harmonic on B(y;r) and u = 0 (pointwise), then for each 0 < r < R and
a € R,
R—r
R+r

R+r
R—r

u(a) < u(a +re™) <

u(a).

Proof. Without loss of generality suppose a = 0 and R = 1. In this case, by Theorem
224,

. 1 [ .
= — | P(a—t)u(e")dt.
ure™) = 5= [ Pta—tpu(e?)
Using,
1— 2 1 — 2
Pa—t) = T -
1 —2rcos(ac—t) +1r2 et =re@|?
estimate . .
—-r +r
< Pla—t) < .
IL+r ( ) I'—r
Substituting these inequalities into the integral representation for u(re’®) and using the
mean value property of u completes the proof. 0

Given an open set 2 < C, let Har(Q2) denote the set of harmonic function on €
viewed a subspace of the metric space C(£2,C) of eontinuous functions on Q (with the
topology of uniform convergence on compact sets).

Proposition 23.3. The (metric) subspace Har(Q) of C(€2, C) is complete. T

Proof. Since C(€2,C) is complete, it suffices to show Har(€)) is closed. To this end,
suppose (u,) is a sequence from Har(§2) that converges to some u € C(2,C). Fix an
open set U < 2 such'that K = U < Q. In particular, (u,) converges to u uniformly on
K from which it immediately follows that u has the mean value property on U. Since u
is also continuous, by Theorem 22.6, u is harmonic on U. Hence u is harmonic. 0]

Theorem 23.4 (Harnack). Suppose G is a domain and (u,,) is a sequence from Har(G).
If (uy,) is pointwise increasing, then either (u,) converges uniformly on compact sets to
w0 or (u,) converges in Har(G).

Proof. For each z € G, then sequence (u,(z)) converges to some u(z), either oo or a real
number. Let
F={zeG:u(z)eR}, I ={2eG:u(z) = 0}.

Fix y € G and an R > 0 such that B(y; R) € G. For 0 < r < R and all n Theorem 23.2
gives

R— . R

() < ualy + 7)< () (11)
It follows that if y € F', then B(y; R) < F; and if y € I, then B(y; R) < I. Thus both F’
and I are open. By connectedness of GG, one of these sets is empty and the other is G.
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Now suppose G = F. From
R—r R+
R+r R—r

it follows that u is continuous at y. By the monotone convergence theorem and the
fact that each w, has the mean value property, for each y € G and » > 0 such that
B(y;r) = G,

un(y) — u(y) < un(y +re’®) —uly) < un(y) — u(y),

1 2m ) 1 2 ]
u(y) = Tlim un(y) = lim %L un(y + re’) dt = o ), u(y + re') dt.

Thus w is continuous and has the mean value property. By Theorem 22.6, u is harmonic.

Finally, to prove that the convergence is uniform on compact sets, observe that
Up = u — u, = 0 and harmonic and converges to 0 pointwise. Thus using Theorem 23.2,
equation (11) applied to v, shows that for each point y € G there is an s > 0 such

that v, converges to 0 uniformly on B(y;s). Thus v, converges to 0 uniformly on each
compact subset of G. 0

24. THE DIRICHLET PROBLEM

A bounded domain G < C is a Dirichlet domain if foreach continuous function
f : 0G — R there is a continuous function u : G — R such that u|g is harmonic and
ulog = f. (It is possible to work with unbounded domains G.) Theorem 22.4 says that
D is a Dirichlet domain.

Proposition 24.1. The punctured disk D = {0 < |z| < 1} is not a Dirichlet domain.

Proof. Note that 0D = {0} w{|z| = 1} and D = D. Suppose u : D — R is a continuous
function such that w is harmonic on Dand u(z) = 0 for |z| = 1. In particular, u|p
is a bounded harmonic function on D. By Proposition 20.8,u|p extends to a harmonic
function on D and thus, by continuity, u|p is harmonic. Thus w is continuous on D,
u|op = 0 and u|p is harmonic. Thus, by Corollary 21.5, @ is identically 0 and in particular,
u(0) = 0. It follows that there does not exist a solution to the Dirichlet problem on
D with continuous boundary data: find u : D — R such that u(z) = 0 for|z| = 1 and
u(0) = 1. O
24.1. The method of Perron. Let . = .7(G) < C(G) denote the set of continuous
functions u : G — R such that u|¢ is subharmonic. Fix, for the remainder of this section,
a continuous f : 0G — R. The lower Perron family for f is the set

Z(G) = {ue F(G) :uloe < [}
By the maximum principle, Theorem 21.2; for z € G,
pr(2) = sup{u(z) :ue F(G)} < M,

where M is the maximum of f(z) on 0G. The functionp; : G — R is the Perron solution
for f or the Perron lower solution for f.
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Theorem 24.2. The function py is harmonic.

Proof. Fix y € G and choose r > 0 such that B(y;r) < G. There is a sequence (uy,)
from.%;(G) such that (u,(y)) converges to ps(y).

By replacing u,, with max{us, ..., u,} (pointwise) we may assume, in view of Propo-
sition 21.6, (u,) isan increasing sequence. By Proposition 22.8 it may also be assumed
that each u,, is harmonic in B(y; ). Let u denote the pointwise limit of the sequence (uy,).
In particular, v < py in G and ulse < f. ByTheorem 23.2 (Harnack), (un|p(y;) con-
verges uniformly on compacts sets to u|p(y;) and u|p(,,) is harmonic and u(y) = py(y).

Now fix p € B(y;r). And again choose a sequence (@), from .#4(G) such that
(@,(p)) converges to ps(p). By replacing @, by max{u,,u,} we mayassume u, < U,
(pointwise). As before, we can assume (u,) is pointwise increasing and each 1, is
harmonic on B(y;r). Let @ denote the pointwise limit of (%,).As before 7 < p; in G and
U|(yy) is harmonic. Summarizing, converges uniformly on compact sets to a harmonic
function @ : B(y,r) — R. Thus,

d) u(p) = ps(p);

(e) u and @ are harmonic on B(y;r).

Since & — u = 0 is harmonic on B(y;r) and is 0 at y, it follows that @ = u on B(y;r)
and therefore u(p) = u(p) = ps(p). Since p € B(y;r) was arbitrary, p; = u on B(y,r).
Thus p; is harmonic on B(y;r). Sincey was arbitrary, py is harmonic on all of G. O

24.2. Geometric sufficient conditions. A barrier at a point b € G is a continuous
function ¢ : G — C such that ¢|g is harmonic, ¢(b) = 0 and ¢(z) < 0 for z € G\{b}. If
G is a Dirichlet domain, thenG has a barrier at each point of dG (by Uryshon’s Lemma
for perfectly normal (e.g. metric) spaces).

Theorem 24.3. If G is a bounded domain with a barrier at b € 0G, then
limps(2) = (b).

Proof. Without loss of generality assume f(b) = 0. Let M = max{|f(z)| : z € 0G}.

Let ¢ be a barrier at b. Let ¢ > 0 be given. There is an open set b € U < 0G
such that |f(z) — f(b)| < € for z € U. On the set 0G\U the function ¢ takes negative
values and achieves its maximum which, by scaling, we can assume is —1. Consider the
harmonic function 1) : G — R definedby

W(z) = e — Mp(2).

Note that ¢(z) > € > f(z) on the set U. On the otherhand, on dG\U where —¢(z) >
we also have ¢(z) = M = f(z). Thus, ¥(z) = f(z) for z € 0G. Hence ¢ (2) = u(z) for
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all z € G and u € Z4(G) by the maximum principle. Thus () = p;(2) for all z € G
and consequently,
limsupps(z) < lirrll)w(z) =€

z—b
To prove the reverse inequality, consider the harmonic function 1 : G — R by
W(z) = Mip(z) — €.
Evidently ¢(z) < —e for z € U and hence ¥(z) < f(2) for z € U. On the other hand, if

z € 0G\U, then My(z) < —M and hence 9(z) < f(z). It follows that ¢ € .#;(G) and
hencey(z) < py(z) for z € G. Therefore,

—e =lim(z) < limiglfpf(z).

z—b
We conclude that lim,_,, ps(2) exists and is equal to0 = f(b). O
Corollary 24.4. The bounded domain G < C is a Dirichlet domain if and only if G
has a barrier at each point of 0G. T

The following result gives an easily applied and fairly general sufficient condition for
GG to be a Dirichlet domain.

Proposition 24.5. Let G = C be a domain_and suppose b € 0G. If there is a point a
such that ]b,a] = C\G, then there is a barrier atb. T

Proof. Let D = C\[b,a] and let D, = D u {b} = C\]b,a]. In particular, G = D, and
G < D. There is a continuous map ¢ : D, — C such that ¢|p isanalytic, ¢(b) = 0 and
(D) = H = {# : Imz < 0}.- (Follow a Mobius map taking a to 0 and b to —oo and
the segment [[a,b] to the negative real axis with the function —4/z using the principle
branch of the log.) The function ¢ = Im¢|z is a barrier atb. O

It seems the best one can do with the Perron approach is the following result, which
we will not prove.

Theorem 24.6. Suppose G < C is a domain (not necessarily bounded). If each compo-
nent of the complement of G contains at least two points, then G is a Dirichlet domain.

Corollary 24.7. If G < C is simply connected, then G is a Dirichlet domain. T

Remark 24.8. The situation in higher dimensions (n > 3) is far more complicated. ¢

25. GREEN’S FUNCTION

Let G denote a bounded domain and suppose y € G. A function g, : G\{y} — R
such that

(a) gy restricted to G\{y} is harmonic;
(b) g, = 0 on 0G; and
(c) there is a harmonic function f on G\{y} such that f(z) = g,(z) + log(|z — y|) on

G\{y}
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is called a Green’s function for y.

Proposition 25.1. Let G be a bounded domain and suppose y € G and suppose G has
greens function g, fory.

(1) gy is unique (and hence is the green’s function); and

(1) gy > 0 on G\{y}.

f
Proposition 25.2. If G is a bounded Dirichlet domain, then there is a Green’s function
for each y e G. T

Proof. Fix y € G. Let u denote the solution of the Dirichlet problem u(z) = log(|z —y|)
on 0G and define g : G\{y} — R by ¢(z) = u(z) — log(|z — y|)- 0

Suppose 0G = {~} is the trace of a continuously differentiable simple closed curve =
and G is a Dirichlet region. Let g(z,y) denote the Green’s function g,(z). If f : 0G — R
is continuous, then the solution to the Dirichlet problem with boundary data f is

- | 1o e yas

where the derivative is the normal derivative and s is arclength. A proof of this statement
is left to the interested reader. (Shockingly it involves Green’s Theorem.)

In the special case G = D, oneeasily checks that the Green’s function is g(z,y) =
log(|py(2)]) where ¢, (2) = 755 Write y = re?.and z = ue?. In this case, the normal
derivative of g(z,y) on the boundary is the derivative with respect to u evaluated at
u = 1. Writing g(z,y) as 3(log(]z —y|*) —log(]1 — 7z|?)) we see this normal derivative
is

L (i e )~ Cull? = e =),
9 |1 — gue|? =t
_ 1P
1o
—P.(t—8),

where P,(t) is the Poisson kernel. In this case ds = %d@. Compare with Theorem 22.4.

26. JENSEN’S FORMULA

Theorem 26.1 (The Poisson-Jensen formula). Suppose @ < C is open, f : Q — C is
analytic, r > 0 and B(0;1) < Q. Let ay,...,a, denote the zeros of f in B(0;r) counted
according to multiplicity. If f |z| <r and f(z) # 0, then,

1 (7 ret+z

l05(1(2) Elog( T b [T RS sl
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The result of the following problem will be needed in the sequel. It gives an initial
indication between the location of the zeros of an entire function and its rate of growth.

Problem 26.1. If f is entire and f(0) = 1, then log(2) n(r) < M(2r).

We will prove Theorem 26.1 assuming r = 1 in which case B(0;r) = D. For
notational convenience, let

K(z,t) = R———
Thus, writing z = se’®, K and the Poisson kernel are related by K(z,t) = P,(a — t).
Lemma 26.2. For 0 <s <1 and |t| < §
1> 1—se™)? =1 —e)?

f
Proof. Compute,
1—|1—se”|* =1— (1 —2scos(t)+ s°)
=s(2cos(t) —s) =0
for cos(t) = 3. Likewise,
11— se|*> —s|1 —e“f* = (1 —s)?
for all ¢. O
Lemma 26.3. The function X : [=Z,~2] = R defined by A(t) = |log(|1—e"|)| is L'. 't

Proof. Observe |1 — €"|*> = 2(1 = cos(t)). By considering the power series expansion for
cos(t), there exists 7 >0 and 1 = ¢ >0 and an entire function f such that |f(z)| =7
for [z| <& and 1 — cos(t) = t2f(t) for t € R. Thus the result follows from

L |log(t)| dt = —fo —log(t) dt = [t(log(t) — 1)]; = 1.

O
Lemma 26.4. For |z| <1,
im | Kz 0)log(1 —se|)dt = |° K(z 1) log(|1 — é]) dt
s—1,0<s<l J_ = _z
6 6
f

Proof. For [t| < £ and 0 < s <1 and |z| < 1, by Lemma 26.2,
—K(z,t)log(|]1 — €"]) = —K(z,t)log(|1 — se"|) = 0.

Using Lemma 26.3, we can apply dominated convergence to complete the proof. 0
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Lemma 26.5. For |z| <1,

log([1— 2|) = f K (2,1) log(|1 — e]) dt
f
Proof. From Lemma 26.4 it follows that
zt it
8_)1110128<1 7rK(z ) log(|1 — se™|) dt = B K(z,t)log(|]1 —€"]) dt

On the other hand, log(|1 — sz|) is continuous on D and harmonic in D and therefore,
by Theorem 22.4,
1 (" .
log(|1 — sz|) = By K(z,t)log(|1 — se™|) dt
T

—T

Proof of Poisson-Jensen. If f has no zeros in a neighborhood of D,then

log(1(2)) = 5 [ () log([ ")) e (12)

follows immediately from Theorem 22.4.

Now suppose y € 0D and f has no zeros in aneighborhood of D except at y. Let

Zf T Hence ¢ now has no zeros in a neighborhood of D and therefore by Lemma

Y

9
2

Ot ”

6.
log(|f(2)]) =log(lg(2)]) —log(ly — z[)

_%JJKWQWQMWW—bQW—WMﬁ
Z%fK@omMﬂwmﬁ

Inducting, it now follows that if f has no zeros in D, then the equality (12) holds.

Now suppose f(z) # 0 and f has zeros ay,...,a; in D counted with multiplicity.
Let B denote the Blaschke factor

koo
_El—_

and let F(z) = f(2)B(2)~'. Hence F has no zeros in D and thus equation (12) holds
with F' in place of f. Using |F| = | f| for |z| = 1 and

log(|F(2)]) = los(| (=) Zbgu($|

Combining this last identity with the equality of equation (12) completes the proof. [
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For an entire function f and r > 0, let M(r) = M(r) = max{|f(2)| : |z| = r} and
let n(r) = ng(r) denote the number of zeros of f in B(0;7).

27. ENTIRE FUNCTIONS OF FINITE GENUS

Recall the Weierstrass factorization Theorem. Let f be an entire functions with non-
zero zeros (a;) counted with multiplicity. The factorization of Theorem 17.12 requires a
choice of nonnegative integers p,, such that

»(m)

J
converges.

To see that there is a relation with the previous section, observe that Jensen’s
formula (the case of z = 0 in the Poisson-Jensen formula) bounds the growth of the
zeros of f in B(0;7) in terms of the modulus of f on {|z| = r}.

The entire function f has finite rank if there is'a non-negative integer p such that

o0
D, la| 7@+ (13)
h=1

converges. If f has only finitely many zeros, its rank is —1. Otherwise, the rank of f
is the smallest p such that the series converges. If f has rank p, then one can choose
Pn = p in Theorem 17.12 to obtain the standard form or standard factorization,

F(2)=2met@ P(2), (14)

where ¢ is entire, m is a non-negative integer (the order of the zero of f at 0) and
* z
P(z) =] B
=1 Y

Moreover, ¢ is now uniquely determined up to an additive multiple of 27:. Hence, we
may make the following definition. If the g (in the standard factorization of f in equation
(14)) is a polynomial, then g has finite genus and the genus of f is the maximum of the
degree of g and the rank p of f.

Proposition 27.1. If f is an entire function of finite genus u, then for each o > 0
there is an r > 0 such that, for all |z| > r,

[(2)] < exp(alz*D).

We break the proof down into several lemmas.

Lemma 27.2. Suppose v is a positive integer. For each A,e > 0 there is an R > 0 such
that |E,(2)| < Alz|"*€ for all |z| > R. T
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Proof. Estimate,
|2V
log(|Ey(2)]) < log(|1 —z|) Z 7
j=1

Given A > 0 there is an R > 0 such that log(|]1 — z|) + .7 < Alz|te. O

le

Lemma 27.3. If v is a positive integer and € > 0, then there exist positive numbers B
and M such that M such that, for all z,

log(|E,(z)|) < M |z]"*!
and
log(E,(2)) < Blz|"™,  |2| =

N[ —

Proof. Recall the power series expansion
z
—log(l—2)=> —, Jz| <L
215
Thus, for |z| < 3,

log(| B, (2)]) = Re (log(T=2) + 31 =

< 1/+1_‘
<l v+1

Applying Lemma 27.2 with A = 2 produces an R > 0 such that log(|E,(2)]) <
Alz|"* for |2| > R.

On the set A = {5 < |z| < R} the function log(|E,(z)|) is continuous except for
a singularity at 1 where it diverges to —oo. Hence log(|E,(z)|) is bounded by some
multiple of |z|*™! on A and the proof is complete. O

Lemma 27.4. Suppose (a;) is a sequence of non-zero complex numbers, v is a nonneg-

ative integer and
ee}
Z |aj|f(1/+1)
j=1

converges. Let
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For each o > 0 there is an R > 0 such that log(|Q(2)|) < a|z[*** for |z| > R. T

Proof. Let a > 0 be given. Choose M as in Lemma 27.3 based upon v. There is an N
so that

= a
Z |aJ|_(V+1) <
j=N+1 2M
In particular,
0
z a
> log(|B,(—)I) < 121" (15)
j=N+1 J
Choose A = 5% in Lemma 27.2 to obtain an R; > 0 such that, for [z| > Ry,
«
1 El, < — l/+1‘
o8(|B()]) < sl
Let Ry = max{|a;| : 1 < j < N} R;. Thus,
N
2 a a
1 Ey all < N— v+l _ = V—‘rl' 16
20815 ) < N A = 1 (16)

Combining the inequalities of equations (15) and (16) gives
log(|Q(2)]) < arfa|”".

Proof of Proposition 27.1. Express f as in equation (14). Let v denote the rank of P.
In particular, v < p. By Lemma 27.4, there isian R; > 1 such that |P(2)| < afz|*™ <
alz[" L for |z| > Ry.
Writing g = > 9,7,
log(|=" exp(h(2))]) < mlog(|z]) + ) lg;| |2
there is an Ry > 0 such that
log(|=" exp(h(=))]) < 5 12 |2 > Ra.

Choose R = max{R;, Ry} and take exponentials to complete the proof. O
Problem 27.1. Suppose (a;) is a sequence of non-zero numbers, 0 > p < p + 1 and

e¢]

A=>"al? < 0.

j=1

Suppose 0 < [a1]| < |ag| < .... Fix z € C and choose N so that || <
J

]é\ > 1 for j < N. Show

1 .
3 for j > N and

0e]

> log(1B,(-)]) < Al

j=N+1 J
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Now show there exists a C' such that for all z,

& z
> log(|£,(—)I) < Cl2[".
j=1 J

28. ENTIRE FUNCTIONS OF FINITE ORDER

An entire function f has finite order if there exists an @ > 0 and R > 1 such that

£ (2)] < exp(]z]*)

for |z| > R. Tt is evident that if b > a, then |f(2)] < exp(|z|°) for |z| > R too. If f has
finite order, then

A =inf{a > 0: 3R > 1 such that|f(z)| < exp(|z|?) for all |z| > R}

is the order of the entire function f. In particular, if \is the order of f and b > A, then
there is an R > 0 such that |f(z)| < exp(|z]®) for |z] > R and if 0 < ¢ < ), then for each
R > 1 there is a z such that |z| > R and |f(2)| >exp(|z]9).

Proposition 28.1. If f is an entire function of finite genus u, then f is of finite order
A<+ 1 T

If f does not have finite order, then f has infinite order and \ = co. For examples,
exp(exp(z)) has infinite order and if g is a polynomial of degree n, then exp(g) has order
n.

For the entire function f and r >0, let M(r) = M(r) = max{|f(z)| : |z| = r}. If f
is not constant, then for r-sufficiently large, My (r) > 1.

Proposition 28.2. If f is a nonconstant entire function, then the order of f is given
by
log(log(M
o 2 lim sup og(log(M(r)))
r—00 IOg(r)

f

Proof. Suppose f has order A < oo and let € > 0 be given. There is an R > 0 such that
for |z| > R, we have log(|f(2)]) < |z|**¢. Thus, for r > R,

log(log(|M(r)|) < (X + €) log(r).

Hence o0 < \ + € and thus o < .

On the other hand, if 0 < oo, then by the definition of lim sup, given € > 0 there is

an R > 1 such that if |z| > R, then W < 0 + e. It follows that
M(r) < exp(r°+)

for all r > R. Hence A\ < o + € and therefore A < 0. OJ
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Problem 28.1. Suppose (a;) is a sequence of non-zero numbers, p is a nonnegative
integer and p; > p > 0. Show, if

oe]

Z ‘aj’_p < ©,

j=1

then the canonical product

P() =[] B()

has finite order \ < p.

29. HADAMARD FACTORIZATION

Theorem 29.1. If f is an entire of finite order A, then f has finite genus p < .

Before proving Theorem 29.1, we collect some consequences.

Theorem 29.2. If f is a non-constant entire function of finite order, then f assumes
each complex number with at most one exception. Moreover, if f does omit a value, then
the order of f is an integer.

Proof. Suppose f is entire of finite order A and the range of f omits the point x. It follows
that f — x is an entire function of finite order A and f never vanishes. In particular,
by Corollary 7.10, there is an-entire function ¢ such that f —x = e9. Since f — z has
finite order, by Theorem 29.1, f has finite genus and therefore g is a polynomial. It now
follows that the order of f is an integer. Since g is a polynomial, it is either constant
or g assumes every value (by the fundamental theorem of algebra). Hence either f is
constant or f — x takes every value except of course 0 so that f takes every value except
T. 0

Theorem 29.3. If f is entire of finite order A\ and if \ is not an integer, then f assumes
each value infinitely often.

Proof. Suppose f has finitely many zeros so that the standard form for f is

£2) = [ [(= - ) expls(2),

J

for some n, complex numbers a; and entire function g. By Theorem 29.1, g is a polyno-
mial. On the other hand, the order of f and exp(g) are the same and, since the order of
exp(g) is an integer, so is the order of f. Thus if the order of f is not an integer, then
f is zero infinitely often.

Fixing x € C and applying what has already been proved to f — x it follows that f
takes the value z infinitely often. O
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29.1. Proof of Theorem 29.1.

Proposition 29.4. Suppose f is entire, f(0) = 1 with zeros (a;)7, armnged m increas-

ing order of modulus. Let g denote the lograthmic derivative of f; i.e., g = 7. If f has
finite order X and p > X\ — 1, then the p-th derivative of g has the representation,

_ Z ~rD f(2) £ 0.

Recall the definitions of M (r) and n(r).
Lemma 29.5. For z € C,

n(r) p+1
| = 0. 17
TL%Z[TL_M] (17)

f
Proof. For r > 2|z| and j < n(r),
1

Ir? — —a@zp = 57“2
since |a;| < r. Hence,

;] - 2\ pt1

lr2 — —a,z| » (;) '
j

Using log(2) n(r) < M(2r) (see Problem 26.1), the sum in equation (17) is bounded
by ]l\fg?;)) (2)p+1. Recall f has order A < p + 1. Choose € > 0 such that A +e¢ < p+ 1.
Proposition 28.2 implies

1og<M(2r>>(§)p“ < (2 (%)“1 < gy

for r sufficiently large. The conclusion of the lemma now follows. 0
Lemma 29.6. For z € C,
2m
lim re’ (re’ — z)f(pﬁ) log(|f(re™)])dt = 0.
r—0 J
I

Proof. Choose € > 0 such that u = A+ € < p+ 1. By Proposition 28.2; for r sufficiently
large log(| f(re)|) < r**<. Thus for r large,

‘Teit (re’ — Z)i(pﬁ) log(|f(r€it)’)’ <r| (re" — z)i(pw) | log(M(r))

; —(p+2) -
<T)\+E+1 | (7’6” _ Z) | ~ 7€
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Lemma 29.7. Suppose U is open. If f : U — C is analytic and never zero, then, with

u(z) = log(| f(2)]),
ou 8u f’

ox 8y f

Proof of Proposition 29.4. For h = rz—a) 5 Verlfy that
n 1 a
©_ 1, a

h(z) z—a r2—az

For f(z) # 0 and r > |z|, use Theorem 26.1, an application of Lemma 29.7 along with
differentiating under the integral sign to obtain

(5 n(r) T 27 ,r,ez't )
o= T S A B L [T (e

f(z) Slz—q r? —a;z rett —z)

Differentiating this last equality p times gives,

— _ »l p+1_|_ CL_] p+1
pZ[z_aJ <r2—a_jz) ]

2ret

1 2m )
1 e — ] D)) dt.
0+ D5 | s Joa(l/ ()
By Lemmas 29.5 and 29.6 the last two terms on the right hand side tend to 0 with . [

Proposition 29.8. Suppose fis an entire function with non-zero zeros ay, as,.... If f
has finite order A, then for each o >\,

(0]
;|7 < oo
j=1
In particular, f has finite rank at most \. T

Lemma 29.9. If f is entire, has finite order X\, m is a nonnegative integer and f(z) =
2"g(z), where g(0) # 0, then the order of g is the same as the order of f. T

Proof of Proposition 29.5. By Lemma 29.9, without loss of generality f(0) = 1. Fix
1 >¢e>0and 7> 0. There is no harm in assuming 0 < |a;| < |az| < .... Recall, from
Problem 26.1, that log(2) n(r) < M(2r). Since f has order A, there is an R > 0 such
that log(M (2r)) < (2r) € for r > R by Proposition 28.2. Thus, for r > R,

( ) < (2r>>\+6 < Ate )\-&-2‘
log(2)
Using k < n(|ag|), it follows that there is a K such that for k > K,
k< n(2’ak‘) < (2’@k‘))\+62)\+2 < ’ak‘)\+€4A+2'

Thus, for k > K,
4(1+7')()\+2) k,—(l-i—T) > |ak|—(1+7)(A+€)‘
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Since the series Y| k¢ converges for ¢ < —1, the result now follows by choosing € and 7
such that (1 + 7)(A + €) < ¢ and applying the comparison test. O

Proof of Theorem 29.1. By Proposition 29.8, if f has finite order, then f has finite rank
at most 7 < A. Hence, there is an integer A > p > A — 1 with p > 7. Without loss of
generality assume f(0) = 1. Express (using Theorem 17.12) f in standard form

f(z) = 9@ P(2),
where P(z) = [[ E-(Z) and g is an entire function. If 2 is not a zero of f, then
f/ P/

F6) = FE 0.

Differentiating p times and applying Proposition 29.4 to h gives,

b=

—pvza—z P = QU (z) + g (2)

where Q(z) = P/(Z)P_l(z). On the other hand, for a given a, and F(z) = E.(2) =

(1— g)ew(z)’ where 1) is a polynomial of degree 7,

/
%(z) = i . + 'z,
Thus,
e ¢]
26 = 3 a7
Therefore ¢®*Y = 0 and hence ¢ is a polynomlal of degree at most p < A. The conclusion
follows. [

29.2. The exponent of convergence and further results. The ezponent of conver-
gence of a sequence (a;) of nonzero complex numbers is

p = inf{c: Z la;| ¢ < oo}.
In this language Proposition 29.8 says if f has order A, then the exponent of convergence

of the non-zero zeros of f is at most .

Problem 29.1. Show the P defined as in Problem 28.1 has order equal to the exponent
of convergence of the sequence of its non-zero zeros.

Problem 29.2. Suppose ¢ is a polynomial of degree n and P is as in Problem 28.1.
Show the order of f = exp(g(z))P(z) is the maximum of the degree of g and the order
of P. (Suggestion: Use Proposition 29.8 and Problem 27.1.)

Problem 29.3. Suppose fi, fo are entire of finite orders A\;, Ao respectively. Show, if
A1 # A9, then the product fifo has order A = max{A;, Ay}

Show, by example, the conclusion can fail in the case A\; = As.
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30. BrocH’S THEOREM

Theorem 30.1. Suppose Q@ < C is open and contains D. If f : Q@ — C is analytic,
f(0) = 0 and f'(0) = 1, then there exists and a disk D < D such that f|p is one-one

and f(D) contains a disk of radius =.

Corollary 30.2. Suppose R > 0. If f is analytic in an open set ) containing the closure
of B(0; R), then f(B(0; R)) contains a disk of radius =5 R| f'(0)]. T

30.1. Proof of Theorem 30.1.

Lemma 30.3. If f : D — C is analytic, f(0) =0 and f'(0) = 1, then M = sup{|f(2)| :
zeD} =1 and

1
B(0; 6—M) < range(f).
f
Proof. The Schwarz Lemma (Lemma 12.5) implies M >1. Express f as the power series
f(z) =z+ Z;OZZ a;jz?. For 0 < r <1 and j > 1, Cauchy’s estimate gives |a;| < Mr~".
Hence |a;| < M. Thus, for |z| = (4M)~1,
0
F(2)] 22| = > a2V

j=2

>(4M) 7t — i M (4M)™I

e}
>(4M) ™ =16M° Y (4M)
j=0
1 1
—(AM) ' - ——1— —
UM = 160t~
1AM -2
A M(4M —1)
1
>
6M

O
Lemma 30.4. Let M, R > 0 be given. If f : B(0; R) — B(0, M) is analytic, f(0) =0
and f'(0) # 0, then

B(o: O < r(30; my).
f
Proof. Define g : D — C by (R2)
_ f(Rz
9(z) = Rf'(0)

and verify that ¢g defines the hypothesis of Lemma 30.3. O
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Lemma 30.5. Suppose R >0, a€ C and [ : B(a; R) — C is analytic. If

f'(2) = f'(a)| < [f'(a)]
for a # z € B(a; R), then f is one-one. T

Proof. Fix z # w € B(a; R), let v(t) = tz + (1 — t)w and estimate

— w] dt‘

1)~ @) - ul dt‘

'a)[z—w] dt‘ -

s — | l|f’(a)| - Ol[f’(v(t)) - f(a)] dtH

e~ ol I/ - f F00)= Fal ]

=z —w| fo [/ (@)l = 1" (3(8)) = fHa)[] dt > 0.

O

Lemma 30.6. Suppose p >0, a € C and let D = B(a;%). If f : B(a;p) — C is analytic
and

(i) [f'(a)] = %'
(i) |f'(2)] <5

then f|p is one-one and f(D) contains a disk of radius % T

z € B(a p),

Proof. First observe if g : B(a;r) — B(0; R) is analytic and g(a) = 0, then A, defined by

h(z) = &ga) is an analytic function A : D — D with A(0) = 0. Hence, by the Schwarz

Lemma 12.5,
h(2)] < 2], |2 < 1.

It follows that
a R|z — al

l9(w)| = RIh(—)| <

Combining items (i) and (ii) gives

r

3
!/
HORVOIEE-
Applying the version of the Schwarz lemma above with g = f'— f'(a), r = pand R = 2%
gives

3|z — a

£ - Fla)l < 2
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Thus, for z € D,
1
[/'(z) = J'(a)l < o = [ (a)l-
p
An application of Lemma 30.5 shows f|p is one-one.

To complete the proof, without loss of generality assume a = 0. For z € D, and

with ¢(2) = f(2) — f(a).
w@ﬂ=bHLfﬁ@ﬁh

Using item (ii),

12l
P
By Lemma 30.4 with R = £ and M = % gives,

PO ]
g(D) o B(0; 1—8) = B(0; ﬁ)

Hence f(D) contains the disk of radius =5 centered to f(a). O

9(z)] < — <

LWl —

Remark 30.7. For an entire function f, the function M(r) = M;(r) is increasing and
continuous. o

Proof of Theorem 30.1. Define h :+[0,1] — R by h(r) = (1 — r)Mp(r). Thus h is
continuous, h(0) = 1 and h(1) = 0. By continuity of h (see Lemma 30.7) the set
h~1({1}) is closed and hence contains its sup, 7. In particular, h(r) = 1 and h(s) < 1
for s > r. Choose |a| = r such that |f'(a)] = M (r). Hence,

h(r) 1

, = =

Let p = (1 —r). Thus |f'(a)| = 2%). Further, if |z — a| < p, then
Pl<i1-r<i@en <1
2l <3 r)<; r .

Hence, as (1 +r) > r (and again using Lemma 30.7),
()] <Mp(|2])

<Mp(5(1+7))

=h(5(1+r))(1 = 51+ 7)™
1 1

<=
1—2(1+7r) p

An application of Lemma 30.6 completes the proof. O
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31. PICARD’S LITTLE THEOREM

Theorem 31.1 (The Little Picard Theorem). If f is entire and omits two values, then
f s constant.

Theorem 31.2 (Schottky’s Theorem). For each 0 < < 1 there a constant Cyz such
that if

(i) f analytic in a simply connected set containing D;
(ii) f omits the values 0 and 1;
(111) and |f(0)] <1,

then |f(2)| < Cg for |z| < B.

The following Corollary to Theorem 31.2 will be used in the proof of the Picard’s
Great Theorem discussed in the next section.

Corollary 31.3. For each 0 < 8 <1 and R > 0, there is a constant Cyg such that if

(1) [ is analytic on a simply connected region containing B(0; R);
(ii) f omits the values 0 and 1; and
(i) [f(0)] < 1,
then | f(z)| < Cjs for |z| < BR. i

Proof. Apply Theorem 31.2 to the function g(z) = f(Rz). O

Aside from several problems at the end, the rest of this section is devoted to proving
Theorems 31.1 and 31.2.

Lemma 31.4. If z,y,2 e C\{0} and a® = 2 and y*> = 2 — 1, then

2=

1
e+ ——

and
(2+y)?+ (r+y)° =42 -2

f
Proof. Let S = x + y and compute,
1 12 1(S%+1)
gl =i
1 (2% +y* — 22y + 1)?

4 (x?+y? —2xy)
1 (22— 2ay)?
T 42h—1-— 21y
1422 +42% — 42 — Szay
4 22-1- 2wy
=2.
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The second part of the lemma follows immediately from the first. O

Let
L = {£(log(+/n —+vn—1)) + :neN*, kelZ}.

Lemma 31.5. If f is analytic on a simply connected domain and if the range of f
contains neither O nor 1, then there is an analytic function g : B(0; R) — C such that

(1)
f = —exp(im cosh(2g).
(ii) the range of f is disjoint from L; and
(i1i) the set L intersects every disk of radius two.

f

Proof of Lemma 31.5 and Theorem 51.2. Let G denote the simply connected domain of
f. Since f omits the value 0, by Corollary 7.10(iv), there is an analytic function h on G
such that f = exp(2mih). Without loss of generality, we may assume 0 < Reh(0) < 1.
Since f omits the value 1, the range of h contains no integers. In particular, there are
analytic functions 1; on G such that

h(z) = exp(vo(2)), h(z) =1 = exp(¥h(2)).

Let S;(z) = exp(3t;(2)) so that S3 = h and S§'= h —1. The function S = Sy — S; does
not take the value 0. Hence there is an analytic function g on G such that S = exp(g).
Without loss of generality, assume 0 < Im g(0) < 27. Compute, using Lemma 31.4,

exp(2g) + exp(—2g)

cosh(2g) + 1 = 5 +1
1 2
=5 exp(9) + exp(—g)]
1 152
=55+ 3]
—2h.

Thus,
f(z) = exp(mi[cosh(2g) + 1]) = — exp(mi cosh(2g)).
At this point the proof of item (i) of Lemma 31.5 is complete.

To prove item (ii), arguing the contrapositive, suppose there is a point y € Q < C
and n € N* and k € Z such that
vk

9(y) = £(log(vn + vn = 1)) + —~.

In this case, and taking frequent advantage of the identity (v/n ++v/n—1)"1 = \/n —
vn—1,
exp(+29(y)) = £(vVn+ vn —1)*
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Hence, using Lemma 31.4,

cosh(2g(y)) = [(\7+vn* D+ (Vn+vn—1)7] = +(2n - 1).

Hence,
fly) = —exp(£mi(2n — 1)) = 1.

Turning to item (iii), fix a point z = a + bi with a,b € R. There is a k € Z
such that ”“7” < b < M Likewise, assuming a > 0, there is an n € NT such that

log(v/n++vn—1)<a log(\/n + 1+ 4/n). Now,

log(v/n + 14 +/n) —log(v/n++vn—-1) <1
Hence, the distance from z to L is at most 4/1 4+ (3)? < 2. The proof of Lemma 31.5 is
now complete

To prove Theorem 31.2, first observe that, by rotating, it can be assumed that
f(0) is real and 0 < f(0) < 1. For now, suppose in_fact % < f(0) < 1. In this case,

log(2) = log(|f(0)]) = 0 and
log(]f(0)]) = log(exp(27 Im h(0))) =2mRe h(0).
Thus,

log(2)

|R(0)] < |Reh(0)] + |Imh(0)] < 1 + o

Let Cp = 1 + 262
Next,
50(0) + S1(0)] <[So(0)] + [S1(0)]
=[h(0 )2+ [h(0) — 12
<C + (Co + 1)2.

l\:)\»—‘

Let Cy = CO% +(Co +1)2.
If [S(0)| = 1, then
9(0)] <[Reg(0)] + [Im g(0)]
<log(|S(0)]) + 27 < log(Ch) + 2.
If |S(0)] < 1, then log(|S(0)]) < 0 and
9(0)] <[Re g(0)] + [Im g(0)]
—log(]S(0)]) + 27

1
=log(% + 27

=1og(Sp(0) + S1(0)) + 27 < log(Cy) + 2.
Hence in any event, |g(0)| < Cy :=log(Cy) + 27.
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For a € D, Corollary 30.2 says the set g(B(a;1 — |a|)) contains a disk of radius

%f’(a)'. On the other hand, items (ii) and (iii) imply that the range of g contains no

disk of radius two. Hence, for |a|] < 1,

72
/
< —.
/@)l < =7

It follows that
l9(a)] <|g(0)[ + |g(a) — g(0)]
1
<Cy + J g’ (ta)||a| dt
0

72|al

<Cy + )
> 1—1a

Thus if |2| < § < 1, then

<Cy+ ——

)] < Ca+ 1
and, in view of the relation between f and g, the proof is complete in the case % f0) <1,
i.e., there is a constant Dg such that |f(z)| < Dg for |z| < .

Finally, suppose 0 < f(0) < 3. In this case fo=1— f satisfies %f(()) < 1 and
consequently,

1) S £+ 1

Choosing C3 = 1 + Dg completes the proof. O

Proof of Theorem 31.1. Suppose f omits the values y # w and fix R > 0. Let F(z) =
fq(j—z;y omits the values 0,1. Hence, by Lemma 31.5, there is an entire g such that
F = —exp(in2g) such that the range of g is disjoint from L. Hence the range of g
contains no disk of radius two by Lemma 31.5(iii). If g is not constant, then there is
a point p € C such that ¢’(p) # 0. From Corollary 30.2, g(B(p; R)) contains a disk of

radius = R|g/(p)|, a contradiction. O

31.1. Problems.

Problem 31.1. Show, a nonconstant meromrphic function omits at most three values
in C.

Problem 31.2. Show, if n > 3 is an integer, then f" + ¢" = 1 has no nontrivial entire
solutions.

Show, if f, g are entire and f2 + g? = 1, then there is an entire function A such that
f = cos(h) and g = sin(h).
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32. THE MONTEL-CARATHEODORY THEOREM

Theorem 32.1. Let 2 < C be an open connected set. The
F ={f:Q — C: f is analytic and omits the values 0, 1}

is a normal family. In particular, if (f,) is a sequence from %, then there is a subse-
quence (gx) of (fn) such that (g,) converges uniformly on compact sets to o or to some
analytic function g : 2 — C.

Proof. Fix a point b € () and let
F1={fe7:[fb)] <1}
Ty —{f e F ()] = 1},

The first step is to use Theorem 14.4 (Montel’s Theorem) to very that .%; is normal.
Accordingly it suffices to show that .#; is locally bounded. Evidently the set of points S
in  for which % is locally bounded is an open set. To prove S is closed, suppose (z,)
is a sequence from S that converges to zg € Q. Thereis an r > 0 such that B(z;r) < Q.
There is an N so that |zy — 29| < 5. Since 18 bounded at zy, there is a C' such
that |f(zy)| < C; for all f e %#;. An application of Schottky’s Theorem (Theorem 31.2)
to the ball B(zy;5) gives a constant Cy such that |f(z)| < CyC) for all f € #; and

z € B(zy; 5). Since S is a nonempty subset of € that is both open and closed, S = €.

Observe, if f € .%,, then, as f never vanishes, % € Z. In particular, as .%7 is normal,
if (f,) is a sequence from Z,, then; by passing to a subsequence if necessary, there is

an analytic function h on €2 such that (%) converges uniformly on compact sets to h.
By Theorem 14.2, since noe of the fl are zero, either h never vanishes of A is identically

zero. Now verify, if h is identically 0, then (f,) converges to oo uniformly on compact

sets; and otherwise (f,,) converges uniformly to % on compact sets. Hence .%; is normal.

An easy argument based on normality of .%; for j = 1,2 completes the proof. [

33. THE GREAT PICARD THEOREM

Compate the following Theorem to Theorem 9.6.

Theorem 33.1 (The Great Picard Theorem). If Q < C is open, y € Q, f: Q\{y} - C
s analytic and has an essential singularity at y, then f assumes every value, with at
most one exception, infinitely often.

Corollary 33.2. If f is entire and not a polynomaual, then, with at most one exception,
f assumes every value infinitely often. T

Given a polynomial p with n distinct zeros. The function f(z) = p(z)exp(z) takes
every value except 0 infinitely often and the value 0 exactly n times. Hence, there is no
general statement about the number of times the possible exceptional value is assumed.

Proof. It f has a pole at infinity, then f is a polynomial by Problem 9.4. OJ
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Proof of Theorem 33.1. Arguing the contrapositive, suppose f omits two values. With-
out loss of generality, assume

(i) @ = B(0; R) (for some R > 0);
(ii) f has an essential singularity at 0;
(iii) f omits the values 0 and 1.

For notational ease, let U = B(0; R)\{0}. Define f,, : U — C by f,(z) = f(£). Thus
each f,, omits the values 0 and 1 and therefore (f,,) is a sequence from the normal family
of Theorem 32.1 (Montel-Caratheodory). Hence there is a subsequence (g) of (f,,) such
that (g,) converges uniformly on compact sets to either co or to some analytic function
g : U — C. In the case of convergence to oo, the function f has a pole at 0.

Suppose (gr = fn,) converges uniformly on copmpact sets to an analytic function

g. The function g is bounded, by some M on {|z| = £. Hence |f,,(z)] < M +1 on
2| = 21 for k sufficiently large. Using the maximum modulus theorem, it follows that

ng
f is bounded the annuli {r < |z| < £} for each 0 < r sufficiently small, Hence f has a
removable singularity at 0.

O

33.1. Problems.
Problem 33.1. Show that sin(z) = z has infinitely many solutions.

Problem 33.2. Show f(z) = e* = z takes every value infinitely often.

34. HARMONIC CONJUGATES

Recall a function u on an open set Q < C = R? is harmonic if it has continuous

second partials (denoted u € C?) and satisfies Laplace’s equation (9). Assuming only
that u € C?, define

Ou = Uy — Uy,

Remark 34.1. If u has a harmonic conjugate v (and locally it does), then f = u + iv
is analytic and, by the Cauchy-Riemann equations,

ou = uy +iv, = f.
o

Proposition 34.2. Suppose Q < C is open and u : Q@ — R is C%. The function u is
harmonic if and only if f = du is analytic. In this case, if v is a closed rectifiable curve

in €2, then
J ou = ZJ (updy — uydz).
v gl
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In the context of Proposition 34.2,
*du = uydy — uydz.
is the conjugate differential of u. If u has a harmonic conjugate v, then
dv = vdx + v,dy = *du.

Theorem 34.3. Suppose 2 = C is an open set and u : Q — R is C?. The following are
equivalent.

(i) w has a harmonic conjugate in );

(ii) du has a primitive;
(111) *du is an exact differential (in Q); and
(iv) for each closed rectifiable curve in €,

J *du = 0.
.

Proof of Proposition 34.2. Assuming the domain of vy is [0, 1], writing () = a(t) +ib(t)
and using exactness of u,dz + u,dy and closedness of 7,

34.1. Proofs.

J =3 | it ) ot o
- ||ty O Sy GO | Tunl0)a' ) + w01 d
- [ Ttaor= i [eo) + e a

P

= | Ju.

Jy

O

Proof of Theorem 3/.3. Assuming (i), there is a harmonic function v such that ¢ = u+iv
is analytic. Hence from the Cauchy-Riemann equations,

/ . .
g = Uy + 1V, = Uy — tUy = 20u.

Conversely, if there is an analytic ¢ = u + iv such that ¢’ = 20u, then from the
equation above v, = —u,. On the other hand, ¢' = —iu, + v, and hence v, = u,. Hence
v is a harmonic conjugate of .

A discussion earlier in this section shows (i) implies (iii). The converse is easily seen
to be true.

It is a standard fact from calculus that (iii) implies (iv). On the other hand, condition
(iv) implies (ii) from Corollary 2.2 (a version of Cauchy’s Theorem). O



88 MAAG6406-07 COURSE NOTES 2016-17
35. GAUSS’S THEOREM AND GREEN’S FORMULA

In these notes, a nice domain €2 of genus ¢ is an open subset of C bounded by g + 1
smooth (continuously differentiable) closed non-intersecting curves I' = (g, I'y, ..., [y).
Further, we assume that C\Q2 = K ugzl K; where the K; are compact domains, Kj
is the unbounded component and I'; is the boundary of K. Often for simplicity I'y is
taken as the unit circle and all the other curves are assumed to lie in the disk. The
curve(s) I is assumed oriented (so we view I' as a (union of) curve(s)) so that the region
lies to the left. A nice multiply connected domain is a domain of genus g for some g.

The following theorem is a standard fact from multivariable calculus.
Theorem 35.1 (Gauss’s Theorem). Suppose 2 is a nice multiply connected domain with

boundary I'. If p,q are defined in a an open set containing the closure of 2 and have
continuous first partials, then

Jf[px + qy) dA = J pdy — qd.
r
Q

(The left hand side is the integral against the area element dA = dx dy and the left the
line integral over the (oriented) curve I'.)

Suppose u: 2 < C — R is C! and y(s) = (x(s),y(s)) is'a C! path in 2 parameter-
ized by arclength s. For f(s) = u(vy(s)), by the chain rule
— =Vu-T,

"(8) = —=— + —
fs) drds Oyds
where T' is the tangent vector to the curve at s. Note that this derivative really only

depends upon T, and not the particular curve . Accordingly, define the tangential
derivative of u at p = y(s) by

__Qudzr  Jdudy

ou

(The partial notation reflects the idea that we are differentiating in the tangential di-
rection The normal derivative or derivative with respect to the outward normal is, by

definition
ou Oudxr O

o 2 gy N
on  Oyds Oxds wo
where N = (b, —a) is the normal vector. In particular, ‘;—st = Uydx — Uuydy.
Define the Laplacian
AU = Ugy + Vyy.

Thus w is harmonic if and only if Au = 0.

Theorem 35.2 (Green’s Formula). If Q is a nice multiply connected domain and wu,v
are defined and C? in a neighborhood of the closure of 2, then

J f (ulv — vAu)dA = L <u2—z - Ug—z) ds. (18)
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Proof. Let p = ua” and g = u and observe,
Py = UVzy + UgyUy, qQy = UVyy + Uy Vy.
By Theorem 35.1,

Jf[uvm + UypUy + ULy + uyvy | dA = J [uv,dy — uvy,dz].

r

fj uNvdA + Jf[uxvz + uyvy | dA = J ulv,dy — vydx] = J u—ds (19)

Using the analogous equation obtained by switching the roles of w and v and taking the
difference yields formula (18). O

Hence,

36. THE PERIODS OF A HARMONIC FUNCTION

Sheldon Axler, in an article in the American Math Monthly, refers to the following
result as the logarithmic conjugation theorem and champions it as a way to avoid talking
about the periods of a harmonic function.

Suppose €2 is a nice multiply connected domain of genus g with complement u?zoK j
(with K, being the unbounded component). ‘A set 4= {7,...,7,} of smooth curves in
Qis a is a basis if n,, (w) = 1 for w € K; and ns, (w) = 0 for w e K for k # j.

Theorem 36.1. Suppose €1 is a nice multiply connected domain of genus g with com-
plement u?lej and v = {71,...,7} s a basis for Q. Given a harmonic function

u: Q) —C, let
) o f ou = (20)

The numbers c; are real and independent of the chozce of basis v and for any choice
a; of points from the interior of K; for 1 < j < g, there is an analytic function f : Q@ — C
such that
u(z) = Re f(z +chlog |2 — ag]). (21)
7j=1

Finally, if the partials of u extend continuously to the boundary, then so does f; and
if f extends continuously to the boundary, then so does u and the formula of (21).

The c; are the periods of u about the boundary component I';.

Remark 36.2. The idea behind the proof is the following. Fix a base point b € Q. It is
possible to define locally an analytic function whose real part is u by choosing a path ~
from b to z and considering, somewhat informally,

J: ou = L&u + u(b).
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The difficulty is that different paths from b to z can lead to different values. On the
other hand, these values differ in a predictable fashion, namely up to some Z linear
combination of the periods, by the Cauchy integral formula. Our forefathers referred
to these as multiple-valued functions. The proof of theorem then amounts to correcting
the periods, in this case using the harmonic functions (with well understood periods)
log(|z — ). o

The proof of Theorem 36.1 will use the following lemma.

Lemma 36.3. Given a point a € C,
1

dlog(|lz —al) = po—r

f

Proof. Given a point z, choose a branch of the logarithm log(z — a) in a neighborhood
N of z. In particular, u = Relog(z — a) and thus the‘imaginary part of log(z — a) is a
harmonic conjugate of u. The lemma now follows by Remark 34.1 O

Proof of Theorem 56.1. Choose curves 7; in € such that n, (w) = 1 for w € K; and
N, (w) =0 for w e K; for i # j. Let

1
= — ou.
i 27riLj Y

Since

-1
Iij :2— Ref au
T v

-1 : :
X Re Lj [uy — tuy|(dzx + idy)

—1
zﬂ[uxda: + u,dy] =0

since the expression is the integral of an exact differential over a closed curve. Thus ¢;
is real. Let
G

TORICTEDY

J

]

g
1T

Now suppose o is a closed curve in €2 with winding number n; about K; (meaning
ny(w) = n; for each w € Kj). It follows that v is homologous to v = >.5_, m;v;; i.e.,
o — 7 is homologous to 0. Hence, by Cauchy’s integral formula,

o)

=anJ ou — chnvj(aj) =0
5 Y

(22)
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by the choice of the ¢;. It follows, from Corollary 16.3, that g has a primitive f; i.e.,
there is an analytic function f : 2 — C such that f’ = g. Indeed, a choice of f is
obtained by fixing a point b € Q and defining f(z) = S: g from which it will follow that
f extends continuously to the boundary if the partials of u do.

Let

g
v(z) = Re f(2) + ) ¢;log(|z — ;).
j=1
Let h(z) = Re f(z) and note that h, = Re f’. Likewise, let h;(z) = log(|]z — a;|) and
observe, by Lemma 36.3,
1
(h])x = Re 6hj = Re .

Z—CLj

Thus
g
v, = Re[f' + Z ¢jOh;] = Re ou. = u,.
=1

A similar argument shows v, = w,. Hence u and v agree up to a constant. Adjusting f
by this constant gives formula (21). O

37. THE REFLECTION PRINCIPLE FOR HARMONIC FUNCTIONS

An analytic closed curve v is'the image of the unit circle T under a mapping that
is bianalytic in an open set containing T. The nice multiply connected domain {2 has
analytic boundary if each of the boundary components I'; is a simple analytic closed
curve. In this case we may assume that the bianalytic mappings defining I'; map the
inside of the unit circle into €.

Theorem 37.1. Suppose the boundary of S} consists of simple closed analytic arcs. If
u : 0 — R is continuous, harmonic on Q and ulp, is constant for 0 < j < g, then u
extends to a harmonic function on an open set containing <.

The proof of Theorem 37.1 occupies the rest of this section.
Lemma 37.2. Suppose p > 0 and let
H={z:0<Imz<p}, H'"={2:0<Imz < p}.
If

(1) u:H* — R is continuous;
(2) ulg is harmonic; and
(3) tlimz=0y = 0,

then u extends uniquely to a harmonic function on S = {—p < Imz < p}. Moreover, if
u 18 2w periodic, then so is its extension. T
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Proof. Define v : S — R by
+
o(z) = {u(z) zeH

—u(z) —p<Imz<D0.

Thus v extends u and is continuous in view of items (1) and (3). Moreover, v is harmonic
in H by hypotheses from which it follows by a simple calculation that v is harmonic on
the set {—p < 0 < Imz}. By Theorem 22.6, it is enough to show that for each point
z € S there is an R > 0 such that v satisfies the maximum principle in B(z; R) < S.

Hence, it suffices to show that if Imz = 0, » > 0 and B(z;7) < S, then

2m
f v(z +re")dt = v(z) =0,
0

a conclusion that follows from the symmetry v(z + re™®) =w(z + r?) = —v(z + r't).

Finally, if u is 27 periodic, then, from its definition, so is v. 0

Lemma 37.3. Fiz r > 0 and consider the annular regions
A={r<lzl|<1}, A" ={r<|z]<1}.
If

(i) u: AT — R is continuous;
(i1) ul|a is harmonic; and
(111)) u=10 on T,

then u extends to a harmonic _function on an open set containing A™. T

Proof. Let p = —log(r) >0-and let S denote the strip {—p < Iz < p}. In particular,
e(z) = exp(iz) maps S conformally onto the annular region & = {r < |z| < 1}. Define
H and H* as in Lemma 37.2 and defined @ : H" — R by @ = u o e. It follows that @ is
continuous, 27 periodic and |y is a harmonic. Hence, by Lemma 37.2, @ extends to a
27 periodic harmonic function ©-on all of S. Since v is 27 periodic, there is a harmonic
function v on &/ such that o = v oe. (Compare with Lemma 20.6.) Indeed, given
z € o/, simply observe, that if /; and /5 are any two branches of the log defined in a
neighborhood of z, the ¢1(¢) = ¢2(¢)+2mik for some integer k. Hence, v(z) = 0(il;(2)) is
well defined. Tt is harmonic as it is the composition of a harmonic function with (locally)
an analytic function. Now v o e = ¢ and thus v o e|y+ = @ = w o e. Hence v[y+ = w.

O

Lemma 37.4. Let Q be a nice multiply connected domain with boundary I' = UI';. Fix
k. If

(1) u is continuous on Q U I'y;
(2) Ty is an simple closed analytic curve;
(8) w is constant on 'y,

then there is an open set ' > Q u 'y and a harmonic function on Q' extending u.
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Theorem 37.5 (Jordan Curve Theorem). If v is a simple closed curve in C, then the
open set C\{~} consists of two components.

The unbounded component is the outside of {v}. The bounded component is the
inside of {~}.

Proof of Lemma 37.4. Assume, without loss of generality, that u = 0 on I'y. By hypoth-
esis, there is an annular region & = {r < |z| < 1} and an analytic function f: & — C
bianalytic on to its range such that I';, is the image of T. Without loss of generality we
may assume this mapping takes A = {r < [z] < 1} into ; and A’ = {1 < |z| < 1} into
the complement of Q. The composition uo f defined on A* = {r < |z| < 1} satisfies the
hypotheses Lemma 37.3. Hence u o f extends to a harmonic function v on 7. Letting
v =190 f~! completes the proof. U

Proof of Theorem 37.1. The hypotheses allow the application of Lemma 37.4 to each
boundary component. O
38. HARMONIC MEASURE, THE PERIOD MATRIX AND THE ABEL-JACOBI MAP

A nice multiply connected domain €2 of genus ¢ with boundary I' is a Dirichlet
domain. Let w; denote the solution to the Dirichlet problem on 2 with boundary values

wjlp, = 1if i = j and 0 if ¢ # j. The harmonie functions wg, wy,...,w, are harmonic
measure for Q. This terminology is of course rather outdated. Let, for {y1,...,7,} a
basis for €2,
1 ka owy,
ijC = % J —dS

Thus P;y, is the period of wy about Fj. Note that Green’s Theorem implies Py ; = P
and thus P = P?. The matrix P = (p;) is the period matriz for 2.

For the remainder of this section, assume I' consists of simple closed analytic curves.

Proposition 38.1. The period matriz is symmetric and positive definite. T

Proof. The harmonic measures w; extend harmonically across the boundary by Theorem
37.1. Given real numbers ¢y, . . ., ¢, not all zero, let w = | c;w;. By the primitive version
of Greens’ formula applied to u = w = v, equation (19),

O<ff(w +w))dA = Zc]ckfw]aguk

7,k=1
=2 P
ik

It follows, letting ¢ € RY denote the vector with entries ¢;, that ¢’ Pc > 0 whenever
¢ # 0. Since also P is symmetric, it is positive definite. O
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Let Z9 denote column vectors with entries from 7Z and let L. denote the lattice
L =79 +iPZ = {m+iPn:m,neZ%,

where P is the period matrix for €). The Jacobian variety of €) is the quotient space

C9/L. Let wy,...,w, denote the harmonic measures for €, let
wq
w =
Wg

and define dw in the obvious fashion.

Proposition 38.2. Fizx a point be Q. If v is a closed (rectifiable) path in €2, then
1
— f ow € 1PZ°.
27 J,

Thus the mapping f : Q@ — C9 defined by
1 (1
£ = | 50w

T Jby
where the integral is taken over any path from b to z in €2, is well defined and analytic.

Proof. The curve « is homologous to ), m;I'; for some choice of integers m;. Hence,
1 \
% L ﬁwk = ZZ Pj,kmj

and therefore

1
—J ow = 1Pm.
21 .

It follows that f is well-defined. It is locally analytic and hence analytic.
Finally, U
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39. APPENDIX A

Lemma 39.1. Suppose Q@ = C is an open set, v : [a,b] — Q is a rectifiable path. If
F is an equicontinuous family offunctions f : 2 — C, then for every e > 0 there exists
a polygonal path T : [a,b] — Q such that T'(a) = v(a) and T'(b) = v(b) and, for each

feF,
[o-44-

Proof. Observe that the proof in Conway works at this level of generality O
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