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1. Integral formulas

Theorem 1.1 (Bounded Convergence). Suppose f, fn : ra, bs Ñ C. If

(i) f, fn are continuous;
(ii) pfnq converges to f pointwise;

(iii) there is an M such that |fn| ďM (uniformly),

then
ş

fn converges to
ş

f .

Remark 1.2. Uniform, rather than pointwise convergence, implies the uniform bound-
edness conditions. With this stronger hypothesis, the proof of the Theorem is very
straightforward. ˛

Theorem 1.3 (Leibniz Rule). If ϕ : ra, bs ˆ rc, ds Ñ C and ϕ2, the partial derivative
with respect to the second variable, exists and is continuous, then g : rc, ds Ñ C defined
by

gptq “

ż b

a

ϕps, tq ds

is continuously differentiable and

g1ptq “

ż b

a

ϕ2ps, tq ds.

Proof. It suffices to prove the theorem in the case the codomain of ϕ is R. In this case the
codomain of g is also R. Since ϕ2 is continuous, there is an M such that |ϕ2ps, tq| ďM
for all s, t. Fix t0 P rc, ds and suppose ptnq is a sequence from rc, ds that converges to t0
(with tn ‰ t0). Define fn : ra, bs Ñ R by

fnpsq “
ϕps, tnq ´ ϕps, t0q

tn ´ t0
.

By the MVT, for each s and n, there exists a point c between tn and t0 such that

|fnpsq| “ |ϕ2ps, cq| ďM.

Hence the sequence pfnq is uniformly bounded. By the differentiability hypothesis on ϕ,
the sequence fnpsq converges pointwise to f0psq “ ϕps, t0q. The result now follows from
the bounded convergence theorem, Theorem 1.1. �

Date: March 2, 2017.
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Theorem 1.4 (An M test). Suppose pgnq is a uniformly bounded sequence series of
continuous C-valued functions defined on an interval ra, bs. If panq is a sequence from
C and if

ř

an converges absolutely, then the series
ř

angnpsq converges to a continuous
g : ra, bs Ñ C and moreover,

ż b

a

gds “
8
ÿ

n“1

ż b

a

gnds “ lim
NÑ8

N
ÿ

n“1

ż b

a

gnds.

Lemma 1.5. If |z| ă 1, then
ş2π

0
exppisq
eis´z

ds “ 2π. (If |z| ą 1, then the integral is 0). :

Proof. In the case |z| ă 1, apply the bounded convergence theorem to

1

1´ e´isz
“
ÿ

pe´iszqn;

i.e., gnpsq “ e´ins and an “ zn. The case |z| ą 1 is similar. �

Theorem 1.6 (Cauchy Integral Version 0). Suppose f : G Ñ C is analytic, y P C and

r ą 0. If Bpy; rq Ă G and γ : r0, 2πs Ñ G is defined by γpsq “ y ` reis, then, for
|w ´ y| ă r,

fpwq “
1

2iπ

ż

γ

fpzq

z ´ w
dz. (1)

Alternately, letting Fwpzq “
fpzq
z´w

,

fpwq “

ż

γ

Fw “

ż

Fw ˝ γ dγ.

On the other hand, if |w´y| ą r, then the integral on the right hand side of equation
(1) is 0.

Remark 1.7. The Lemma recovers the values f inside the circle traversed by γ from
the values of f on γ. In particular, fpyq is the average value of f on the circle γ. ˛

Proof. Suppose, without loss of generality, y “ 0 and r “ 1 and let |w| ă 1 be given. It
suffices to prove,

0 “

ż 2π

0

„

fpwq ´
fpeisq

eis ´ w
eis



ds.

Note, by convexity, for 0 ď t ď 1, that |w` tpeis´wq| “ |p1´ tqw` teis| ď 1 and hence
we may define ϕ : r0, 2πs ˆ r0, 1s Ñ C by

ϕps, tq “
fpw ` tpeis ´ wqq

eis ´ w
eis ´ fpwq.

Define g : r0, 1s Ñ C by

gptq “

ż 2π

0

ϕps, tq ds.
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It suffices to show gp1q “ 0. By Theorem 1.3,

g1ptq “

ż 2π

0

ϕ2ps, tq ds.

Now

ϕ2ps, tq “ f 1pw ` tpeis ´ wqqeis “: Gtpsq.

On the other hand, Gtpsq “ Φ1tpsq where

Φtpsq “
1

it
fpw ` tpeis ´ wqq,

for 0 ă t ď 1. Hence, for 0 ă t ď 1, by the FTC g1ptq “ Φtp2πq ´ Φtp0q “ 0. Hence g is
constant on p0, 2πs and thus, by continuity on all of r0, 2πs. Hence gp1q “ gp0q. On the
other hand,

gp0q “

ż 2π

0

„

fpwq

eis ´ w
´ fpwq



ds “ fpwq

ż 2π

0

„

1

eis ´ w
´ 1



ds.

The right hand side is 0 by Lemma 1.5. Hence gp1q “ 0 as desired. �

2. Power Series Representations

Theorem 2.1 (Power Series Representation, Part I). Let Ω Ă C be an open set. If

f : Ω Ñ C, y P Ω and r ą 0 and Bpy; rq Ă Ω, then there is an M (depending on r) such
that the sequence

an “
1

2π

ż 2π

0

fpy ` reisqe´ins

rn
ds

satisfies |an| ď
M
rn

and hence the series

8
ÿ

n“0

anw
n

has radius of convergence r and for |z ´ a| ă r,

fpzq “
8
ÿ

n“0

anpz ´ yq
n.

In particular, the an do not depend upon r.

Proof. Suppose, without loss of generality y “ 0. In this case, if |z| ă r, then by
Theorem 1.6,

fpwq “
1

2πi

ż

γ

fpwq

w ´ z
dz

where γ : r0, 2πs Ñ G is defined by γpsq “ reis. On the other hand,
ż

γ

fpwq

w ´ z
dz “

ż 2π

0

fpeisq

1´ z
re´is

ds.
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The sequence gnpsq “ fpreisqe´ins is uniformly bounded (on the interval r0, 2πs). An
application of Theorem 1.4 with an “ p

z
r
qn gives

ż 2π

0

fpreisq

1´ z
re´is

ds “i lim
NÑ8

N
ÿ

n“1

ż 2π

0

fpreisqe´insp
z

r
q
n ds

“i
8
ÿ

n“0

„
ż 2π

0

fpreisqe´ins

rn
ds



zn.

�

Corollary 2.2 (Power Series Representations, Part II). Suppose Ω Ă C is an open set,
f : Ω Ñ C is analytic, y P Ω, r ą 0 and Bpy; rq Ă Ω.

(i) Letting R denote the distance from y to BΩ, the function f has a power series
representation on Bpy;Rq;

fpzq “
8
ÿ

n“0

anpz ´ yq
n, |z ´ y| ă R

(ii) f is infinitely differentiable, and f pnqpyq “ n!an;
(iii) further,

an “
1

2πi

ż

γ

fpwq

pw ´ yqn`1
dw,

where γ : r0, 2πs Ñ Ω is the path γpsq “ y ` reis;
(iv) (Cauchy estimate) if |f | is uniformly bounded by M in Bpy; rq, then

|fnpyq| ď
n!M

rn
;

(v) there exists an analytic function F : Bpy; rq Ñ C such that f |Bpy;rq “ F 1; i.e., F
has a primitive on Bpy; rq;

(vi) if γ : ra, bs Ñ Bpy; rq is a rectifiable curve, then
ż

γ

f “ 0.

Proof. For item (v): f “
ř

anpz ´ yqn has radius of convergence r ą 0. Hence so does
the series

ř

an
n`1
pz ´ yqn`1 and thus

F pzq “
8
ÿ

n“0

an
n` 1

pz ´ yqn`1

defines an analytic function on Bpy; rq whose derivative is f . Item (vi) follows from item
(v) by the fundamental theorem of line integrals, Corollary 1.22 in Conway. �

Recall a domain is a an open connected set G Ă C.

Proposition 2.3. Suppose G Ă C is a domain. For an analytic function f : G Ñ C,
the following are equivalent.
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(i) there is an open set U Ă G such that fpzq “ 0 for all z P U ;
(ii) there is a point y P G such that f pnqpyq “ 0 for all natural numbers n;

(iii) f pnqpyq “ 0 for every point y P G and every natural number n;
(iv) f ” 0; i.e., f is the zero function.

Remark 2.4. If natural numbers n are replaced with positive integers n, then, choosing
any point p P G and replacing f by f ´ fppq, the conclusion of item (iv) becomes f is
constant.

Proof. Let Z denote the set tw P G : f pnqpwq “ 0 for all natural numbers nu. Given
w P Z, consider the power series expansion of f about w, valid for |z ´ w| ă rw, where
rw is the distance from w to the boundary of G,

fpzq “
8
ÿ

n“0

anpz ´ wq
n.

Since w P Z, all the an “ 0 and hence f vanishes on the open set t|z´w| ă ru. Reversing
the process, if f vanishes on the open set U Ă G, then U Ă Z. Hence Z is open and it
contains all open sets on which f vanishes identically.

The equivalence of item (i) and item (iii), the equivalences of items (iii) and item (iv)
and the implication item (iii) implies item (ii) are all now evident. Thus, to complete
the proof, it suffices to prove item (ii) implies item (iii). If, for some y P G, all the
derivative of f at y are 0, then Z is not empty. On the other hand, it is a closed set
(subset of G), being the countable intersection of the sets,

Zn “ g´1
n pt0uq,

where gn is the continuous function f pnq. It follows, by connectedness of G, that G “

Z. �

Theorem 2.5 (Maximum Modulus). Suppose G Ă C is a domain. If f : G Ñ C is
analytic and not constant, then the function |f | : G Ñ Rě0 does not have a maximum
on G.

Proof. Suppose f : G Ñ C and there is a point y P G such that |fpyq| ě |fpzq| for all
z P G and we may assume |fpyq| ą 0. There is an R ą 0 such that Bpy;Rq Ă G. Fix
0 ă r ă R and letting γ denote the curve, γpsq “ y`reis, s P r0, 2πs, observe by Remark
1.7,

fpyq “
1

2iπ

ż 2π

0

fpy ` reisq ds.

Hence,

|fpyq| ď
1

2π

ż 2π

0

|fpy ` reisq| ds ď |fpyq|.

Hence, |fpy ` reisq| “ |fpyq| for all s P R and 0 ď r ă R. It follows that |fpzq| “ |fpyq|
on Bpy;Rq. If fpyq “ 0, the proof is complete. Otherwise, the range of f lies in the
circle centered to 0 of radius |fpyq| and therefore, by Problem 2.1, f is constant. �
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2.1. Problems.

Problem 2.1. Show, if G Ă C is a domain and f : G Ñ C is real-valued, then f is
constant. (Suggestion: use the Cauchy Riemann equations.)

Show if the range of f lies in a circle C, then f is constant. (Suggestion: Given a
point y P G, choose a neighborhood y P U Ă G such that fpUq is not all of C (and be
sure to explain why this choice is possible), and then compose with a map taking fpUq
into the real line.

Suppose f, g : GÑ C. Show, if |f | “ |g|, then there is a c P C such that g “ cf .

3. The theorems of Morera and Goursat

Given an open set Ω Ă C and, a function f : Ω Ñ C and points x, y P Ω such that
the line segment Jx, yK “ tx` tpy ´ xq : 0 ď t ď 1u Ă Ω, let

ż y

x

f “ py ´ xq

ż 1

0

fpx` spy ´ xqq ds.

Hence this integral is the line integral over the path γ : r0, 1s Ñ Ω defined by γpsq “
x ` spy ´ xq. Given points x, y, w P Ω let Tx,y,w denote the closed path Jx, y, w, xK :“
Jx, yK ` Jy, wK ` Jw, xK (assuming of course all these segments lie in Ω). We call T an
oriented triangle. We also let T denote the triangle T together with its interior (which
is intended will be clear from the context) and say T lies in Ω if T Ă Ω.

Theorem 3.1 (Morera). Suppose Ω Ă C is open. If f : Ω Ñ C is continuous and if
ş

T
f “ 0 for all oriented triangles in Ω, then f is analytic. In fact, if y P Ω, r ą 0 and

Bpy; rq Ă Ω, then the function F : Bpy; rq Ñ C defined by

F pzq “

ż z

x

f (2)

is differentiable and F 1 “ f |Bpx;rq; i.e, locally f has primitive.

Proof. It suffices to prove the function F of equation (2) is differentiable and F 1pzq “ fpzq
for z P Bpy; rq. Accordingly, fix y P Ω and r ą 0 such that Bpy; rq Ă Ω. Define, for
z P Bpy; rq,

F pzq “

ż z

y

f.

Given z, w P Bpy; rq, consider the triangle T “ Jy, z, w, yK. By hypothesis,

F pzq ´ F pwq “

ż z

w

f.

Thus,

F pzq ´ F pwq

z ´ w
´ fpwq “

ż 1

0

rfpw ` spz ´ wqq ´ fpwqs ds
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and therefore
ˇ

ˇ

ˇ

ˇ

F pzq ´ F pwq

z ´ w
´ fpwq

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0

|fpw ` spz ´ wqq ´ fpwq| ds.

An appeal to the continuity of f shows F is differentiable and F 1pwq “ fpwq. Since
F 1 “ f and f is continuous, F is analytic. Hence f is analytic on Bpy; rq and the proof
is complete. �

Theorem 3.2 (Goursat). If Ω Ă C is open and f : Ω Ñ C is differentiable, then f is
analytic; i.e., f 1 is continuous.

Sketch of proof. By Theorem 3.1, it suffices to prove
ş

T
f “ 0 for every oriented triangle

T lying in Ω. Accordingly, let an oriented triangle T lying in Ω be given. Divide T into
four triangles T1, . . . , T4 using the midpoints of the sides of T and oriented so that

ż

T

f “
4
ÿ

j“1

ż

Tj

f.

Choose 1 ď k ď 4 such that, for each 1 ď j ď 4,

|

ż

Tk

f | ě |

ż

Tj

f |.

Letting T p1q “ Tk,

|

ż

T

f | ď 4|

ż

T p1q
f |.

Continuing in this fashion, construct a nested decreasing sequence of oriented triangles
T pmq such that

(1) the length Lm of the boundary of T pmq is 2´mL, where L is the length of the
boundary of T ;

(2)

|

ż

T

f | ď 4m|

ż

T pmq
f |

(3) the diameter Dm of the T pmq is 2´mD, where D is the diameter of T .

Since also each T pmq is closed, there exists a unique point p P XmT
pmq. Using differen-

tiability of f at p, given ε ą 0, choose δ such that, for |z ´ p| ă δ,

|fpzq ´ fppq ´ f 1ppqpz ´ pq| ă ε|z ´ p|.

A direct calculation shows, for any triangle S,
ż

S

z “

ż

S

1 “ 0.

Thus, for m sufficiently large,

|

ż

T pmq
f | “

ˇ

ˇ

ˇ

ˇ

ż

T pmq
rfpzq ´ fppq ´ f 1ppqpz ´ pqs

ˇ

ˇ

ˇ

ˇ

ďεDmLm “ ε4´m.
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It follows that

|

ż

T

f | ď ε

and the proof is complete. �

4. Zeros of analytic functions and the fundamental theorem of
algebra

An entire function is an analytic function f : CÑ C.

Proposition 4.1. If f is entire, then f has a power series representation at the origin
with infinite radius of convergence.

The power series representation, with infinite radius of convergence, can actually be
taken about any point y P C.

Theorem 4.2 (Louiville). If f is entire and bounded, then f is constant.

Proof. Write the power series representation of f as

f “
8
ÿ

n“0

anz
n.

By hypothesis, there is an M P Rą0 such that |fpzq| ďM uniformly in z. By the Cauchy
estimate, Corollary 2.2(iv), for every R P Rą0,

|f pnqp0q| ď n!
M

Rn
.

Hence f pnqp0q is zero for each positive integer n. The conclusion now follows from Remark
2.4. �

Given a set X, a zero of a function f : X Ñ C is a point y P X such that fpyq “ 0.

A polynomial p is an entire function of the form, ppzq “
řd
j“1 pjz

j. It has degree d in
the case pd ‰ 0. It is monic if pd “ 1. Note that p is constant if and only if pj “ 0 for
j ą 0.

Theorem 4.3 (Fundamental Theorem of Algebra). A non-constant polynomial p : CÑ
C has a zero.

If p is a monic polynomial of degree d, then there exists a 1 ď k ď d, distinct
a1, . . . , ak P C and positive integers nj such that

ppzq “
k
ź

j“1

pz ´ ajq
nj

and
řk
j“1 nj “ d.

Lemma 4.4. If p is a non-constant polynomial, then for each C P Rą0 there exists an
R P Rą0 such that |ppzq| ě C for all |z| ą R; i.e., lim|z|Ñ8 ppzq “ 8.
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Proof of Theorem 4.3. Let p be a polynomial with no zeros. In this case f “ p´1 is
entire. By Lemma 4.4, there is an R P Rą0 such that |fpzq| ď 1 for |z| ą R. On Bp0;Rq
the function f is continuous and hence (uniformly) bounded. Thus f is a bounded entire
function and hence, by Louivilles Theorem 4.2, constant. Thus p is constant.

We prove the second part by induction on the degree d of p. It is evidently true for a
monic polynomial of degree d “ 1. Suppose the result is true for all polynomials of degree
d and p is a monic polynomial of degree d` 1. By the first part of the theorem, p has a
zero y. By a very special case of the Euclidean algorithm (we do need a little something
from algebra) there exists a polynomials s and r of degree d ` 1 ´ 1 “ d and at most
1´1 “ 0 respectively such that ppzq “ pz´aqspzq`rpzq. (Equivalently, write p in terms

of powers of pz´ yqj and observe ppyq “ 0 implies ppzq “
řd
j“1 cjpz´ yq

j.) In particular

r is constant and from ppyq “ 0 it follows that r “ 0. Hence p “ pz ´ yqs, where s has
degree d. An application of the induction hypothesis completes this induction step. �

A subset D of a domain G Ă C is a determining set (for G) if the only analytic
function f : GÑ C that is zero on D is the 0 function. It immediately follows that any
two functions that agree on D are the same.

Proposition 4.5. Let G Ă C be a domain. If f : GÑ C is analytic, y P G and fpyq “ 0,
then either f is identically 0, or there is an n and an analytic function g : GÑ C such
that gpyq ‰ 0 and fpzq “ pz ´ yqngpzq. Moreover, n is characterized by the property
f pmqpyq “ 0 for m ď n´ 1 and f pnqpyq ‰ 0.

Proof. If f is not identically zero, but fpyq “ 0, then there is a positive integer n such
that f pmqpyq “ 0 for m ď n ´ 1 and f pnqpyq ‰ 0 by Proposition 2.3 (ii). Thus, there is
an r ą 0 such that f has the power a power series expansion,

fpzq “
8
ÿ

j“n

f pjqpyq

n!
pz ´ yqj “ pz ´ aqn

8
ÿ

j“0

an`jpz ´ yq
j,

on Bpy; rq. Thus, there is an analytic function h defined on Bpy; rq such that fpzq “

pz ´ yqnhpzq on Bpy; rq. Define g : G Ñ C by gpzq “ fpzq
pz´yqn

for z ‰ y and hpzq for

z P Bpy; rq. �

The order of a zero y of an analytic function f : GÑ C is the value n in Proposition
4.5. More general, if Ω Ă C is open, f : Ω Ñ C is analytic and fpyq “ 0, then the
proposition applies to the restriction of f to an open ball centered to y and the value n
is the order of the zero of f at y.

Proposition 4.6. Let D Ă C be a domain. If D Ă G has a limit point in G, then D is
a determining set.

Proof. Suppose f is analytic on G and zero on D and let a P D be a limit point of D.
In particular, fpyq “ 0. Suppose f is not identically zero. In this case, by Proposition
4.5, there is an n and an analytic function g on G such that fpzq “ pz ´ yqmgpzq and
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gpyq ‰ 0. On the other hand, g must vanish on Dztyu since f does and pz ´ yqm does
not. Since y is a limit point of D and g is continuous, gpyq “ 0, a contradiction. �

Corollary 4.7. The zeros of an non-constant analytic function f : GÑ C are isolated;
i.e., if y P G and fpyq “ 0, then there an r ą 0 such that if z P G and 0 ă |z ´ y| ă r,
then fpzq ‰ 0.

Proof. Suppose f has a non-isolated zero. In this case there exists a sequence panq from
Gztyu that converges to y. Hence D, the range of this sequence is a subset of G with a
limit point in D. Since f is zero on D, by Propostion 4.6, f is identically 0. �

5. The index

Lemma 5.1. Suppose Ω Ă C is open, Π Ă C and ψ : Ωˆ Π Ñ C. If

(i) ψ is continuous;
(ii) for each fixed w the function ψw : Ω Ñ C defined by ψwpzq “ ψpz, wq is analytic;

(iii) there is a constant C P Rě0 such that, for all ζ ‰ z P Ω and w P Π,
ˇ

ˇ

ˇ

ˇ

ψpζ, wq ´ ψpz, wq

ζ ´ z

ˇ

ˇ

ˇ

ˇ

ď C;

(iv) γ : ra, bs Ñ Π is a piecewise smooth curve,

then the function g : Cztγu Ñ C defined by

gpzq “

ż

γ

ψpz, wq dw

is analytic and

g1pzq “

ż

γ

Bψ

Bz
pz, wq dw “

ż b

a

Bψ

Bz
pz, γpsqqγ1psq ds, (3)

In particular, for each z, the function ρzpγpsqqγ
1psq is integrable.

Proof. Without loss of generality, assume γ is smooth. Thus,

gpzq “

ż b

a

ψpz, γpsqqγ1psq ds.

Fix z and suppose ζn is a sequence from Ω converging to z with ζn ‰ z. Define fn :
ra, bs Ñ C by

fnpsq “
ψpζn, γpsqq ´ ψpz, γpsqq

ζn ´ z
γ1psq.

By the hypothesis of item (iii) and the continuity of γ1, the sequence pfnq is uniformly
bounded. By item (ii) it converges pointwise on ra, bs to the function

fpsq “ ψ1γpsqpzqγ
1
psq “

Bψ

Bz
pz, γpsqqγ1psq.
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In particular, f is integrable. By Theorem 1.1 (bounded convergence theorem),

lim
n

gpζnq ´ gpzq

ζn ´ z
“ lim

n

ż b

a

fnpsq ds “

ż b

a

fpsq ds

and hence g is differentiable and its derivative is given by equation (3). By Theorem 3.2
(Goursat’s Theorem), g is analytic. �

Suppose γ : ra, bs Ñ C is a (continuous) curve and let U “ Cztγu. Since U is
open, its connected components are open sets. Further, there is an R ą 0 such that
tγu Ă Bp0;Rq. Hence, t|z| ą Ru lies in a single component called the unbounded
component of Cztγu.

Proposition 5.2. If γ : ra, bs Ñ C is a closed rectifiable path and ψ : tγu Ñ C is
continuous, then f : Cztγu Ñ C defined by

fpzq “
1

2πi

ż

γ

ψpwq

w ´ z
dw

is analytic.

If γ : ra, bs Ñ C is a closed rectifiable path, then the function nγ : Cztγu Ñ C
defined by

nγpyq “
1

2πi

ż

γ

dw

w ´ y
dw

takes integer values, is constant on components and is zero on the unbounded component.

Proof. Suppose, for now γ is piecewise smooth. By Lemma 5.1 applied to ψ : pCztγuqˆ
tγu Ñ C defined by ψpwq “ 1

2πi
1

w´z
, the function nγ is analytic on Cztγu and, in

particular, continuous. To show that nγ takes integer values. Fix y P Cztγu and define
g : ra, bs Ñ C by

gptq “

ż t

a

γ1psq

γpsq ´ y
ds.

By the second fundamental theorem of calculus, g is differentiable and

g1ptq “
γ1ptq

γptq ´ y
.

Thus,
pγ ´ yq1 ´ g1pγ ´ yq “ 0.

This first order linear differential equation has solution,

γ ´ y “ expp´

ż

g1q “ Ce´g,

for some C P C. Observe gpaq and gpbq must differ by an integer multiple of 2πi since
γpaq “ γpbq. Since gp0q “ 0, we conclude that gpbq is an integer multiple of 2πi.

For the general case, given ε ą 0, choose a piecewise smooth path Γ such that
y P CztΓu and

|nγpyq ´ nΓpyq| ă ε.
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It follows that nγpyq is an integer multiple of 2πi. �

The number nγpyq is the index or winding number of γ with respect to a. Recall ´γ
is the function ´γ : r´b,´as Ñ C defined by ´γpsq “ γp´sq. From properties of line
integrals,

n´γpyq “ ´nγpyq.

Likewise, if γ and δ are equivalent paths, then

nγpyq “ nδpyq.

Finally, given two paths γ : ra, bs Ñ C and δ : rb, cs Ñ C, let γ ` δ denote the path with
domain ra, cs defined in the obvious way and note,

nγ`δpyq “ nγpyq ` nδpyq.

Alternately, define nγ`δpyq by this formula.

6. Cauchy’s Theorem and integral formula

Given an open set Ω Ă C, an analytic function f : Ω Ñ C and closed rectifiable
curves γj in Ω, let γ “

ř

γj and define, for w P Cztγu,

nγpwq :“
N
ÿ

j“1

nγjpwq

and
ż

γ

fpwq

w ´ y
dw :“

N
ÿ

j“1

ż

γ

fpwq

w ´ y
dw.

The curve γ is homologous to zero (in Ω) if nγpwq “ 0 for all w P CzΩ.

Theorem 6.1. Suppose Ω Ă C is open, f : Ω Ñ C is analytic. If N P N` and
γj : ra, bs Ñ Ω are closed rectifiable paths such that γ “

ř

γj is homologous to zero, then
for y P Cztγu,

nγpyqfpyq “
1

2πi

ż

γ

fpwq

w ´ y
dw.

Lemma 6.2. If Ω Ă C is open and f : Ω Ñ C is analytic, then the function ψ : ΩˆΩ Ñ
C defined by

ψpz, wq “

#

fpzq´fpwq
z´w

z ‰ w

f 1pwq z “ w
(4)

is continuous and has continuous partial derivatives. :

Proof. Let ∆ “ tpz, zq : z P Ωu. Continuity of ψ and of Bψ
Bz

on pΩˆΩqz∆ is not in doubt.

Fix py, yq P ∆ and choose R ą 0 such that Bpy; 2Rq Ă Ω. Let M denote a bound for
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|f | on Bpy; 2Rq. For w P Bpy;Rq, Cauchy’s estimate (Corollary 2.2 (iv)) implies (since
Bpw;Rq Ă Bpy; 2Rq),

|f pkqpwq| ď
k!M

pRqk
.

Fix 0 ă r ă R
2

and let X “ Bpy; rq ˆ Bpy; rq. For pz, wq P X, the sequence of partial
sums,

SNpz, wq “
N
ÿ

k“0

f pkqpwq

k!
pz ´ wqk

converges uniformly to fpzq on X. Moreover, the sequence of partial sums

N
ÿ

k“1

f pkqpwq

k!
pz ´ wqk´1

converges uniformly on X and hence to a continuous function F : X Ñ C with contin-
uous partial derivatives. For z ‰ w,

F pz, wq “ lim
N

SNpz, wq ´ fpwq

z ´ w
“ ψpz, wq

and for z “ w, F pz, zq “ f 1pzq “ ψpz, zq. �

Proof Theorem 6.1 for piecewise smooth γ. Suppose γ is piecewise smooth. Since nγ :
Cztγu Ñ C is continuous and integer valued, the set H “ tw P Cztγu : nγpwq “ 0u is
open. By hypothesis C “ ΩYH.

By Lemma 5.1 the function g1 : H Ñ C defined by

g1pζq “
1

2πi

ż

γ

fpwq

w ´ ζ
dw

is analytic. Define ψ : Ω ˆ Ω Ñ C as in equation (4). It is an exercise to show, for
K Ă Ω is compact, that Lemma 6.2 implies the hypotheses of Lemma 5.1 are satisfied
by ψ restricted to K ˆ tγu. Hence g2 : Ω Ñ C defined by

g2pζq “

ż

γ

ψpζ, wq dw

is analytic. If z P H X Ω, then

g2pzq “

ż

γ

r
fpwq ´ fpzq

w ´ z
s dw “ g1pzq

because
ż

γ

fpzq

w ´ z
dw “ fpzq

ż

γ

1

w ´ z
dw “ fpzqnγpzq “ 0.

Hence g1 and g2 determine an entire function g. On the other hand, limzÑ8 gpzq “ 0 from
the definition of g1. Hence g is bounded and entire and hence constant by Theorem 4.2.
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Since limzÑ8 gpzq “ 0 this constant is 0 and the desired formula holds on H. Returning
to g2, for z P Ωztγu,

0 “

ż

γ

fpwq ´ fpzq

w ´ z
dw

“

ż

γ

fpwq

z ´ w
dw ´ fpzq

ż

γ

1

w ´ z
dw

“

ż

γ

fpwq

z ´ w
dw ´ 2πinγpzqfpzq.

Finally to drop the piecewise smooth hypothesis, fix a y P Cztγu and choose an
open set U such that K “ U Ă Ωztyu. Note the collection of functions Fz : K Ñ C
defined by Fzpwq “

1
z´w

together with the function fpwqz ´ w is equicontinuous and
apply Lemma 39.1 �

Corollary 6.3. Under the hypotheses of Theorem 6.1, for each k P N and w P Cztγu,

nγpwqf
pkq
pwq “

k!

2πi

ż

γ

fpzq

pz ´ wqk`1
dz.

:

Sketch of proof. Verify that it is permissible to differentiate under the integral sign in
Theorem 6.1. �

Theorem 6.4 (Cauchy’s Theorem). Suppose Ω Ă C is open and g : Ω Ñ C is analytic,
N P N` and γj are rectifiable curves with tγju Ă Ω for j “ 1, 2, . . . , N. Let γ “

ř

γj. If
nγpwq “ 0 for each w P CzΩ (γ is homologous to zero in Ω), then

ż

γ

g dz “ 0.

Proof. Fix y P Cztγu and apply Theorem 6.1 to the function f “ gpzqpz ´ yq. �

7. Homotopic curves and Cauchy’s Theorem

7.1. Homotopy. Let Ω Ă C be an open set. Closed rectifiable paths γ, δ : r0, 1s Ñ Ω
are homotopic in Ω, if there exists a continuous function Γ : r0, 1sˆ r0, 1s Ñ Ω such that

(i) Γps, 0q “ γpsq;
(ii) Γps, 1q “ δpsq;
(iii) Γp0, tq “ Γp1, tq for all t.

Remark 7.1. The definition makes sense without the rectifiable assumption. On the
other hand, even assuming γ and δ are rectifiable, there is not the assumption that
the closed curves γtpsq “ Γps, tq are rectifiable for 0 ă t ă 1. Homotopy defines an
equivalence relation on closed (rectifiable) paths in Ω. ˛
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An open set Ω Ă C is star shaped if there exists a point y P Ω such that the line
segment Jy, zK lies in Ω for each z P Ω. In this case, Ω is star shaped with respect to y.

Proposition 7.2. If Ω Ă C is star shaped, then Ω is connected and every pair of closed
paths in Ω are homotopic. :

Proof. Suppose Ω is star shaped with respect to y. Given z, w P Ω, the path Jz, y, wK “
Jz, yK` Jy, wK lies in Ω. Hence Ω is path connected and therefore connected.

To prove the second statement, it suffices to show that every curve γ P Ω is
homotopic to the curve δ : r0, 1s Ñ Ω defined by δpsq “ y. To this end, define
Γ : r0, 1s ˆ r0, 1s Ñ Ω by Γps, tq “ tγpsq ` p1´ tqy. �

As an example, consider the non-rectifiable closed path γ : r0, 2s Ñ C defined by
γptq “ t ` it sinp2π

t
q for 1 ď t ą 0 and fp0q “ 0 and γptq “ t ´ 1 ` 0i for 1 ď t ď

2. Choosing R P Rą0 large enough so that tγu P Bp0;Rq, by Proposition 7.2, γ is
homotopic to each constant curve in Bp0;Rq. Thus, we can choose two constant curves
and construct a homotopy Γ between them so that Γps, 1

2
q “ γ is not rectifiable.

A curve γ in Ω that is homotopic to a constant curve is homotopic to 0.

7.2. Cauchy Thoerem for homotopic curves.

Theorem 7.3 (Homotopic version of Cauchy’s Theorem). Suppose Ω Ă C is open and
f : Ω Ñ C is analytic. If γ, δ : r0, 1s Ñ Ω are homotopic closed rectifiable paths, then

ż

γ

f dz “

ż

δ

f dz.

If σ, τ : r0, 1s Ñ Ω are rectifiable curves and there is an open ball B Ă Ω such that
the path

∆ “ σ ` Jσp1q, τp1qK´ τ ´ Jσp0q, τp0qK
lies in B, then by Corollary 2.2(vi),

ş

∆
f “ 0. Equivalently,

ż

σ

f ´

ż

τ

f “

ż τp0q

σp0q

f ´

ż τp1q

sigmap1q

f.

The proof of Theorem 7.3 involves repeated applications of this observation.

Lemma 7.4. Suppose Ω Ă C is open, f : Ω Ñ C is analytic, γ : r0, 1s Ñ Ω is rectifiable
and P “ t0 “ s0 ă s1 ¨ ¨ ¨ ă sN “ 1u is a partition of r0, 1s. Let γj “ γ|rsj´1,sjs

for 1 ď j ď N and let σj denote the path γj ` Jγpsjq, γpsj´1qK. Let τ denote the
polygonal path Jγps0q, γps1q, . . . , γpsnqK. If for each 1 ď j ď N there exists an open ball
Bj “ Bjpyj; rjq such that Bj Ă Ω and σj lies in Bj, then τ lies in Ω and

ż

γ

f dz “

ż

τ

f dz.

:
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Proof. By assumption, each line segment Lj “ Jγpsj´1q, γpsjqK lies in Ω. Hence so does
the polygonal path τ .

Note that each τj is a closed path in Bj Ă Ω. Hence, using Corollary 2.2 (vi) in the
last equality,

ż

γ

f dz ´

ż

τ

f dz “
ÿ

ż

γj

f dz ´

ż

Lj

f dz

“
ÿ

ż

σj

f dz “ 0.

�

Lemma 7.5. Suppose Ω Ă C is open, f : Ω Ă C Ñ C is analytic, τ, σ : r0, 1s Ñ C are
rectifiable and P “ t0 “ s0 ă s1 ¨ ¨ ¨ ă sN “ 1u is a partition of r0, 1s. For 1 ď j ď N ,
let Ij “ rsj´1, sjs and for 1 ď 0 ď j ď N let Lj denote the line segment Jγpsjq, δpsjqK.
Let ∆j denote the path

∆j “ τ |Ij ` Lj ´ σ|Ij ´ Lj´1.

If for each 1 ď j ď N , there is a ball Bj Ă Ω such that ∆j lies in Bj, then
ż

τ

f dz “

ż

σ

f dz.

:

Proof. Note that each ∆j is a closed rectifiable path lying in Bj Ă Ω and
ř

∆j “ γ ´ δ.
Hence, using Corollary 2.2 (vi)

ż

τ

f dz ´

ż

σ

f dz “
ÿ

ż

∆j

f dz “ 0.

�

Proof of Theorem 7.3. Since Γ is continuous with compact domain, its range is a com-
pact subset of Ω. Hence there exists an r ą 0 such that if x is in the range of Γ, then
Bpx; rq Ă Ω. Since Γ is uniformly continuous, there exists a positive integer n such that
if ps, tq, pu, vq P r0, 1s ˆ r0, 1s and }ps, tq ´ pu, vq} ă 2

n
, then

|Γps, tq ´ Γpu, vq| ă r.

Let P denote the partition of r0, 1s determined by the points sj “
j
n

and, for 1 ď j ď n.
For 0 ď j ď n, let γj denote the polygonal path

γj “ JΓps0, sjq,Γps1, sjq, . . . ,Γpsn, s0qK.

Let ∆j,k “ JΓpsk´1, sj´1q,Γpsk, sj´1q,Γpsk, sjq,Γsk´1,sjK and note that ∆j,k is a closed
polygonal path whose vertices lie in the ball Bj,k “ BpΓpsj, skq; rq Ă Ω. Hence, by
Lemma 7.5,

ż

γj´1

f dz “

ż

γj

f dz.
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Now consider the curves γ and γ0 and fix a 1 ď k ď n. For sk´1 ď s ď sk,

|Γpsk, s0q ´ γpsq| “ |Γpsk, s0q ´ Γps, s0q| ă r,

since |psk, s0q ´ ps, s0q| ă
2
n
. Likewise, for some 0 ď λ ď 1 depending on s,

|Γpsk, s0q ´ γ0psq| “ |λpΓpsk, s0q ´ Γpsk, s0q ` p1´ λqpΓpsk, s0q ´ Γps0, s0qq| ă r.

Thus the path σj “ γ|rsk´1,sks ´ Jγpsk´1q, γpskqK lies in the ball BpΓpsk, s0q; rq Ă Ω.
Hence, by Lemma 7.4,

ż

γ

f dz “

ż

γ0

f dz

and likewise for δ and γn. The conclusion of the theorem now follows. �

We now collect several corollaries of Theorem 7.3.

Corollary 7.6. If Ω Ă C is open, γ is a closed rectifiable path homotopic to 0 in Ω and
f : Ω Ñ C is analytic, then

ż

γ

f dz “ 0.

In particular, γ is homologous to 0 in Ω (nγpwq “ 0 for all w P CzΩ). :

Proof. The first statement follows immediately from Theorem 7.3. The second follows
from the first by choosing fpzq “ 1

w´z
and noting f is analytic in Ω (since w R Ω). �

The Corollary 7.6 says, in part, if γ is homotopic to 0, then γ is homologous to 0
(in Ω). The converse is not necessarily true.

7.2.1. Independence of path. Suppose Ω Ă C is open. Rectifiable curves γ, δ : r0, 1s Ñ Ω
are (fixed endpoint) homotopic (in Ω) if γp0q “ δp0q, γp1q “ δp1q and there exists a
continuous function Γ : r0, 1s ˆ r0, 1s Ñ Ω such that

(1) Γp0, tq “ γp0q for all t;
(2) Γp1, tq “ γp1q for all t;
(3) Γps, 0q “ γpsq; and
(4) Γps, 1q “ δpsq.

Remark 7.7. An exercise shows if γ and δ are (rectifiable and) homotopic, then γ ´ δ
is a (rectifiable) closed curve homotopic to 0. ˛

Corollary 7.8. If Ω Ă C is open, f : Ω Ñ C is analytic and γ, δ are homotopic
rectifiable curves in Ω, then

ż

γ

f dz “

ż

δ

f dz.

:
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7.2.2. simple connectedness.

Proposition 7.9. If G Ă C is open and connected and if y, z P G, then there is a
rectifiable curve γ : r0, 1s Ñ G such that γp0q “ y and γp1q “ z. :

Sketch of proof. The proof that connected plus locally path connected is easily modified
to prove this proposition when one uses instead that an open set Ω Ă C is locally
rectifiable path connected. �

An open set Ω Ă C is simply connected if it is connected and every closed rectifiable
path in Ω is homotopic to 0. Thus a star shaped domain is simply connected. In
particular, an open ball is simply connected. Item (i) of Corollary 7.10 below thus
contains Corollary 2.2(vi) (which was used in the proof of Theorem 7.3) as a special
case.

Corollary 7.10. Suppose G is a simply connected and f : GÑ C is analytic.

(i) If γ : r0, 1s Ñ G is a closed rectifiable path, then
ż

γ

f dz “ 0.

(ii) If γ, δ : r0, 1s Ñ G are rectifiable paths such that γp0q “ δp0q and γp1q “ δp1q, then
ż

γ

f “

ż

δ

f.

(iii) f has a primitive.
(iv) If f never vanishes, then there exists an analytic function g : G Ñ C such that

f “ eg.
(v) If f never vanishes, then f has a square root in G.

:

Proof. Item (i) follows immediately from Corollary 7.6 and the definitions. Item (ii)
follows from item (i) by considering the closed rectifiable curve γ ´ δ. To prove item
(iii), fix y P G. Define a function F : G Ñ C as follows. Given z P G choose, using
Proposition 7.9, a rectifiable curve γ : r0, 1s Ñ G such that γp0q “ y and γp1q “ z and
define

F pzq “

ż

γ

f.

By item (ii), F is well defined. Now fix a point w and an r ą 0 such that Bpw; rq Ă G.
Let γ be a path from y to w and note, for z P Bpw; rq,

F pzq “

ż

γ`Jw,zK
f “

ż

γ

f `

ż z

w

f.

By Theorem 3.1,
şz

w
f is analytic in Bpy; rq and its derivative is f . Hence F is analytic

and F 1 “ f .
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To prove item (iv), note that the function h “ f 1

f
is analytic in G. Hence by item

(iii), there is an analytic function g : GÑ C such that g1 “ h. Observe

pf expp´gqq1 “ f 1 expp´gq ´ expp´gqf 1 “ 0.

Hence there is a non-zero constant c P C such that f “ c exppgq. In particular, choosing
d so that d2 “ c, the function h “ d expp1

2
gq is analytic and h2 “ f , proving item (v). �

Remark 7.11. Note, in item (iv), f satisfies f 1 ´ g1f “ 0. Formally, this first order
linear equation has solution,

f “ expp

ż

g1q “ c exppgq,

motivating the choice of g in the proof. ˛

Remark 7.12. We will later see if any of the conclusions of Corollary 7.10 implies G is
simply connected. ˛

8. Counting zeros

The multiplicity of a zero y of an analytic function f is a synonym for the order of
the zero.

Proposition 8.1. Suppose Ω Ă C is open and f : Ω Ñ C is analytic with finitely many
zeros y1, . . . yr (counted with multiplicity). If γ : r0, 1s Ñ C is a closed rectifiable curve
that is homologous to zero and if tγu X ty1, . . . , yru “ H, then

r
ÿ

j“1

nγpyjq “
1

2πi

ż

γ

f 1

f
dz.

:

There is nothing special here about 0 and fpzq “ 0. Given y P C, simply replace f
by f ´ y in Proposition 8.1 to count the zeros of the equation fpzq “ y.

Proof. By Proposition 4.5, there is an analytic function g : Ω Ñ C such that g is never
0 and

fpzq “
s
ź

j“1

pz ´ yjqgpzq.

It follows that
f 1pzq

fpzq
“

s
ÿ

j“1

1

z ´ yj
`
g1pzq

gpzq
.

Since g1

g
is analytic in Ω and, by assumption, γ is homologous to zero in Ω, an application

of Theorem 6.4 and Proposition 5.2 hows
ż

γ

g1pzq

gpzq
dz “ 0

and the proof is complete. �
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8.1. The Open Mapping Theorem. A zero y of an analytic function f is simple if it
has order one.

Proposition 8.2. If Ω Ă C is open, f : Ω Ñ C is analytic and y P Ω is a zero of f
of order m, then there exists r, δ ą 0 such that Bpy; rq Ă Ω and if 0 ă |w| ă δ, then
gpzq “ fpzq ´ w has exactly m zeros in Bpy; rq and they are all simple. :

Proof. By Theorem 4.6, y can not be an accumulation point for the zeros of f 1 (as
otherwise f 1 is constant on the component of Ω containing y and hence zero on this
component). By Corollary 4.7 y is not an isolated zero of f . Hence there is an r ą 0
such that Bpy, 2rq Ă Ω and y is the only zero of f in Bpy; 2rq and f 1pzq ‰ 0 for
0 ă |z´y| ă 2r too. Let γ : r0, 2πs Ñ Ω denote the curve γpsq “ y` reis. Let σ “ f ˝γ.
It follows that 0 R tσu and thus there is a δ ą 0 such that Bp0; δq X tσu “ H. For
w P Bp0; δq, the points 0 and w lie in the same component of Cztσu and therefore, by
Proposition 5.2 nσpwq is constantly equal to nσp0q on Bp0; δq.

Let y1, . . . , yd denote the zeros of fpzq ´ w in Bpy; rq. Since w R tγu, the equation
fpzq ´ w “ 0 has no solutions on tγu and thus there is an 0 ă r ă r1 ă 2r such that
y1, . . . , yd are the zeros of fpzq ´ w on Bpy; r1q. By Proposition 8.1,

nσpwq “
1

2πi

ż

σ

1

z ´ w
dz

“
1

2πi

ż 2π

0

1

fpγpsqq ´ w
fγpγpsqqγ1psq ds

“
1

2πi

ż

γ

f 1pzq

fpzq ´ w
dz

“

d
ÿ

j“1

nγpyjq “ d.

Hence nσpwq “ d for all w P Bp0; δq. Choosing w “ 0 shows d “ m. Finally, since
f 1pzq ‰ 0 on Bpy; rq, all the zeros of fpzq ´ w in Bpy; rq are simple. �

Proposition 8.3. If Ω Ă C is open and f : Ω Ñ C is analytic and one-one, then
f 1pzq ‰ 0 for z P Ω. :

Proof. Arguing the contrapositive, suppose y P Ω and f 1pyq “ 0. Let gpzq “ fpzq´fpyq.
It follows that g has a zero of order at least two at y. In particular, by Proposition
8.1, there exists a w ‰ 0 such that gpzq “ w has at least two solutions. It follows that
fpzq “ fpyq ` w has at least two solutions and thus f is not one-one. �

Theorem 8.4 (Open Mapping). If G Ă C is a domain and f : G Ñ C is analytic and
not constant and U Ă G is open, then fpUq is open. In particular, fpGq is open.

Assuming V Ă R2 is open, if F : V Ñ R2 is continuously differentiable and its
derivative is pointwise invertible, then F pV q is open by the inverse function theorem.
Thus the open mapping theorem is perhaps stronger than one might expect as there is
no need to assume f 1 never zero.
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Proof. Let ζ P fpUq be given. Thus there is a point y P U such that fpyq ´ ζ “ 0. Let
g denote the function gpzq “ fpzq ´ ζ. Since f is not constant, g has a zero of finite
multiplicity at y. By Proposition 8.2 applied to g|U , there exists an r, δ ą 0 such that
Bpy; rq Ă U and for each w P Bp0; δq the equation gpzq “ w has a solution in Bpy; rq
and hence in U . Thus Bp0; δq Ă gpUq. Equivalently Bpζ; δq Ă fpUq and hence fpUq is
open. �

Corollary 8.5. If G is a domain and g : GÑ C is analytic and one-one, then fpGq Ă
C is open and the inverse of the function f : G Ñ fpGq defined by fpzq “ gpzq is
analytic. :

Proof. Since f maps open sets to open sets, the inverse image of an open set under f´1 is
open. Thus f´1 is continuous. Since also z “ fpf´1pzqq and f 1 is never 0 by Proposition
8.3, it follows that f´1 is analytic by Proposition 3.2.20 in Conway. �

9. Isolated singularities of analytic functions

9.1. Removable Singularities. Suppose Ω Ă C is open and f : Ω Ñ C is analytic.
A point y P CzΩ is an isolated singularity of f , if there is an R ą 0 such that t0 ă
|z´ y| ă Ru Ă Ω. The isolated singularity y is removable if there is an analytic function
g : Ω Y tyu Ñ C such that g|Ω “ f . Equivalently, if there exists an r ą 0 such that
Bpy; rqztyu Ă Ω and there is an analytic function g : Bpy; rq Ñ C such that g and f
agree on Bpy; rqztyu.

Theorem 9.1 (Riemann). Suppose Ω Ă C is open and f : Ω Ñ C is analytic and y is
an isolated singularity of f. The following are equivalent.

(1) y is removable;
(2)

lim
zÑy
pz ´ yq fpzq “ 0;

(3) there is an R ą 0 such that Bpy;Rqztyu Ă Ω and |f | is bounded on Bpy;Rqztyu.

Proof. Without loss of generality assume Ω “ Bpy;Rqztyu for some R P Rą0. Suppose
the indicated limit exists and is 0. Define h : Ω Y tyu Ñ C by hpzq “ pz ´ yq2fpzq for
z ‰ y and hpyq “ 0. It follows that h|Ω is analytic. Moreover, an easy computation
using limzÑypz ´ yqfpzq “ 0 shows h is differentiable at y (and h1pyq “ 0). Thus h
is differentiable on Bpy;Rq and, by Theorem 3.2, analytic. Since hpyq “ 0 “ h1pyq,
by Proposition 4.5, there is an analytic function g : Bpy;Rq Ñ C such that hpzq “
pz ´ yq2gpzq. It follows that g is analytic and g “ f on Bpy;Rqztyu. Hence item (2)
implies (1). On the other hand the implications item (1) implies item (3) implies item
(2) are evident. �

9.2. Poles. Suppose Ω Ă C is open and f : Ω Ñ C. An isolated singularity y of f is a
pole if

lim
zÑy

|fpzq| “ 8.

An isolated singularity that is neither removable nor a pole is an essential singularity.
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Proposition 9.2. Suppose G Ă C is a domain, y P G and f is analytic on Gztyu. If f
has a pole at y, then there is an m P N` and an analytic function g : GÑ C such that,

fpzq “
gpzq

pz ´ aqm
.

Moreover, there exists a´1, . . . , a´m P C such that

fpzq “
m
ÿ

j“1

a´jpz ´ yq
´j
` ϕpzq

for an analytic function ϕ : GÑ C. :

The smallest such m is the order of the pole of f at y. In particular, gpyq ‰ 0 for
this choice of m. The expression

řm
j“1 a´jpz ´ yq

j is the singular part of f .

Proof. Since f has a pole at y, there exists an r ą 0 such that if 0 ă |z ´ y| ă r, then
|fpzq| ą 1. Hence f has no zeros on Bpy; rq. Moreover, because f has a pole at y, the
function h : Bpy; rqztyu Ñ C defined by hpzq “ 1

fpzq
has a removable singularity at a and

hence extends, by defining hpyq “ 0 to an analytic function, still denoted by h, on Bpy; rq.
Since hpyq “ 0, but h is not identically zero, letting m denote the order of the zero of h
at y, there is an analytic function G : Bpy; rq Ñ C such that hpzq “ pz ´ aqmGpzq and
Gpyq ‰ 0. Since G is never zero, it follows that, pz ´ yqmfpzq “ 1

Gpzq
on Bpy; rqztaau.

It follows that pz ´ yqmfpzq has a removable singularity at y; i.e., there is an analytic
function g : Ω Ñ C such that gpzq “ pz´ yqmfpzq for z ‰ y. Since gpyq ‰ 0, we see that
m is as large as possible.

The moreover statement follows easily from what has already been proved by ex-
panding gpzq in a power series in a neighborhood of y. �

Corollary 9.3. An isolated singularity y of f is either removable or a pole if and only
if there is an m P N such that limzÑy fpzq “ 0. Indeed, if m is the smallest such positive
integer, then y is removable if and only if m “ 0 and otherwise is a pole of order m. :

Sketch of proof. If limzÑypz´yq
mfpzq “ 0, then pz´yqmfpzq has a removable singularity

at y and hence there is an analytic function g (even at y) such that gpzq “ pz´yqmfpzq.
Assuming m is as small as possible, gpyq ‰ 0. In the case m ě 1, it follows that
limzÑy |fpzq| “ 8. �

9.3. Laurent Series and essential singularities. An annulus (centered to the origin)
is a subset of C of the form tr ă |z| ă Ru for some 0 ă r ă R. Given complex numbers
tan : n P Zu, the expression

ř8

n“´8 anz
n is a Laurent Series. For a given z P Czt0u

the series converges absolutely if both
ř8

n“0 anz
n and

ř8

n“1 a´nz
´n converge absolutely.

In this case
ř8

´8
anz

n also denotes
ř8

n“0 anz
n `

ř8

n“1 a´nz
´n. Given 0 ă r ă R, this

Laurent series converges uniformly on compact subsets of tr ă |z| ă Ru if
ř8

n“0 anz
n and

ř8

n“1 a´nz
´n converge absolutely on the domains t|z| ă Ru and t|z| ą ru respectively

and, for each 0 ă r ă r1 ă R1 ă R, these series converge uniformly on t|z| ď R1u and on
t|z| ě r1u respectively.
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Proposition 9.4. Suppose 0 ă r ă R and A is the annulus tr ă |z| ă Ru. If f : AÑ C
is analytic, then there exists complex numbers tan : n P Zu such that the Laurent series
ř8

n“´8 anz
n converges absolutely and uniformly on compact subsets of A to f . Moreover

the an are unique and, for any r ă u ă R, for each n P Z,

an “
1

2πi

ż

γ

fpzq

zn`1
dz,

where γ : r0, 2πs Ñ A is given by γpsq “ ueis. :

Sketch of proof. Here is a sketch of the proof, leaving many details to be filled in and
assertions to be justified by the gentle reader. That the an are independent of γ is an
immediate consequence of the homotopic version of Cauchy’s Theorem.

Fix r ă u ă U ă R and define γ,Γ : r0, 2πs Ñ A by γpsq “ u exppisq and
Γpsq “ U exppisq. Let τ “ Γ´ γ. Observe,

(i) if |z| ă u, then nγpzq “ nΓpzq “ 1 and nτ pzq “ 0;
(ii) if |z| ą U , then nΓpzq “ nΓpzq “ 0 and nτ pzq “ 0;
(iii) if u ă |z| ă U , then nΓpzq “ 1 and nγpzq “ 0 and thus nτ pzq “ 1.

From (i) and (ii) it follows that τ is homologous to zero Cztr ă |z| ă Ru. Hence, by (iii)
and Cauchy’s integral formula, if u ă |z| ă U , then using |z| ă |w| on Γ and |z| ą |w|
on γ to see that the series converge uniformly to justify the interchange of summations
and integrals,

fpzq “
1

2πi

ż

τ

fpwq

w ´ z
dw

“
1

2πi

ż

Γ

fpwq

w ´ z
dw ´

1

2πi

ż

γ

fpwq

w ´ z
dw

“
1

2πi

ż

Γ

fpwq

1´ z
w

dw

w
`

1

2πi

ż

γ

fpwq

1´ z
w

dw

z

“

8
ÿ

n“0

„

1

2πi

ż

Γ

fpwq

wn`1
dw



zn `
8
ÿ

n“0

„

1

2πi

ż

Γ

fpwqwn dw



z´n´1.

To see that the panq are uniquely determined, suppose
ř8

n“´8 bnz
n is a Laurent

expansion of f in A “ tr ă |z| ă Ru with the expansion converging uniformly on
compact subsets of A. Using uniform convergence to justify the interchange of limits,

ak “

ż

γ

fpzq

zk`1
dz “

ÿ

n

ż

γ

bn
zk´n`1

dz “ bk.

�

Corollary 9.5. Suppose Ω Ă C is open and f : Ω Ñ C is analytic. If y is an isolated
singularity of f and

8
ÿ

n“0

anpz ´ yq
n
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is the Laurent expansion of f in some annulus in Ω centered to y, then

(1) y is an isolated singularity if and only if an “ 0 for n ă 0;
(2) y is a pole of order m if and only if an “ 0 for n ă m; and
(3) y is an essential singularity if and only if an ‰ 0 for infinitely many n ă 0.

:

Proof. Item (1) is left as an exercise - and is essentially (pun intended) contained in
item (2). To prove item (2), suppose y is a pole of f of order m. By proposition 9.2,
there is an analytic g : Ω Ñ C such that fpzq “ pz ´ yqmgpzq. Expanding g in a power
series (near y) gives a Laurent expansion (and hence the Laurent expansion)

ř

anz
n for

f where an “ 0 for n ă m. The converse is evident.

Item (3) follows immediately from items (2) and (1) (since an essential singularity,
by definition is one that is neither removable nor a pole). �

An isolated singularity y of f is essential if and only if limzÑy |fpzq| does not exist
as an element of r0,8s.

Theorem 9.6 (Casorati-Weierstrass). Suppose Ω Ă C is open, y P Ω and f : Ωztyu Ñ C
is analytic. If f has an essential singularity at y, then for each 0 ă r ă 1 such that
Bpy; rq Ă Ω, the closure of the set fpt0 ă |z ´ y| ă ruq is C.

Proof. We prove the contrapositive. Accordingly suppose there is an r ą 0, a point ζ P C
and an ε ą 0 such that fpt0 ă |z ´ y| ă ruq X t|z ´ ζ| ă εu “ H.; i.e, if 0 ă |z ´ y| ă r,

then |fpzq´ ζ| ě ε. It follows that the function gpzq “ fpzq´ζ
z´y

has a pole at y. Let m ě 1

denote the order of this pole. Hence, by Corollary (9.3), limzÑypz ´ yqm`1gpzq “ 0.
Equivalently, limzÑypz ´ yqmpfpzq ´ ζq “ 0. Thus limzÑypz ´ yqmfpzq “ 0 too and
consequently f has either a removable singularity (if m “ 1) or a pole at y. �

Example 9.7. From Corollary 9.5, to exhibit a function with an essential singularity at
0 it suffices to write down a series

ř8

n“0 anz
n with at most finitely many terms an and for

which there is an r ą 0 such that the series converges absolutely for 0 ă |z|. As a concrete
example, consider f : Czt0u Ñ C defined by fpzq “ expp1

z
q. It has the series expansion

ř8

n“0
1
n!
z´n. It is also easy to see, for each r ą 0, the set fpt0 ă |z| ă ruq “ Czt0u and

thus conclude 0 is an essential singularity by Casorati-Weierstrass. 4

Problem 9.1. Fix r ą 0. Suppose panq is sequence from Czt0u that converges to 0 with
|an| ă r and let G “ t0 ă |z| ă ruztak : ku. Show, if f is analytic on G with poles at
the points ak, then for every w P C there is a sequence pλkq from G converging to 0 with
fpλkq “ w.

Problem 9.2. Suppose f is analytic on t0 ă |z| ă ru. Show, if f has an essential
singularity at 0, then for every c P C, every ε ą 0 and every δ ą 0, there exits a y such
that |c´ y| ă ε and fpzq “ y has infinitely many solutions in t0 ă |z| ă δu. [Suggestion:
Consider fpt0 ă |z| ă 1

n
q and apply the Baire Category Theorem.]
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Problem 9.3. Suppose f is entire and n is a positive integer. Show, if there is an
R,M ą 0 such that |fpzq| ďM |z|n for |z| ą R, then f is a polynomial of degree at most
n.

Problem 9.4. Suppose f is entire. Show, if gpzq “ fp1
z
q has either a removable sin-

gularity or a pole at 0 (i.e., f has a pole or removable singularity at 8, then f is a
polynomial.

10. Residues

Suppose Ω Ă C is open, y P Ω and f : Ωztyu is analytic. Thus there is an R ą 0
such that f has a Laurent expansion in t0 ă |z ´ y| ă Ru,

8
ÿ

n“´8

anz
n.

The residue of f at y is a´1 and is denoted respf ; yq. Note that, for 0 ă δ ă R, a nonzero
integer m and with σ : r0, 1s Ñ Bpy;Rqztyu denoting the path σpsq “ y` δ expp2πmisq,

1

2πi

ż

σ

f “ m respf ; yq. (5)

Theorem 10.1 (Residue Theorem). Suppose Ω Ă C is open and ty1, . . . , ydu Ă Ω. Let
G “ Ωzty1, . . . , ydu. If f : G Ñ C is analytic and if γ : r0, 1s Ñ G is a closed rectifiable
path that is homologous to 0 in Ω, then

1

2πi

ż

γ

f “
d
ÿ

j“1

nγpyjq respf ; yjq.

Proof. Let mj “ nγpyjq. Choose r1, . . . ; rd ą 0 such that the balls Bj “ Bpyj; 2rjq are
pairwise disjoint and are subsets of Ω. Let γj : r0, 1s Ñ G denote the path γkpsq “
yk ` rk expp´2πmkisq. In particular,

nγpyjq `
d
ÿ

k“1

nγkpyjq “ 0.

Further, for y R Ω,

nγpyq `
d
ÿ

k“1

nγkpyq “ 0` 0 “ 0,

since γ is, by hypothesis, homologous to 0 in Ω. Thus τ “ γ ´
ř

k γk is homologous to
zero in G. Since f is analytic in G, Theorem 6.4 (Cauchy’s Theorem) implies

0 “

ż

τ

f “

ż

γ

f `
ÿ

k

ż

γk

f “

ż

γ

f ´
ÿ

mk respf ; ykq.

�
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Remark 10.2. Often the Residue Theorem is used to calculate integrals in terms of the
residues (rather than finding residues by calculating integrals). Suppose f has a pole
of order m at y. In this case there is an analytic function g such that gpmqpyq ‰ 0 and
gpzq “ pz ´ aqmfpzq and

respf ; yq “
1

pm´ 1q!
gpm´1q

pyq.

˛

11. The Argument Principle

Suppose Ω Ă C is open. A function f is meromorphic on Ω if there exits a subset
G of Ω such that f : G Ñ C is analytic and each point of ΩzG is either a removable
singularity or pole of f . In this case, if K is a compact subset of Ω, then f has finitely
many poles in K (exercise) and hence the accumulation points of the set of poles of f
do not accumulate in Ω.

Theorem 11.1 (Argument Principle). Suppose Ω Ă C is open, g : Ω Ñ C is analytic
and f is meromorphic on Ω with finitely many poles p1, . . . , pN and finitely many zeros
q1, . . . , qn each counted according to multiplicity. If γ : r0, 1s Ñ Ωztp1, . . . , pm, q1, . . . , qnu
is a closed rectifiable curve that is homologous to zero in Ω, then

1

2πi

ż

γ

gf 1

f
dz “

ÿ

nγpqjqgpqjq ´
ÿ

nγppjqgppjq

Proof. Let G “ Ωztp1, . . . , pmu. Hence f : G Ñ C is analytic. If f has a pole of order
m at y, then there is an analytic function h : G Y tyu Ñ C such that hpmqpyq ‰ 0 and
hpzq “ pz ´ yqmfpzq. Thus

f 1pzq

fpzq
“
´m

z ´ y
`
h1pzq

hpzq
.

Applying to the poles of f repeatedly, produces an analytic ψ : Ω Ñ C such that

gpzqf 1pzq

fpzq
“
ÿ gpzq

z ´ qk
´
ÿ gpzq

z ´ pj
`
ϕ1pzq

ϕpzq

and the zeros of ψ are precisely those of f , namely q1, . . . , qn. Suppose ψ has zero of
order m at y. There exists a meromorphic function h : G Ñ C such that gpyq ‰ 0 and
ψpzq “ pz ´ yqmhpzq. Thus

psi1pzq

ψpzq
“

m

z ´ y
`
h1pzq

hpzq
.

Applying this result repeatedly produces an analytic function ϕ : Ω Ñ C without zeros
such that

gpzqf 1pzq

fpzq
“
ÿ gpzq

z ´ qk
´
ÿ gpzq

z ´ pj
`
ϕ1pzq

ϕpzq
.
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Since γ is homologous to zero in Ω, Cauchy’s integral formula and Cauchy’s Theorem
imply

1

2πi

ż

γ

gf 1

f
dz “

ÿ

k

gpqkqnγpqkq ´
ÿ

j

gppjqnγppjq ` 0.

�

Corollary 11.2. Suppose Ω Ă C is open and ϕ : Ω Ñ C is analytic and Bpy;Rq Ă Ω.
If ϕ is one-one on Bpy;Rq, then ψ “ ϕ|Bpy;Rq Ñ ϕpBpy;Rqq has an analytic inverse ψ´1

and moreover, for each r ă R and w P ϕpBpy; rq,

ψ´1
pwq “

1

2πi

ż

γ

zϕ1pzq

ϕpzq ´ w
dz,

where γ : r0, 1s Ñ Ω is the curve γpsq “ y ` re2πis. :

Proof. Without loss of generality, suppose Ω “ Bpy;Rq. By Proposition 8.3, varphi1pzq ‰
0 for z P Bpy;Rq. Fix 0 ă r ă R and w P ϕpBpy; rqq. There is a unique ζ P Bpy;Rq
such that ϕpζq “ w. In Theorem 11.1, choose gpzq “ z and fpzq “ ϕpzq ´ w. In par-
ticular f has no poles and only the one zero ζ of multiplicity one in Bpy; rq. Note too
tγu Ă Bpy;Rqztζu and is homologous to zero in Bpy;Rq and nγpζq “ 1. Hence, by
Theorem 11.1,

ψ´1
pwq “ ζ “ gpζqnγpζq “

1

2πi

ż

γ

gf 1

f
“

1

2πi

ż

γ

zϕ1pzq

ϕpzq ´ w
dz.

�

Theorem 11.3 (Rouche’s Theorem). Suppose f, g are meromorphic on an open set
Ω Ă C containing Bpy;Rq with no zeros or poles in tγu, where γ : r0, 1s Ñ Ω is given
by γpsq “ R expp2πi sq.. Let Zpfq and Zpgq denote the number of zeros of f and g in
Bpy;Rq counted with multiplicity (order) respectively and let P pfq and P pgq denote the
number of poles. If, for each z P tγu,

|fpzq ` gpzq| ă |fpzq| ` |gpzq|, (6)

then Zpfq ´ P pfq “ Zpgq ´ P pgq.

Proof. The hypotheses imply there is an open set U containing tγu on neither f nor
g never vanishes. Define h : U Ñ C by h “ f

g
. Since f doesn’t vanish, h is never 0.

The inequality (6) implies the ratio fpzq
gpzq

is not a positive real number. Hence h takes

values in Czr0,8q. Let ϕ denote a branch of the logarithm on Czr0,8q and note the
Φpzq “ ϕphpzqq is a primitive for h1

h
on U . Hence, by the fundamental theorem of line
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integrals and Theorem 11.1 (the argument principle),

0 “
1

2πi

ż

γ

h1

h

“
1

2πi

ż

γ

„

f 1

f
´
g1

g



“pZpfq ´ P pfqq ´ pZpgq ´ P pgqq .

�

Remark 11.4. Often the hypothesis of Rouche’s Theorem has |f ` g| ă |g| in place of
|f ` g| ă |f | ` |g|. ˛

Problem 11.1. Use Theorem 11.3 to give yet another proof of the fundamental theorem
of algebra. [Hint: If p is a monic polynomial of degree n and if R ą 0 is sufficiently

large, then |ppzq
zn
´ 1| ă 1.]

12. The algebras ApGq and H8pGq

Given an open set Ω Ă C, let H8pΩq and denote the bounded analytic functions
f : Ω Ñ C and let ApΩq denote space of functions f : Ω Ñ C such that f |Ω : Ω Ñ C is
analytic. Both these spaces are algebras and, with the norms

}f} “ }f}8 “ supt|fpzq| : z P Ωu,

are normed algebras such that
}fg} ď }f} }g}.

It turns out that, appropriately interpreted, these norms are achieved on the bound-
ary of Ω. Let B8Ω denote the boundary of Ω in the case that Ω is bounded; and let it
denote boundary of Ω plus t8u (in the extended complex plane) if Ω is not bounded.
For f : Ω Ñ C and y a limit point of Ω, let

lim sup
zÑy

f “ lim
rÑ0,rą0

supt|fpzq| : z P ΩXBpy; rqu.

The limit exists since the right hand side is decreasing with r. In particular, if ρ ą
lim supzÑy f , then there is an r ą 0 such that

supt|fpzq| : z P ΩXBpy; rqu ă ρ.

Similarly, in the case Ω is unbounded, let

lim sup
zÑ8

f “ lim
RÑ8

supt|fpzq| : z P Ω, |z| ą Ru.

Theorem 12.1. Suppose Ω Ă C is open (and nonempty) and f : Ω Ñ C. Let

Lf “ tlim sup
zÑy

|fpzq| : y P B8Ωu.

f P H8 if and only if Lf is bounded and in this case

}f}8 “ suppLf q.
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Further, if Ω is a domain (connected) and f is not constant, then |fpzq| ă }f}8 for
z P Ω.

The case where Ω is bounded and f P ApΩq more can be said.

Proposition 12.2. If Ω Ă C is (nonempty) open and bounded and f P ApΩq, then

}f}8 “ maxt|fpzq| : z P BΩu.

Further, if Ω is a domain (connected) and f is not constant, then |fpzq| ă }f}8 for
z P Ω. :

Lemma 12.3. If Ω Ă C is open and C Ă Ω Ă C is a connected component of Ω, then
BC Ă BΩ. :

Proof. Suppose x P BC. Arguing by contradiction, suppose x P Ω. Choose a connected
neighborhood V of x such that V Ă Ω. Since x P BC, it follows that C XV ‰ H. Hence
C Y V Ă Ω is connected and therefore V Y C Ă C; i.e., V Ă C. But then x is not a
boundary point of C, a contradiction. Hence x R Ω and thus x P BΩ. �

Proof. Since Ω is bounded, Ω and BΩ are both compact. Hence,

}f}8 “ maxt|fpzq| : z P Ωu.

In particular, there is a point p P Ω such that |fppq| ě |fpzq| for z P Ω. If p P Ω, then
|f |Ω| has a maximum in Ω and hence, by Theorem 2.5 (the maximum modulus theorem),
|f | is constant on the connected component Ωp of Ω containing p. Hence |fpζq| “ |fppq|
for ζ P BΩp. Since BΩp Ă BΩ, the result follows. �

Proof of Theorem 12.1. That f P H8pΩq implies Lf is bounded is immediate. Suppose
f : Ω Ñ C and Lf is bounded. Let M “ suppLf q. Given ρ ąM , let

Hρ “ tz P Ω : |fpzq| ą ρu.

Since |f | is continuous, Hρ is open. Given y P BΩ, there exists an r ą 0 such that
|fpzq| ă ρ for z P Bpy; rqXΩ. Thus there is an open set U Ą BΩ such that HρXU “ H.
Hence Hρ Ă Ω. Similarly, if Ω is unbounded, then there is an R ą 0 such that |fpzq| ă ρ
for z P Ω and |z| ą R. Thus, in any case, Hρ is bounded. It follows that Hρ is
compact and therefore, by Proposition 12.2 applied to f restricted to Hρ, assuming Hρ

is nonempty,

ρ ă supt|fpzq| : z P Hρu “ maxt|fpzq| : z P BHρu ď ρ,

a contradiction. Hence Hρ is empty and |fpzq| ď ρ for all z P Ω and ρ ą M . Hence
f P H8pΩq and }f}8 “M . �

Remark 12.4. Note that we may view, ApΩq Ă CpBΩq in the case of bonded Ω. When
Ω “ D “ t|z| ă 1u (the unit disk), ApDq is known as the disc algebra and H8pDq is
known as H8. Later we will see that these spaces are in fact complete and hence Banach
spaces. ˛
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12.1. Mappings of the disk, Schwarz Lemma. A complex number c is unimodular
if |c| “ 1.

Theorem 12.5 (Schwarz Lemma). If f : DÑ D is analytic and fp0q “ 0, then

(i) |fpzq| ď |z| for all z P D;
(ii) |f 1p0q| ď 1;

(iii) and if equality holds in either items (i) or (ii), then there is a unimodular c such
that fpzq “ c z.

Proof. By Proposition 4.5, there is an analytic function g : D Ñ C such that fpzq “

zgpzq. Fix 0 ă r ă 1. The function g is analytic on Bp0; rq, continuous on Bp0; rq and
|gpζq| ď 1

r
on BBp0; rq. Hence by Proposition 12.2, if |z| ă r, then |gpzq| ď 1

r
. Fixing z

and letting r ą 1 tend to 1 gives |gpzq| ď 1. Thus, |fpzq| ď |z| for |z| ă 1. To prove

item (ii), note that |fpzq
z
| “ |gpzq| ď 1, for z ‰ 0.

Now suppose there is a w P D such that |fpwq| “ |w|. It follows that |gpwq| “ 1 and
hence, by maximum modulus, gpzq “ |gpwq| for all z. Finally, suppose |f 1p0q| “ 1. In
this case |gp0q| “ 1 and again maximum modulus applied to g shows fpzq “ cz for some
unimodular c. �

Remark 12.6. von Neumann’s inequality. ˛

Given w P D, the mapping

ϕwpzq :“
z ´ w

1´ wz

is easily seen to give a mapping ϕw : DÑ D that is an automorphism (one-one and onto)
by verifying |ϕwpzq| ď 1 for z P D and that ϕ´w is its inverse. In particular, |ϕwpzq| “ 1
for |z| “ 1.

Proposition 12.7. If f : DÑ D is an analytic automorphism (one-one and onto), then
there is a w P D and a unimodular c such that

fpzq “ cϕwpzq :“ c
z ´ w

1´ wz
.

:

Proof. Since f is onto, there is a w such that fpwq “ 0. Hence g “ f ˝ ϕ´w : D Ñ D
and gp0q “ 0. By the Schwarz Lemma, |gpzq| ď |z| for z P D. Since g´1 : D Ñ D,
the Schwarz lemma also gives |z| “ |g´1pgpzqq| ď |gpzq| for z P D. Hence, again by
the Schwarz Lemma, there is a unimodular c such that gpzq “ cz. The result now
follows. �

Problem 12.1. Show, if f : D Ñ D is an analytic automorphism, then f has at most
one fixed point or fpzq “ z.
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Problem 12.2. This problem generalizes Problem 12.1. The function ρ : DÑ D defined

by ρpz, wq “ |z´w|
|1´w̄z|

is the Poincare metric or hyperbolic distance between z and w. Show,

if f : DÑ D and z, w P D, then

ρpfpzq, fpwqq ď ρpz, wq.

13. The topology of uniform convergence on compact sets

13.1. Preliminaries. An exhaustion of an open set Ω Ă C by compact sets is a sequence
pKnq of compacts sets such that

(i) Ω “ YKn;
(ii) for each n, Kn Ă K˝

n`1 (interior).

Lemma 13.1. If pKnq is an exhaustion of Ω and K Ă Ω is compact, then there exists
an N such that K Ă K˝

N . :

Proof. Observe Ω “ YK˝
n. Hence, if K Ă Ω is compact, then tK˝

n : nu is an open cover
of K. Since K˝

n Ă K˝
n`1, it follows that there is an N such that K Ă K˝

N . �

Proposition 13.2. There is an exhaustion pKnq of Ω such that if n P N and C is a
connected component of C8zKn then C contains a component of C8zΩ. :

Proof. Let

Kn “ t|z| ď nu X tz : dpz,CzΩq ě
1

n
u.

Here dpz,CzΩq is the distance from z to CzΩ. The set Kn are closed and bounded and
hence compact. Let

Un “ t|z| ă nu X tz : dpz,CzΩq ą
1

n
u

and note each Un is an open subset of Ω. Since Kn Ă Un`1 Ă Kn`1 it follows that
Kn Ă K˝

n`1. Since Ω “ YUn we conclude Ω Ă YK˝
n too.

Now fix n and suppose C is a connected component of C8zKn. Since C8zKn Ą

C8zΩ, the result is true if C is the unbounded component (the component containing8)
of C8zKn. Note too, that the unbounded component contains t|z| ą nu. Now suppose
C is a bounded component and z P C. In particular, |z| ă n and thus dpz,CzΩq ă 1

n
.

Hence there is a point w P CzΩ such that |z ´ w| ă 1
n
. Now z P Bpw; 1

n
q Ă CzKn as

w P CzΩ. The set Bpw; 1
n
q is connected subset of CzKn that contains z P C. Therefore,

Bpw; 1
n
q Ă C and in particular w P C. Let C 1 denote the component of CzΩ containing

w. Since w P C 1 Ă CzKn and w P C, it follows that C 1 Ă C. �

Let X be a set. A function τ : X ˆX Ñ r0,8q is a semi-metric if it satisfies all the
axioms of a metric except for τpx, yq “ 0 does not necessarily imply x “ y.

Lemma 13.3. If d is a semimetric on X, then so is τ : X ˆX Ñ r0,8q defined by

τpx, yq “
dpx, yq

1` dpx, yq
.
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:

Sketch of proof. Compute, for a, b ě 0,

a` b

1` a` b
´

a

1` a
´

b

1` b
.

�

13.2. The space pCpΩ, Xq, ρq. Recall that C8 is a metric space with the metric

dpz, wq “

#

|z´w|?
1`|z|2

?
1`|w|2

, z, w P C
2

1`|z2|
z P C.

(7)

Given Ω Ă C open and X a complete metric space (usually either C or C8), let
CpΩ, Xq denote the space of continuous functions f : Ω Ñ X. Given a compact set
K Ă Ω, the function dK : CpΩ, Xq ˆ CpΩ, Xq Ñ r0,8q defined by

dKpf, gq “ suptdpfpzq, gpzqq : z P Ku

is a semimetric on CpΩ, Xq.

Given an exhaustion pKnq of Ω, let dn “ dKn and let

ρnpf, gq “
dnpf, gq

1` dnpf, gq
.

Thus ρn is a semimetric by Lemma 13.3. Note, that for each f, g, the series
8
ÿ

n“1

ρnpf, gq

2n

converges with value less than 1. Define ρpf, gq by this series. It of course depends upon
the choice of exhaustion.

Proposition 13.4. ρ is a metric on CpΩ, Xq. :

Proof. Standard arguments show each dn is a semimetric and thus, by Lemma 13.3, so
is each ρn and therefore ρ. It remains to show ρ is positive definite; i.e., if ρpf, fq “ 0,
then f “ 0. If ρpf, fq “ 0, then dnpf, fq “ 0 for each n. Hence f “ 0 on each Kn and
since Ω “ YKn, it follows that f “ 0. �

Proposition 13.5. If δ ą 0 and K Ă Ω is compact, then there exists a ε ą 0 such that
for each ψ P CpΩ, Xq,

tg : ρpψ, gq ă εu :“ Bρpψ; εq Ă BKpψ; δq :“ tg P CpΩ, Xq : dKpψ, gq ă δu.

In particular, for each K Ă Ω compact, each ψ P CpΩ, Xq and each δ ą 0, the set
BKpψ; δq is open in pCpΩ, Xq, ρq.

Conversely, for each ε ą 0 there is a compact set K and δ ą 0 such that for each ψ,

BKpψ; δq Ă Bρpψ; εq.
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In particular, if O is open in pCpΩ, Xqq, then for each ψ P O there is a compact K Ă Ω
and δ ą 0 such that BKpψ; δq Ă O.

Finally, O is open in pCpΩ, Xqq if and only if for each ψ P O there is a compact set
K and an ε ą 0 such that BKpψ; εq Ă O. In particular, the open sets in pCpΩ, Xq, ρq do
not depend on the choice of exhaustion pKnq. :

Proposition 13.5 says the collection of sets tBKpf ; δq : K, f, δu is a base for the
topology of pCpΩ, Xq, ρq.

Sketch of proof. Suppose K Ă Ω compact and δ ą 0 are given. There is an N such that
K Ă KN by Lemma 13.1. Now there is a constant C such that ρNpf, gq ď Cρpf, gq.
Choose ε ą 0 so that µ “ Cε ă 1 and µ

1´µ
ă δ. If ψ P CpΩ, Xq and ρpψ, gq ă ε, then

t “ ρNpψ, gq ă Cε and hence

dNpψ, gq “
1

1´ t
ă

µ

1´ µ
ă δ.

Thus tg : ρpψ, gq ă εu Ă tg : dNpψ, gq ă δu Ă BKpψ; δq and hence BKpψ; δq is open in
pCpΩ, Xq, ρq. In particular, if O Ă CpΩ, Xq and for each ψ P O there is a compact set
K and δ ą 0 such that BKpψ, δq Ă O, then O is open.

Conversely, let ε ą 0 be given. Choose N such that
ÿ

n“N`1

1

2n
ă

1

2
ε.

Choose K “ KN and δ ă 1
2
ε. Suppose ψ P CpΩ, Xq and dKpψ, gq ă δ, then ρKpψ, gq ă δ

too and hence

ρpψ, gq ď
N
ÿ

n“1

ρnpψ, gq

2n
`
ε

2

ďρNpψq
N
ÿ

n“1

1

2n
`
ε

2
ă ε.

Thus BKpψ, gq Ă Bρpψ; εq. �

Proposition 13.6. A sequence pfnq in pCpΩ, Xq, ρq converges to an f P pCpΩq, Xq
if and only if for each compact subset K Ă Ω, the sequence pfn|Kq converges to f |K
uniformly. Similarly, pfnq is Cauchy in CpΩ, Xq if and only if for each compact K Ă Ω
the sequence pfn|Kq is Cauchy in CpK,Xq. :

The conclusion of Proposition 13.6 is often expressed less formal as: pfnq converges
uniformly on compact sets to f .

Proof. Suppose pfnq converges to f uniformly on compact sets to f . Let ε ą 0 be given.
By Proposition 13.5, there is a compact K and δ ą 0 such that BKpf ; δq Ă Bρpf ; δq “
tg : dpf, gq ă ρu. Since pfn|Kq converges uniformly to f |K , there is an N such that
dKpfn, fq ă δ for n ě N . Hence pfnq converges to f in pCpΩ, Xq, ρq.
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Now suppose pfnq converges to f in pCpΩ, Xq, ρq and let K Ă Ω compact and ε ą 0
be given. By 13.5, there is a δ ą 0 such that Bρpf ; δq Ă BKpf ; εq. Hence, there is an
N such that if n ě N , then fn P BKpf ; εq; i.e., dKpf, fnq ă ε. Thus pfn|Kq converges
uniformly to f |K .

The second part of the proposition is left as an exercise. �

Theorem 13.7. CpΩ, Xq is complete.

For K a compact set and X complete, it is well known from advanced calculus that
CpK,Xq (the continuous X-valued functions on K in the supremum norm is complete).

Sketch of proof. Suppose pfnq is Cauchy in CpΩ, Xq. Since tzu Ă Ω is compact, pfnpzqq
is a Cauchy sequence in the complete metric space X and thus converges in X. Hence
there is a function f : Ω Ñ X such that pfnq converges to f pointwise. Fix K Ă Ω
compact. It follows that there is a continuous function fK : K Ñ X such that pfn|Kq
converges uniformly to fK . It follows that fK “ f |K and hence pfnq converges to f in
CpΩ, Xq, by Proposition 13.6. �

13.3. Normal Families. Recall, that for a metric space Y , compactness and sequential
compactness are equivalent. A subset F of CpΩ, Xq is normal if every sequence from
F has a convergent subsequence. Thus F is normal if and only if F (closure) is
(sequentially) compact. In the old days, a set with compact closure was said to be
precompact.

Recall a subset Z of a metric space Y is totally bounded if for each δ ą 0 there
exists a positive integer N and points y1, . . . , yN P Z such that Z Ă YBρpyj; δq; and Z
is compact if and only if it is complete and totally bounded.

Proposition 13.8. A (nonempty) subset F of CpΩ, Xq is normal if and only if for
each K Ă Ω compact and δ ą 0, there exists a positive integer N and f1, . . . , fN P F
such that

F Ă Y
N
j“1BKpfj; δq.

:

Since CpΩ, Xq is complete, the proof amounts to showing the inclusion condition is
equivalent to total boundedness of F .

Proof. Suppose F is normal and let K compact and δ ą 0 be given. Choose ε ą 0
as in Proposition 13.5 so that for each ψ the inclusion tg : ρpψ, gq ă εu Ă BKpψ; δq
holds. By hypothesis F is compact and therefore totally bounded. Thus, there exists
g1, . . . , gN P F such that

F Ă Ytg : ρpgj;
ε

2
q

Choose fj such that fj P F and ρpfj, gjq ă
ε
2
. Thus,

F Ă Ytg : ρpfj; εq Ă YBKpfj; δq.
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Conversely, F has the inclusion property and let ε ą 0 be given. There is a δ ą 0
such that BKpψ; δq Ă Bρpψ; ε

2
q independent of ψ P CpΩ, Xq. By hypothesis, there is an

N and f1, . . . , fN P CpΩ, Xq such that

F Ă YBKpfj; δq.

Hence F Ă YBρpfj; εq and we conclude that F is totally bounded and hence compact.
�

13.4. Arzela-Ascoli. A subset F Ă CpΩ,Cq is equicontinuous on a subset E Ă Ω if
for every ε ą 0 there is a δ ą 0 such that if q P Ω, p P E and |q ´ p| ă δ and f P F ,
then |fpqq ´ fppq| ă ε. In the case E “ Ω, we say F is equicontinuous; and in the case
E “ tpu, we say F is equicontinuous at p. Finally, F is pointwise equicontinuous if F
is equicontinuous at each point of Ω.

The following lemma is the uniformly over F version of the statement that a con-
tinuous function on a compact set is uniformly continuous.

Lemma 13.9. If F Ă CpΩ,Cq is pointwise equicontinuous, then F is equicontinuous
on each compact subset K of Ω. :

Proof. Let K Ă Ω compact and ε ą 0 be given. For each point w P K there is a δw such
that if |z ´ w| ă δw (and z P Ω) and f P F , then |fpzq ´ fpwq| ă ε

2
. The collection

O “ tBpw; δw
2
q : w P Ku is an open cover of K. Let δ be the Lebesgue covering number

for O. Thus for each p P K there is a w P K such that Bpp; δq Ă Bpw; δw
2
q. Now

suppose q P Ω and |p ´ q| ă δ. It follows that |q ´ w| ď |q ´ p| ` |p ´ w| ă δw. Hence
|p´w|, |w´ q| ă δw and therefore |fppq ´ fpqq| ď |fppq ´ fpwq| ` |fpwq ´ fpqq| ă ε. �

Before proceeding further, we recall a standard version of the Arzela-Ascoli theorem
from undergraduate analysis. Recall, for K a compact metric space, CpK,Cq is the
space of continuous functions with the metric dpf, gq “ maxt|fpxq ´ gpxq| : x P Ku and
that this space is complete. A subset F Ă CpK,Cq is pointwise bounded if for each
p P K the set tfppq : f P F u Ă C is bounded.

Lemma 13.10. A subset F of a metric space Y is precompact if and only if each sequence
from F has a convergent subsequence (in Y ). :

Proof. If F is precompact, then F is compact and the result follows from the equivalence
of compactness and sequential compactness in a metric space.

Conversely, suppose every sequence from F has a convergent subsequence and sup-
pose pfnq is a sequence from F . For each n there exists a gn P F such that dpfn, gnq ă

1
n
.

The sequence pgnq has a subsequence pgnkq that converges to some g P Y . It follows that
pfnkq converges to g too. �

The following version of Arzela-Ascoli is one often encountered in undergraduate
analysis.
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Theorem 13.11 (Arzela-Ascoli I). If K is a compact metric space and F Ă CpK,Cq
is pointwise bounded and equicontinuous, then every sequence from F has a subsequence
that converges in CpK,Cq (that is uniformly). In particular, F is compact in CpK,Cq.

Theorem 13.12 (Arzela-Ascoli II). If F Ă CpΩ,Cq is pointwise bounded and pointwise
equicontinuous, then F is normal.

Sketch of proof. By Lemma 13.9, F is equicontinuous on compact subsets of K. Let
pfmq be a sequence from F . Fix an exhaustion pKnq of Ω. Note that F (restricted
to K1) satisfies the hypotheses of Theorem 13.11. Hence there is a subsequence pf1,jq

of pfmq such that pf1,j|K1q converges uniformly (on K1) to some continuous function
g1 on K1. Likewise, there is a subsequence pf2,jq of pf1,jq such that pf2,j|K2q converges
uniformly (on K2q to some continuous function g2 on K2 with g2|K1 “ g1. Continuing
in this fashion, gives sequence pfk,jq converging uniformly to a continuous function gk in
Kk (and hence on K` for each ` ď k) with gk|K` “ g` for ` ď k and such that pfk`1,jq is a
subsequence of pfk,jq. In particular, there is a continuous function g : Ω Ñ C such that
g|K` “ g` for each `. Let hj “ pfj,jq. Thus phjq is, for each k, eventually a subsequence
of pfk,jq. In particular, phjq converges to g P CpΩ,Cq uniformly on each Kk and hence
in the space CpΩ,Cq. �

14. The space of analytic functions on Ω

Given an open set Ω Ă C, let HpΩq denote the subspace of CpΩ,Cq consisting of
analytic functions. In particular, the algebra HpΩq is endowed with the metric it inherits
from CpΩ,Cq.

Theorem 14.1. If pfnq is a sequence from HpΩq that converges to an f P CpΩ,Cq, then

f P HpΩq and moreover, for each k, the sequence pf
pkq
n q converges to f pkq (in the metric

of CpΩ,Cq). In particular, HpΩq is complete.

Proof. Given a triangle T contained in Ω (meaning T and its interior are contained in
Ω), there is a compact set K such that T Ă K˝ Ă Ω. Since pfnq converges to f uniformly
on K, it follows, from Cauchy’s Theorem, that

0 “ lim
n

ż

T

fn “

ż

T

f.

Thus, by Morera’s Theorem, f is analytic. In particular, HpΩq is a closed subset of the
complete metric space CpΩ,Cq and is therefore itself complete.

Fix y P Ω and a positive integer k and an R ą 0 such that Bpy; 2Rq Ă Ω. Let

Mn “ t|fpwq ´ fpwq| : w P Bpy; 2Rq. Since pfnq converges uniformly to f on compact
sets, Mn converges to 0. Given z P Bpy;Rq, Cauchy’s estimate (Corollary 2.2 (iv)) gives

|f pkqpzq ´ f pkqn pzq| ď
k!Mn

Rk
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Hence pf
pkq
n q converges uniformly to f on Bpy;Rq. If K Ă Ω is compact, then (as K is

totally bounded) there is an R ą 0 and points y1, . . . yN such that K is covered by the

balls Bpyj; 2Rq. It follows that pf
pkq
n q converges uniformly to f on K. �

Theorem 14.2 (Hurwitz). Suppose Ω Ă C is an open set, pfnq is a sequence from HpΩq

that converges to f (in HpΩq) and R ą 0 and y P G. If Bpy;Rq Ă Ω and f does not
vanish on t|z ´ y| “ Ru, then there is an N P N such that for all n ě N the functions
fn and f have the same number of zeros in Bpy;Rq.

In particular, if Ω “ G is a domain and each fn does not vanish in G, then either
f is identically 0, or f does not vanish in G.

Proof. Let η “ t|fpzq| : |z ´ y| “ Ru. By compactness and the hypotheses, η ą 0. Since
pfnq converges uniformly to f on compact sets, there is an N such that for n ě N and
|z ´ y| “ R,

|fnpzq ´ fpzq| ă
η

2
ă |fpzq|.

Thus, by Theorem 11.3, pfnq and f have the same number of zeros in Bpy;Rq.

Now suppose the fn never vanish, Ω “ G is a domain and f is not identically 0.
Because G is a connected, it follows that, given y P G, there is an R ą 0 such that
Bpy;Rq Ă G and f does not vanish on t|z ´ y| “ Ru. Hence, by what has already been
proved, f has no zeros in Bpy;Rq and in particular, fpyq ‰ 0. Hence f has no zeros. �

14.1. Montel’s Theorem. A set F Ă CpΩ,Cq is bounded on a subset U of Ω if the
set t|fpzq| : z P U, f P F u is bounded. It is locally bounded if for each y P Ω there is an
open set y P U such that F is bounded on U .

Lemma 14.3. If F is locally bounded, then F is bounded on each compact K Ă Ω. :

Theorem 14.4 (Montel’s Theorem). A subset F Ă HpΩq is normal if and only if it is
locally bounded.

Proof. Arguing by contradiction, suppose F is normal, but not locally bounded. In this
case there is an y P Ω and a bounded open set y P U such that U Ă Ω such that

supt|fpzq| : z P U, f P F u “ 8.

Thus there exists, for each n P N`, a point zn P U and fn P F such that |fnpznq| ě n.
Since F is normal, there is a subsequence pfnkq of pfnq that converges to some f P HpΩq.
In particular, pfnkq converges to f uniformly on U . Since also f is bounded on U , it
follows that pfnkpznkqqk is a bounded sequence, a contradiction.

Now suppose F is locally bounded. The plan is to show that F is pointwise
equicontinuous and apply Arzela-Ascoli (Theorem 13.12). Accordingly, fix y P Ω. By

the local bounded hypothesis, there exist r,M ą 0 such that Bpy; rq Ă Ω and, for all

z P Bpy; rq and f P F ,

|fpzq| ďM.
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Let γpsq “ y ` r expp2iπsq (0 ď s ď 1). For z P Bpy; r
2
q and f P F , Cauchy’s formula

gives,

|fpzq ´ fpyq| ď

ż 1

0

|fpγpsqqpz ´ yq|

|γpsq ´ y| |γpsq ´ z|
r ds

ď|z ´ y|

ż 1

0

Mr

p r
2
q2
“ |z ´ y|

4M

r

Hence F is equicontinuous at y and the proof is complete. �

Corollary 14.5. A subset F Ă HpΩq is compact if and only if it is closed and locally
bounded. :

15. The space of meromorphic functions on Ω

Recall the metric d on C8 from equation (7). The topology induced by this metric
is one point compactification of C; i.e., neighborhoods of 8 are complements of compact
subsets of C.

Proposition 15.1. A subset O Ă C8 is open if and only if Ozt8u is open in C and, if
8 P O, then there exists a compact set K Ă C such that K̃ Ă O. :

Suppose Ω Ă C is open. Given f meromorphic on Ω, define fppq “ 8 if p is a
pole of f . In this way, f determines a function (still denoted by f) in CpΩ,C8q (by
the definition of pole and Proposition 15.1). Let MpΩq Ă CpΩ,C8q denote the set of
meromorphic functions on Ω. Observe, If g PMpΩq, then 1

g
PMpΩq too.

A key feature of the metric d is

dpz, wq “

#

dp1
z
, 1
w
q z, w P C

dp1
z
,8q z P C, w “ 0.

with the following lemma as an immediate consequence,

Lemma 15.2. Suppose G Ă C is a domains. If pfnq P HpΩq converges to f P MpΩq,
then p 1

fn
q converges to 1

f
in MpΩq. :

Proposition 15.3. If pfnq is a sequence from MpGq Ă CpG,C8q (resp. HpGq Ă
CpG,C8q) and if pfnq converges to f in CpG,C8q, then either f is meromorphic (resp.
f P HpGq) or f is identically equal to 8. :

Proof. Fix y P G. First suppose fpyq ‰ 8. Since the set U “ tw : |fpyq ´ w| ă 1u is
open in C, there is a δ ą 0 such that V “ tw : dpw, fpyqq ă δu Ă U by Proposition 15.1.

Choose r ą 0 such that B “ Bpy; rq Ă G and so that dpfpzq, fpyqq ă ρ
2

for z P B. Since
pfnq converges to f uniformly on B, there is an N such that if n ě N and z P B, then
dpfnpzq, fpzqq ă

ρ
2
. It follows that, for n ě N and z P B,

dpfnpzq, fpyqq ď dpfnpzq, fpzqq ` dpfpzq, fpyqq ă ρ



D
RA
FT

MAA6406-07 COURSE NOTES 2016-17 41

and therefore |fnpzq| ď |fpyq| ` 1. Hence, for n ě N , the function fn is analytic in
Bpy; rq. By Theorem 14.1 (applied to G “ Bpy; rq, f is analytic in a neighborhood of y.

Now suppose fpyq “ 8. Using Lemma 15.2, the argument of the previous paragraph
shows 1

f
is analytic in a neighborhood U of y. If f is not identically 8, then, since G is

connected, f is not identically 8 on U . It follows that the zeros of 1
f

in U are isolated

and hence f is meromorphic in U .

In the case each pfnq is analytic, the functions 1
fn

have no zeros. Hence, by Theorem

14.2 (Hurwitz), 1
f

is either identically zero or not zero in a neighborhood of y. �

Corollary 15.4. The subspace MpΩq Y t8u of CpΩ,C8q is complete. :

16. The Riemann mapping theorem

Recall, from Corollary 7.10 item (v) that, if G is simply connected, then every
nowhere vanishing analytic function on G has an analytic square root.

Theorem 16.1 (Riemann mapping). If G Ă C is a domain (open and connected), every
nowhere vanishing function on G has a square root and G ‰ C and y P G, then there
is an analytic bijection f : G Ñ D. Further, given y P G, there is a unique analytic
bijection f : GÑ D with fpyq “ 0 and f 1pyq ą 0.

The proof of uniqueness is a consequence of Theorem 12.5 (Schwarz’s lemma). The
details are left as an exercise.

Lemma 16.2. There exists a one-one analytic function f : G Ñ D such that fpyq “ 0
and f 1pyq ą 0. :

Proof. Choose a point w R G. Since hpzq “ z ´ w does not vanish in G, there is an
analytic function g on G such that g2 “ h “ z ´ w. If gpζq “ gpzq, then ζ ´ w “ z ´ w
and hence ζ “ w. Thus g is one-one.

Fix p P gpGq. There is a ζ P G such that gpζq “ p. If gpzq “ ´p, then ζ ´ w “
p2 “ z´w and consequently ζ “ w, a contradiction. Theorem 8.4, gpGq is open. Hence
there is an r ą 0 such that Bpp; rq Ă gpGq and therefore Bp´p; rq Ă CzgpGq. This latter
inclusion implies |gpzq ´ p´pq| ě r for z P G and therefore | r

gpzq`p
| ă 1. Hence

F pzq “
r

2pgpzq ` pq

defines a one-one analytic function on G with values in D. Since F is one-one, its de-
rivative never vanishes by Proposition 8.3. Thus, post composition with an appropriate
mobius mapping ϕb “

z´b
1´b̄z

(b “ F pyq) followed by a rotation produces the desired f . �

Proof of Theorem 16.1. Let

F “ tf : GÑ D : f is one-one , fpyq “ 0, f 1pyq ą 0u.

By Lemma 16.2, F is not empty. By construction, F is locally bounded. Hence, by
Theorem 14.4 (Montel), F has compact closure in CpG,Cq. Suppose pfnq is a sequence
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from F that converges to some f . Since each f 1n does not vanish (by Proposition 8.3),
either f 1 is identically 0 or f 1 is never 0 by Theorem 14.2 (Hurwitz). In the former case,
f is constant and thus constantly equal to 0 and is in F . In the latter case, fpyq “ 0 and
f 1pyq ‰ 0 and thus f 1pyq ą 0. Moreover, since each fn is one-one and f is not constant,
another application of Theorem 14.2 (Hurwitz) implies f is one-one. Finally, it is evident
that f maps into D. On the other hand, since f is one-one, the open mapping theorem
implies fpGq is open and thus a subset of D. We conclude in any case f P F Y t0u.
Hence F Y t0u is the closure of F and is therefore compact in CpG,Cq.

The mapping F Y t0u Q f Ñ f 1pyq P C is continuous by Theorem 14.1 and takes
values in r0,8q. Since FYt0u is compact, this map attains its maximum M . Let f P F
be any such that f 1pyq “ M . Suppose, by way of contradiction, there is a w P D not in
the range of f . Consider

ψpzq “ ϕwpfpzqq “
fpzq ´ w

1´ w̄fpzq
.

Since ϕw doesn’t vanish and G is simply connected, there is an analytic function h :
GÑ C such that h2 “ ψ. Let

g “ λϕhpyq ˝ h “ λ
hpzq ´ hpyq

1´ ¯hpyqhpzq
,

where λ is unimodular and chosen so that g1pyq ą 0. Compute,

g1pyq “
|h1pyq|

1´ |hpyq|2

and

|h1pyq| “
f 1pyqp1´ |w|2q

2
a

|w|
.

Combining these last two equations gives the contradiction

g1pyq “
1` |w|

2
a

|w|
f 1pyq ą f 1pyq,

and completes the proof of the theorem. �

Corollary 16.3. Suppose G Ă C is open. The following are equivalent.

(i) G ‰ C and if f : GÑ C is analytic and γ : r0, 1s Ñ G is a closed rectifiable path,
then

ż

γ

f dz “ 0.

(ii) G ‰ C and if f : G Ñ C is analytic and if γ, δ : r0, 1s Ñ G are rectifiable paths
such that γp0q “ δp0q and γp1q “ δp1q, then

ż

γ

f “

ż

δ

f.

(iii) if G ‰ C and f : GÑ C, then f has a primitive.
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(iv) If G ‰ C and f : G Ñ C is analytic and never vanishes, then there exists an
analytic function g : GÑ C such that f “ eg.

(v) If G ‰ C and f : G Ñ C is analytic and never vanishes, then f has a square root
in G.

(vi) There is an analytic bijection f : GÑ D.

:

Sketch of proof. It is easy to show, if G Ă C and if there is an analytic bijection f : GÑ
D, then G ‰ C and G is simply connected; i.e., item (vi) implies item (i). On the other
hand, the proof of Corollary 7.10 showed (without the assumption G ‰ C) that item
(i) implies item (ii) implies item (iii) implies item (iv) implies item (v). Theorem 16.1
shows item (v) implies item (vi). �

17. Factorization of analytic functions

17.1. Infinite products. Given a sequence pznq from C, let
ś8

j“1 zj denote the sequence

pn “
śn

j“1 zj and also the limit of this sequence, called the infinite product, if it exists.

Lemma 17.1. If none of the zn are zero and if the infinite product exists (converges)
and is not zero, then pznq converges to 1. On the other hand, with |y| ă 1 fixed and
zn “ yn, the product

ś

zn and pznq both converge to 0. :

Proof. Let 0 ‰ p “ lim pn. Since none of the zn are zero, none of pn are 0. Hence
zn`1 “

pn`1

pn
and it follows that pznq converges to 1. �

Let Φpzq “ logp|z|q ` iθ, where ´π ď θ ď π. In particular, exppΦpzqq “ z.

Proposition 17.2. The infinite product
ś

zn converges to a non-zero number if and
only if the series

ř

Φpznq converges. :

Proof. Continue to let pn “
śn

j“1 zj and let sn “
řn
j“1 Φpznq. In particular, exppsnq “

pn. Hence, if psnq converges to s, then pn “ exppsnq converges to exppsq ‰ 0.

Now suppose ppnq converges to p ‰ 0. Let ϕ denote a branch of the logarithm that is
continuous at p. In particular, there is an N such that, for each n ě N , the point pn is in
the domain of ϕ and pϕppnqqněN converges to ϕppq. From here on we take n ě N . Since
exppsnq “ pn, it follows that there exists integers mn such that sn “ ϕppnq` 2mnπi. On
the other hand, since sn`1 ´ sn “ Φpznq and pΦpznqq converges to 1 by Lemma 17.1, it
follows that there is a K P N and an integer k such that if n ě K, then mn “ k. Hence
psnq converges to ϕppq ` 2πik. �

Remark 17.3. If
ś

zn converges to a non-zero number, then <pznq ą 0 for n sufficiently
large. Hence, eventually, Φpznq “ logpznq (the principal branch). ˛

Given a sequence of non-zero complex numbers, the infinite product
ś

zn converges
absolutely if the series

ř

Φpznq does.
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Proposition 17.4. If the product
ś

zn converges absolutely, then the product itself
converges to a non-zero number p. :

Proof. If
ś

zn converges absolutely, then
ř

Φpznq converges absolutely (by definition).
Hence

ř

Φpznq and by Proposition 17.2, the infinite product converges. �

Lemma 17.5. Let ϕpzq “ logp1` zq (with domain <pzq ą ´1). If |z| ă 1
2
, then

1

2
|z| ď |ϕpzq| ď 2|z|.

:

Proof. Let log denote the principal branch. The function ϕpzq “ logp1` zq has a power
series expansion convergent in Bp0; 1q,

ϕpzq “
8
ÿ

n“1

p´1qn`1 z
n

n
.

It follows that, for |z| ď 1
2
,

|z ´ ϕpzq| ď
8
ÿ

n“1

|z|n “
|z|

1´ |z|
ď 2|z|.

Likewise for |z| ď 1
2
,

|z ´ ϕpzq| ď
8
ÿ

n“2

|z|n “
|z|2

1´ |z|
ď

1

2
|z|.

Hence, for |z| ď 1
2
,

|ϕpzq| ě |z| ´ |z ´ ϕpzq| ě
1

2
|z|.

�

Lemma 17.6. Suppose pznq is a sequence of complex numbers none of which are 1. The
series

ř

Φp1` znq converges absolutely if and only if
ř

zn converges absolutely. :

Proof. Suppose
ř

zn converges absolutely. In this case there is an N such that |zn| ď
1
2

for n ě N . For these n, Φpzq “ logpzq. Hence, by Lemma 17.5,
ř

|Φp1` znq| converges
by comparison to

ř

|zn|.

Conversely, if
ř

|Φp1 ` znq|, then there is an N such that if n ě N , then |zn| ă
1
2
.

Again Φpzq “ logpzq for these n. Hence, the other inequality of Lemma 17.5 and the
comparison test imply

ř

|zn| converges. �

Proposition 17.7. Suppose pznq is a sequence of non-zero numbers. The product
ś

zn
converges absolutely if and only if the series

ř

pzn ´ 1q does. :

Lemma 17.8. Let pX, dq be a compact metric space and suppose pgnq is a sequence of
continuous C-valued functions on X. If the series

ř

|gn| converges uniformly, then

(a) the product
ś

p1` gnq converges uniformly to some f ;
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(b) the product
ś

p1` gnq converges pointwise absolutely;
(c) there is an N such that fpxq “ 0 if and only if there is an n ď N such that

gnpxq “ ´1.

:

Proof. Pointwise absolute convergence follows from combining Lemma 17.6 and Propo-
sition 17.7.

Since
ř

|gn| converges uniformly, there is an N such that if n ě N , then |gn| ă
1
2
.

By Lemma 17.5, for n ě N ,
| logp1` gnq| ď 2|gn|.

By comparison,
ř8

n“N Φp1` gnq converges uniformly.

Let sn “
řn
j“N zj and let tn “

řn
j“N Φp1` gnq and let s and t denote their uniform

limits respectively. Since psnq is a sequence of continuous functions converging uniformly,
its limit s is continuous. Since X is compact the sequence psnq is uniformly bounded.
Hence the sequence tn “

řn
j“N Φp1 ` gnq is also uniformly bounded; i.e., there is a

compact set K Ă C such that, for each n ě N , the range of tn lies in K. Since the
exponential function is continuous on K, it is uniformly continuous on K. It follows
that expptnq converges to expptq uniformly and thus the full product

f “
ź

p1` gnq “
N´1
ź

j“1

p1` gjq
8
ź

j“N

p1` gjq “
N´1
ź

j“1

p1` gjq expptq

converges uniformly too. Moreover, if fpzq “ 0, then there is an n ă N such that
1` gnpzq “ 0. �

Proposition 17.9. Suppose Ω Ă C is open and pfnq is a sequence from HpΩq. If
ř8

n“1 |fn ´ 1| converges uniformly on compact subsets of Ω, then f “
ś

fn converges
in HpΩq and pointwise absolutely. Moreover, if Ω a domain and if none of the fn are
identically zero, then f is not identically zero and in this case if fpyq “ 0 then the
multiplicity of this zero is the sum of the multiplicity of the zeros of the fn at y. :

Proof. By Lemma 17.8,
ś

fn converges uniformly on compact sets of Ω and hence, by
Theorem 14.1, this product f is in HpΩq. Lemma 17.8 also implies, given a compact
subset K Ă Ω, that there exists an N such that if z P K and fpzq “ 0, then there is an
n ď N such that fnpzq “ 0. Hence, if none of the fn are identically zero, then the zero

sets of f and F “
śN

n“1 fn in K are the same. In particular, for n ą N each fn is never
0 on K and of course f is not identically zero on K. Now suppose Ω is connected and
fpyq “ 0. Choose r ą 0 such that K “ Bpy; rq Ă Ω. Thus f is not identically zero on
K and hence is not identically zero on Ω. Moreover, since f and F have the same zero
sets, the conclusion about the multiplicity of the zero of f at y follows. �

17.2. Weierstrass Factorization. Let E0 “ 1´ z and, for p P N`, let

Ep “ p1´ zq expp
p
ÿ

j“1

zj

j
q.
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These functions are the Weierstrass elementary factors. They have a simple zero at 1
and no other zeros.

Lemma 17.10. If |z| ď 1, then |1´ Eppzq| ď |z|
p`1. :

Proof. The case p “ 0 is evident. Accordingly, suppose p ě 1. Observe

E 1pzq “ ´zp expp
p
ÿ

j“1

zj

j
q “ ´

8
ÿ

j“p

bjz
j

where bj ě 0 and the power series has infinite radius of convergence. Since Epp0q “ 1,
the elementary factor Ep has a power series

Eppzq “ 1´
8
ÿ

j“p`1

ajz
j

with aj ě 0 for all j. Since Ep1q “ 0, we find
ř

aj “ 1. Thus, for |z| ď 1,

|Eppzq ´ 1| ď |z|p`1
8
ÿ

j“p`1

aj “ |z|
p`1.

�

Proposition 17.11. Suppose panq is a sequence from Czt0u and ppnq is a sequence from
N. If

(i) an ‰ 0 for each n;
(ii) lim |an| “ 8; and

(iii)
8
ÿ

n“1

ˆ

|r|

|an|

˙pn`1

(8)

converges for all r P C,

then

(a)

fpzq “
ź

Epnp
z

an
q

converges in HpCq (uniformly on compact sets) and pointwise absolutely;
(b) the zeros of f are exactly the panq and each zero a occurs with multiplicity equal to

the number of times a “ an;
(c) if pn “ n´ 1, then the series of equation (8) does converge for all r P R.

In particular, if lim |an| “ 8, then there is an entire function with zeros exactly an
(counted with multiplicity). :

Proof. Fix r ą 0 and choose an N so that |an| ě r for n ě N . If |z| ď r and n ě N ,
then | z

an
| ď 1 and hence, by Lemma 17.10,

|Epnpzq ´ 1| ď |
z

an
|
pn`1

ď |
r

an
|
pn`1.
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Hence
ř

|Epnpzq´1| converges uniformly on Bp0; rq and therefore uniformly on compacts
subsets of C. Hence, by Proposition 17.9 the infinite product

ś

Epnp
z
an
q converges in

HpCq and its zeros are precisely the zeros of the factors (counted with multiplicity) and
hence the an (counted with multiplicity). �

Theorem 17.12 (Weierstrass factorization). If f : CÑ C is entire with zeros panq and
if ppnq is a sequence from N such that

8
ÿ

n“1

|
r

an
|
pn`1

converges for all r P C, then there exists an m P N and an entire function g such that

fpzq “ zm exppgpzqq
ź

Epnp
z

an
q,

with the product converging in HpCq and pointwise absolutely. Moreover such a sequence
ppnq does exist.

Proof. By Proposition 17.11, there is an m P N such that f and

hpzq “ zm
ź

Epnp
z

an
q

have precisely the same zero set counting according to multiplicity. Hence the ratio
f
h

defines an entire function with no zeros. Since C is simply connected, by Corollary

7.10(iv) there is an entire function g such that f
h
“ exppgq. �

Proposition 17.13. Suppose Ω Ă C is open. If panq is a sequence from G with no limit
points in G, then there is an analytic function f : G Ñ C whose zeros are precisely the
an counted with multiplicity. :

Corollary 17.14. If Ω Ă C is open and f : Ω Ñ C is meromorphic, then there exists
analytic functions g, h : Ω Ñ C such that f “ g

h
. :

Proof. Let ppnq denote the poles of f counted according to their orders. Since the poles
of a meromorphic function do not have a limit point in Ω, by Proposition 17.13 there
exists an analytic function h : Ω Ñ C with zeros precisely ppnq. It follows that g “ fh
is analytic. �

17.3. Factorization of sine.

Proposition 17.15. Suppose Ω Ă C is open and pfnq is a sequence from HpΩq. If
ś

fn
converges in HpΩq to f and if z P Ω and fpzq ‰ 0, then

f 1

f
pzq “

8
ÿ

n“1

f 1n
f 1n
pzq

pointwise. :



D
RA
FT

48 MAA6406-07 COURSE NOTES 2016-17

Actually the convergence is uniform over compact sets where f doesn’t vanish (that
is, if K is compact and f doesn’t vanish on K the the series converges uniformly on K),
but this stronger conclusion is not needed for what follows.

Proposition 17.16. For z P CzZ,

π cotpπzq “
1

z
`

8
ÿ

n“1

2z

z2 ´ n2
.

:

Sketch of proof. For positive integers n, let γn denote the rectangular path, oriented
counterclockwise, connecting the points ˘pn` 1

2
q ˘ in. Fix a y P CzZ and consider the

meromorphic function

F pzq “
cotpπzq

z2 ´ y2
.

It has poles at integers k and also at ˘y. The residue of cotpπzq at k P Z is 1
π

and hence

the residue of F at k is 1
πpk2´y2q

. The residues of F at ˘y are ˘ cotp˘πyq
2y

. Hence, by the

residue theorem,

ż

γn

Fn “2πi

«

cotpπyq

2y
´

cotp´πyq

2y
´

1

πy2
` 2

n
ÿ

k“1

1

πpk2 ´ y2q

ff

“
i

y

«

π cotpπyq ´

˜

1

y
` 2

n
ÿ

k“1

1

y2 ´ k2

¸ff

.

On the other hand,

lim
nÑ8

ż

γn

F “ 0

since cot πz is bounded uniformly on Yntγnu and 1
z2´y2

behaves like 1
z2

for |z| large.

Thus,

π cotpπzq “
1

z
` 2

8
ÿ

k“1

1

z2 ´ k2
.

�

Proposition 17.17. sinpπzq “ πz
ś8

j“1p1´
z2

k2
q. :

Proof. The zero set of fpzq “ sinpπzq “ 1
2i
pexppiπzq ´ expp´iπzqq is precisely the set Z

(each with multiplicity 1). Since
8
ÿ

n“1

ˇ

ˇ

ˇ

r

n

ˇ

ˇ

ˇ

2

converges for each r, we may choose pn “ 1 in Theorem 17.12 (Weierstrass factorization)
and conclude there is an entire function g such that, using the absolute convergence to
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rearrange the product,

fpzq “z exppgq
ź

n‰0

E1p
z

n
q

“z exppgq
ź

n‰0

p1´
z

n
q.

For z not an integer (and thus not a zero of f), Proposition 17.15 gives

π cotpπzq “
f 1

f
pzq “

1

z
` g1pzq `

8
ÿ

n“1

2z

z2 ´ n2
.

Comparing with Proposition 17.16 shows g1 “ 0 and hence g “ c P C. Rearranging

sinpπzq

πz
“
ec

π

8
ź

n“1

p1´
z2

n2
q.

Letting z tend to 0 gives

1 “
ec

π
.

�

18. Runge’s Theorem

The proof of Runge’s theorem presented follows the rather elementary argument of
Sarason.

Proposition 18.1. If K Ă Ω Ă C where K is compact and Ω is open, then there exists
an N and a path Γ “

řN
j“1 Γj where each Γj is a closed curve made of line segments

each parallel to either the real or imaginary axis such that

(i) nΓpzq “ 1 for z P K;
(ii) nΓpzq “ 0 for z R Ω;

(iii) if f : Ω Ñ C is analytic and w P K, then Cauchy’s integral formula holds; i.e.,

fpwq “
1

2πi

ż

Γ

fpzq

z ´ w
dz

:

Sketch of proof. Choose δ ą 0 strictly less than the distance from K to BΩ. For k, ` P Z,
let Rk,` denote the rectangle in C “ R2,

Rk,` “ rδk, δpk ` 1qs ˆ rδ`, δp`` 1qs.

Reusing notation slightly, let R “ tR1, . . . , Rgu enumerate those rectangles Rj,k

that intersect K. By the choice of δ, we have Rj Ă Ω for each j. Let σj denote the
boundary of Rj as a counterclockwise oriented closed path and let σ “

ř

σj. Thus σ is
a (sum of) closed path(s) with the property that for each z P Kztσu,

nσpzq “ 1
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and for z R Ω,
nσpzq “ 0.

Let S denote the sides (considered for the moment without orientation) of rectangles
from R that lie on only one rectangle from R viewed as a path with the orientation
inherited from the rectangle in R it lies in. The key property of S is: for each vertex
v “ pkδ, `δq the number of sides from S terminating at v equals the number of sides from
S terminating at p. This number is either 0, 1 or 2. Further, any side of a rectangle
in R that is not in S is a side of exactly one other rectangle from R, but with the
opposite orientation. Hence, letting Γ denote the oriented path built from S (we don’t
yet know Γ is closed), if z P Kztσu or if z R Ω, then

1

2πi

ż

Γ

1

w ´ z
dw “

1

2πi

ż

σ

1

z ´ w
dw “ nσpzq.

By continuity,

1

2πi

ż

Γ

1

w ´ z
dw “

#

1 if z P K

0 if z R Ω.

Thus it remains only to show that Γ is a closed path.

Let pS1, . . . , Spq be a chain from S ; i.e., the terminal point of Sj is the initial point
of Sj`1. By the critical property if this chain is maximal, then

řp
j“1 Sj is a closed path.

Accordingly, suppose pS1, . . . , Spq is maximal. The collection S ztS1, . . . , Spu also has
the key property. Thus an induction argument shows that the sides from S can be
arranged as Γ “

ř

Γj, where the Γj are closed paths. �

Lemma 18.2. Let L Ă C be a (closed) line segment of length ` (thought of as a path)
with midpoint p. If f is continuous on L, then F defined on CzL by

F pwq “
1

2πi

ż

L

fpzq

z ´ w
dz

is analytic on A “ t|w ´ p| ą `u and hence has a convergent Laurent series expansion,

F pzq “
8
ÿ

n“1

anpz ´ pq
´n,

valid for |z ´ p| ą `
2

with uniform convergence on compact sets. :

Proof. Analyticity of F follows from Proposition 5.2. It is possible to prove this result
by appeal to Proposition 9.4, but a simple direct proof (and essentially half of the proof
of Proposition9.4) results from considering the function G : t|ζ| ă 2

`
uzt0u defined by

Gpζq “ F p
1

ζ
` pq.

Observe that G has a removable singularity at 0 because F vanishes at 8, and after
removing this singularity, Gp0q “ 0. Hence, G has a power series expansion,

Gpζq “
8
ÿ

j“1

ajζ
j,



D
RA
FT

MAA6406-07 COURSE NOTES 2016-17 51

valid for |z| ă 2
`
. Using F pwq “ Gp 1

w´p
q completes the proof. �

Theorem 18.3 (Runge). Suppose K Ă Ω Ă C where K is compact and Ω is open. If
f : Ω Ñ C is analytic, then for each ε ą 0 there is a rational function r with poles off
K such that

ε ą }f ´ r}K :“ maxt|fpzq ´ rpzq| : z P Ku;

i.e., f is the uniformly approximable on K by rational functions with poles off K.

Proof. Let Γ be a closed path as in Proposition 18.1. Let δ denote the distance from
K to Γ. Write Γ “

řM
j“1 γj where the γj are sub-line segments (intersecting only at

endpoints) of the line segments comprising Γ and such that each γj has length less than
δ. It follows that, for w P K,

fpwq “
M
ÿ

j“1

1

2πi

ż

γj

fpzq

z ´ w
dz.

For 1 ď j ďM and w R Γ, let

fjpwq “
1

2πi

ż

γj

fpzq

z ´ w
dz

and note that each fj is analytic on CztΓu and
ř

fj “ f on K. Thus, it suffices to
show each fj is uniformly approximable on K by rational functions with poles off K.
Let pj denote the midpoint of γj. By Lemma 18.2, each fj is uniformly approximable
by rational functions (with poles at pj) on compact subsets of |z´ pj| ą

δ
2

and hence on
K. �

Remark 18.4. It is possible to improve the statement of Runge’s theorem given here.
For instance, the complement U of K will have at most countably many connected
components. Choose any subset E Ă U such that each bounded component of U contains
at least one point from E. If f is analytic in a neighborhood of K, then f is uniformly
approximable by rational functions with poles in A. As a special case, if U is connected
(as is the case if K is simply connected), then f is uniformly approximable on K by
polynomials. The remarkable theorem of Mergalyan’s says: if K Ă C is compact and
U “ CzK has finitely many components, then functions f that are continuous on K and
analytic in the interior of K can be uniformly approximated on K by rational functions
with poles off K. ˛

Given a compact set K Ă C, a set Ω Ą K and a continuous function f : Ω Ñ C, let
}f}K denote the sup norm of f (on K). The polynomially convex hull of K is the set,

K̂ “ tw P C : |ppwq| ď }p}K , for all polynomials pu.

The set K is polynomially convex if K “ K̂. By Remark 18.4 a compact set with
connected complement (e.g. D) is polynomially convex. The notion of the polynomially
convex hull is more interesting in several complex variables.
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Proposition 18.5. Suppose K is compact and let K denote the complement of the
unbounded component of CzK. If K “ K˝ and K “ K ˝, then the polynomially convex
hull of K is Ũ “ CzU , where U is the unbounded component of CzK. :

Proof. By the maximum modulus theorem (Proposition 12.2), if p is a polynomial and
C is compact with C “ C˝, then }p}C “ }p}BC . Observe that K Ą K and BK Ă BK.
Hence, for polynomials p,

}p}K ď }p}K “ }p}BK ď }p}BK “ }p}K .

It follows that K Ă K̂. On the other hand, since the complement of K is connected
(is its unbounded component) K is polynomially convex; i.e., K “ K̂ . Hence K̂ Ă

K . �

19. The Schwarz reflection principle

Given an open set Ω Ă C, let

Ω˚ “ tz : z P Ωu

and, assuming 0 R Ω, let

Ω´˚ “ t
1

z
: z P Ωu.

Thus Ω˚ and Ω´˚ are the reflections of Ω about the real axis and unit circle respectively.

The proof of the following lemma is left as an (easy) exercise.

Lemma 19.1. Let Ω Ă C be an open set. If f : Ω Ñ C is analytic, then

(i) f̌pzq : Ω˚ Ñ C defined by f˚pzq “ fpzq; and

(ii) assuming 0 R Ω, the function f̂ : Ω´˚ Ñ C defined by f̂pzq “ fp1
z
q

are analytic. :

For notational convenience, let Ω` “ tz P Ω : Im z ě 0u and Ωď1 “ tz P Ω : |z| ď 1u.

Theorem 19.2. Let Ω Ă C be an open set.

(i) If Ω “ Ω˚ and f : Ω` Ñ C is continuous, the restriction of f to tz P Ω : Re z ą 0u
is analytic and if fpzq is real for z P Ω with Im z “ 0, then g : Ω Ñ C defined by

gpzq “

#

fpzq, z P Ω, Re z ă 0

fpzq z P Ω, Re z ě 0

is analytic; and
(ii) assuming 0 R Ω, if Ω “ Ω´˚ and f : tz P Ωď1 Ñ C is continuous, never 0, the

restriction of f to tz P Ω : |z| ă 1u is analytic and |fpzq| “ 1 for z P Ω with
|z| “ 1, then g : Ω Ñ C defined by

gpzq “

#

1

fp 1
z
q
, z P Ω, |z| ą 1

fpzq z P Ω, |z| ď 1
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is analytic.

Proof sketch. We prove the first statement only as the second is similar. By the pasting
Lemma, g is continuous. To prove g is analytic it therefore suffices to verify the hy-
potheses of (Morera’s) Theorem 3.1. Accordingly suppose T is an oriented triangle lying
(including its interior) in Ω. The restriction of g to Ω intersected with either the open
upper or open lower half plane is analytic by assumption and Lemma 19.1 respectively.
Hence if T lies entirely in either the upper or lower half plane,

ż

T

f “ 0,

by Cauchy’s Theorem. Since T can be written as an oriented sum of finitely many
oriented triangles such that each lies in either Ω intersect the closed upper half plane
or in Ω intersect the lower half plane. Without loss of generality suppose the triangle
T “ Ja, b, cK (including its interior) lies in Γ “ tz P Ω : Re z ě 0u and at least one vertex
lies on the real axis. Without loss of generality, assume Im c ą 0. Letting ∆ denote
T along with its interior, note that f is continuous, and hence uniformly continuous,
on ∆. Choose sequence panq and pbnq converging to a and b respectively and so that
pTnq “ Jan, bn, cK Ă ∆X tIm z ą 0u. It follows that

0 “

ż

Tn

f Ñ

ż

T

f.

�

Problem 19.1. State and prove a version of the Schwarz reflection principle where fpzq
is real-valued for z P Ω with |z| “ 1.

Problem 19.2. Prove, if f : C Ñ C is entire and |fpzq| “ 1 for |z| “ 1, then there is
an n P N and unimodular constant c so that fpzq “ czn.

20. Introduction to harmonic functions

Suppose Ω Ă C is open. A function u : Ω Ñ R is harmonic if it has continuous
second partial derivatives and

∆u “
B2u

Bx2
`
B2u

By2
“ 0. (9)

Proposition 20.1. If f : Ω Ñ C is analytic, then u “ Re f and v “ =f are twice differ-
entiable and satisfy the Cauchy Riemann equations. In particular both are harmonic. :

As an example, if f : Ω Ñ C is analytic an never 0, the logp|f |q is harmonic.
To prove this statement one can write f “ u ` iv and use logp|f |q “ 1

2
logpu2 ` v2q

to compute the second partials directly. A more abstract (and easier) argument is to
observe it suffices to assume the domain of f is an open ball (and in particular simply
connected) and appeal to Corollary 7.10(iv) to write f “ eg for some analytic function
g. Thus |f | “ expp<gq and logp|f |q “ <g is harmonic.
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A pair pu, vq satisfying the Cauchy-Riemann equations are harmonic conjugates.
Similarly, if u is harmonic and pu, vq are harmonic conjugates, then v is a harmonic
conjugate of u. It is easy to verify, if u is harmonic on a connected set, then, up to an
additive constant, u has at most one harmonic conjugate.

Proposition 20.2. Suppose G is either D or C. If u : GÑ R is harmonic, then there is
an harmonic function v : GÑ R such that f “ u` iv is analytic; i.e., u has a harmonic
conjugate. :

Proof. Because of the geometry of G, we may define, v : GÑ R by

vpx, yq “

ż y

0

Bu

Bx
px, tq dt´

ż x

0

Bu

By
ps, 0q ds.

First suppose x, y ě 0 and px, yq P G. There is a δ ą 0 such that R “ r´δ, x ` δs ˆ
r´δ, y` δs Ă G. Since the second partials of u are continuous on R, Theorem 1.3 allows
for differentiating under the integral signs to obtain,

Bv

Bx
px, yq “

ż y

0

B2u

Bx2
px, tq dt´

Bu

By
px, 0q

“ ´

ż y

0

B2u

By2
px, tq dt´

Bu

By
px, 0q

“ ´
Bu

By
px, yq,

where both fundamental theorems of calculus were used. Of course,

Bv

By
px, yq “

Bu

Bx
px, yq.

The cases where not both x, y are non-negative are similar. Hence pu, vq satisfy the
Cauchy-Riemann equations. It follows that f “ u` iv is analytic and Re f “ u. �

Lemma 20.3. Suppose Ω,Γ Ă C are open sets. If h : Γ Ñ Ω is analytic and u : Ω Ñ R
is harmonic, then u ˝ h : Γ Ñ R is harmonic. :

Proof. The lemma can be verified by direct computation. Alternately, fix a point y P Γ
and an r ą 0 such that Bphpyq; rq Ă Ω. There is a δ ą 0 such that hpBpy; δqq Ă
Bphpyq; rq. The function u has a harmonic conjugate v on Bphpyq; rq and thus f “
u ` iv : Bpy; rq Ñ C is analytic. It follows that f ˝ h|Bpy;δq : Bpy, δq Ñ C is analytic.
Hence, u˝h|Bpy;rq “ Re f ˝h|Bpy;rq is a harmonic by Proposition 20.1. Since y is arbitrary,
u ˝ h is harmonic. �

Theorem 20.4. If G Ă C is a simply connected domain and u : G Ñ R is harmonic,
then there is an analytic function f : GÑ C such that u “ Re f .

Proof. The case G “ C is covered by Proposition 20.2. Accordingly, suppose G ‰ C. In
this case, by Theorem 16.1 (the Riemann mapping theorem) there is a one-one analytic
mapping (with analytic inverse) h : D Ñ G. Let U “ u ˝ h. By Lemma 20.3, U is
harmonic in D. Thus, by what has already been proved, there is a harmonic function
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V : D Ñ R such that F “ U ` iV is analytic. It follows that f “ F ˝ h´1 : G Ñ C is
analytic and therefore Re f “ u is harmonic. �

20.1. Harmonic functions on an annulus. Fix 0 ď r ă 1 and let Ar “ tr ă |z| ă 1u.
Let Hr “ tlogprq ă Re z ă 0u and note that exp : Hr Ñ Ar is analytic and onto.

Example 20.5. The function u : Ar Ñ C defined by upzq “ logp|z|q is harmonic, but
not the real part of an analytic function. 4

Lemma 20.6. If f : Hr Ñ C is analytic and 2πi periodic, then there is an analytic
function f̃ : Ar Ñ C such that f̃ “ f ˝ exp. :

Lemma 20.7. Suppose f : DÑ C is analytic except for an isolated singularity at 0. If
Re f is bounded above (or below), then 0 is a removable singularity. :

Proof. Let D “ t0 ă |z| ă 1u. Without loss of generality, we may assume Re fpzq ă 0
for all z P D. Let H “ tRe z ă 0u. There is a mobius map ϕ mapping H bijectively to
D. In particular g “ ϕ ˝ f : D Ñ D is analytic (and bounded). Hence g extends to an
analytic map ĝ : D Ñ D. On the other hand, ĝ is either constant or ĝpDq is open. In
either case, ĝ maps into D. It follows that ϕ´1 ˝ ĝ : D Ñ C is analytic and agrees with
f on D. �

Proposition 20.8. If h : Ar Ñ R is harmonic, then there is an analytic function f
such that

hpzq “ Re fpzq ` c logp|z|q.

Moreover, in the case r “ 0, if h is bounded, then h extends to a harmonic function
on all of D. :

Proof. Since h is harmonic and exp is analytic, by Lemma 20.3, the function u “ h˝exp :
Hr Ñ R given by

upzq “ hpezq

is harmonic and 2πi periodic. Since Hr is simply connected, by Theorem 20.4, u has
a harmonic conjugate v. Further, since u is 2πi periodic, so is its gradient. By the
Cauchy-Riemann equations, the gradient of v is also 2πi periodic; i.e.,

∇vpz ` 2πiq ´∇vpzq “ 0.

It follows that there is a constant c P R such that

vpz ` 2πiq ´ vpzq “ c.

Define g : Hr Ñ C by

gpzq “ upzq ` ivpzq ´
c

2π
z.

By construction g is analytic and 2π periodic. By Lemma 20.6, there is an analytic
function f : Ar Ñ C such that g “ f ˝ exp. We conclude that upzq ´ c

2π
z “ Re fpezq;

i.e.,

hpezq ´
c

2π
Re z “ Re fpezq.
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Letting y “ ez gives

hpyq ´
c

2π
logp|y|q “ Re fpyq. (10)

The context of the moreover part of the result is the case r “ 0 where Ar is the
punctured disc t0 ă |z| ă 1u. Suppose c ě 0 in equation (10). In this case Re f is
bounded above and therefore 0 is a removable singularity for f . But then both h and
Re f are bounded in D and therefore c “ 0. The case c ď 0 is similar. It follows that
hpyq “ Re fpyq extends harmonically to all of D. �

21. The maximum principle

Proposition 21.1. Suppose Ω Ă C is open, r ą 0 and Bpy; rq Ă Ω. If u : Ω Ñ R is
harmonic, then

upyq “
1

2π

ż 2π

0

upy ` reitq dt.

:

Proof. There is an 0 ă r ă R such that Bpy;Rq Ă Ω. By Proposition 20.2, there is an
analytic function f : Bpy;Rq Ñ C such that Re f “ u (on Bpy;Rq). Thus, by Cauchy’s
integral formula,

fpyq “
1

2πi

ż

γ

fpwq

w ´ y
dw,

where γpsq “ a` reis, for 0 ď s ď 2π. Hence,

fpyq “
1

2π

ż 2π

0

fpa` reisq ds.

Taking real parts completes the proof. �

Suppose Ω Ă C is an open set and u : Ω Ñ R is continuous. For y P Ω and r ą 0
such that Bpy; rq Ă Ω, let

Aupy; rq “ Apy; rq “
1

2π

ż 2π

0

upy ` reisq ds.

The function u has the mean value property if upyq “ Apy; rq for all such y and r. Likewise
u is subharmonic (resp. superharmonic) if upyq ď Apy; rq (resp. upyq ě Apy; rq) for all
such y and r.

As a provisional definition, a continuous function u : Ω Ñ R is locally subharmonic
if for each y P G there is an ry ą 0 such that Bpy; ryq Ă G and upyq ď Aupy; rq for each
0 ă r ă ry.

Theorem 21.2 (Maximum principle). If G is a domain and u : GÑ R is (continuous
and) locally subharmonic, then either u is constant, or u does not attain its supremum.

If G is a bounded domain, u : GÑ R is continuous and u|G is locally subharmonic,
then u attains its maximum on BG. In particular, if u|BG “ 0, then u ď 0 on G.
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Proof. Suppose u does attain its supremum in G; i.e., there is a point y P G such that
upyq ě upzq for all z P G. It suffices to prove upzq “ upyq for all z P G. Let

Ω “ tz P G : upzq “ upyqu.

Since u is continuous, Ω is closed in G. Let z P Ω be given. Fix ry ą 0 as in the
hypothesis of the theorem. For 0 ă r ă ry, by subharmonicity of u,

1

2π

ż 2π

0

rupzq ´ upz ` reisqs ds ď 0.

Since the integrand is continuous and non-negative (as z P Ω), it follows that the inte-
grand is identically zero. Thus Bpz; ryq Ă Ω and therefore, by connectedness, Ω “ G. �

Of course, this maximum principle for subharmonic functions is also the minimum
principle for superharmonic functions. In particular, a function satisfying the mean
value property satisfies both the maximum and minimum principles.

Given Ω Ă C, recall B8Ω “ BΩ in the case Ω is bounded and B8Ω “ BΩ Y t8u in
the case Ω is not bounded. Suppose u : Ω Ñ R. For a point 8 ‰ w P B8Ω,

lim sup
zÑw

upzq “ lim
δÑ0`

suptupzq : 0 ă |z ´ w| ă δ, z P Ωu

and, assuming Ω is unbounded,

lim sup
zÑ8

upzq “ lim
CÑ8

suptupzq : |z| ą C, z P Ωu.

As expected, lim suppu` vq ď lim supu` lim sup v and lim supp´uq “ ´ lim inf u.

Theorem 21.3. Suppose G Ă C is a domain and u, v : GÑ R. If u is subharmonic, v
is superharmonic and for each w P B8G,

lim sup
zÑw

upzq ď lim inf
zÑw

vpzq,

then upzq ă vpzq for all z P G or u “ v.

Proof. By properties of the lim sup and the hypothesis, for w P B8G,

lim sup
zÑw

pupzq ´ vpzqq ď 0.

Further, u ´ v is subharmonic. Thus, it suffices to prove if u : G Ñ R is subharmonic
and

lim sup
zÑw

upzq ď 0

for all w P B8G, then upzq ď 0 for all z P G and if there is a point y P G such that
upyq “ 0, then u is identically zero. Arguing by contradiction, suppose a P G and
upaq ą 0. Let

A “ tz P G : upzq ě
upaq

2
u.
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If G is not bounded, then, since lim supzÑ8 upzq ď 0, there is a C ą 0 such that if
|z| ą C and z P Ω, then

upzq ă
upaq

2
.

Hence A Ă Bp0, Cq. Thus, whether A is bounded or not, there is a C ą 0 such that

A Ă Bp0, Cq. The set B “ BGX Bp0, Cq is compact. For each w P B, there is a δw ą 0

such that upzq ă upyq
2

for z P G X Bpw; δwq. The collection tBpw, δwq : w P Bu is an
open cover of B. Hence, by the Lebesgue number lemma, there is a δ ą 0 such that for
each b P B there is a w such that Bpb, δq Ă Bpw, δwq. In particular, if dpz,Bq ă δ, then

upzq ă upaq
2

and hence z R A. Thus,

A Ă tz P G : dpz,Bq ě δu X tz : |z| ď Cu :“ K.

It follows that

A “ tz P K : upzq ě
upaq

2
u

and since u is continuous and K is compact, A is compact. It follows that u attains
its maximum on A; i.e., there is a point p P A such that uppq ě upzq for all z P A.
Thus, uppq ě upzq for all z P G and by Theorem 21.2 u is constantly equal to uppq ą 0
a contradiction (since then the lim sup would be constantly equal to uppq ą 0). Hence
upzq ď 0 for all z P G. Finally, if upzq “ 0 for some z P G, then Theorem 21.2 implies u
is identically 0. �

Example 21.4. Define f : DÑ R by

fpzq “ p
1` z

1´ z
q
2

and let u “ Im f . Since u is the imaginary part of an analytic function, u is harmonic.
Moreover, u extends to be continuous on Czt1u and hence, for |z| “ 1 and z ‰ 1,

lim
tÑ1,0ătă1

uptzq “ 0.

On the other hand, the limit above is also 0 for for z “ 1 and 0 ă t ă 1, since fptzq
is real. However, lim supzÑ1 upzq “ 8 as can be seen by approaching 1 along the circle
1
2
` i1

2
eis. 4

The following corollary says that a harmonic function is determined by its boundary
values.

Corollary 21.5. Suppose G is a bounded domain and u : G Ñ R is continuous. If u
satisfies the mean value property on G. If u “ 0 on BG, then u is identically zero. :

Proof. Choose v “ 0 in Theorem 21.3 to conclude ˘u ď 0 on G. �

Proposition 21.6. Let Ω Ă C be an open set. If u1, u2 : Ω Ñ R are subharmonic, then
so is v “ maxtu1, u2u. :
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Proof. Fix y P Ω and r ą 0 such that Bpy; rq Ă Ω and note that for i “ 1, 2,

uipyq ď
1

2π

ż 2π

0

u1py ` re
it
q dt ď

1

2π

ż 2π

0

vpy ` reitq dt.

Hence,

vpaq ď
1

2π

ż 2π

0

vpy ` reitq dt.

�

22. The Poisson Kernel

The function P : r0, 1q ˆ RÑ R defined by

P pr, tq “ Prptq “
8
ÿ

n“´8

r|n|eint

is the Poisson kernel.

Lemma 22.1. For pr, tq P r0, 1q ˆ R,

Prptq “ Rep
1` reit

1´ reit
q “

1´ r2

1´ 2r cosptq ` r2
.

:

Lemma 22.2 (Approximate identity). The Poisson kernel has the following properties.

(i) Prptq ě 0 for all pr, tq P r0, 1q ˆ R;
(ii) For 0 ď r ă 1,

ż 2π

0

Prptq dt “ 1;

(iii) if 0 ă δ ă |t| ď π, then Prptq ď Prpδq;
(iv) for each δ, ε ą 0 there exists an η ą 0 such that if 0 ă 1 ´ r ă η and π ě |t| ě δ,

then
ε ą Prptq.

:

Proof. Item (i) follows from Lemma 22.1.

Item (ii) is immediate from the definition of Prptq.

Item (iii) follows from writing,

Prptq “
1´ r2

p1´ rq2 ` 2rp1´ cosptqq
.

Finally, to prove item (iv), estimate

0 ď Prptq “
1´ r2

p1´ rq2 ` 2rp1´ cosptqq
ď

1´ r2

2r

1

1´ cospδq
.
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�

Proposition 22.3. If u : r´π, πs Ñ R is continuous and periodic (upπq “ up´πq), then
for each ε ą 0 there exists δ, η ą 0 such that if |α ´ β| ă δ and η ą 1´ r ą 0, then

ˇ

ˇ

ˇ

ˇ

upβq ´
1

2π

ż 2π

0

Prpα ´ tquptq dt

ˇ

ˇ

ˇ

ˇ

ă ε.

:

Proof. Extend u to all of R by periodicity. Let ε ą 0 be given. By uniform continuity
of u, there is an δ ą 0 such that if |p ´ q| ă δ, then |uppq ´ upqq| ă ε. Using Lemma
22.2(iv), choose η ą 0 such that ε ą Prpsq for π ě |s| ě δ

2
and η ą 1´ r ą 0. Thus, for

η ą 1´ r ą 0 and |α ´ β| ă δ
2
, and using |pα ´ sq ´ β| ă δ for |s| ă δ

2
,

ˇ

ˇ

ż 2π

0

rPrpα ´ tquptq ´ upβqs dt
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż 2π

0

rPrpsqupα ´ sq ´ upβqs ds

ˇ

ˇ

ˇ

ˇ

ď

ż 2π

0

Prpsq |upα ´ sq ´ upβq| ds

“

ż

πě|s|ě δ
2

`

ż

|s|ď δ
2

ďε

ż 2π

0

r|upα ´ sqq| ` |upβq|s ds`

ż

|s|ď δ
2

Prpsq|upα ´ sq ´ upβq| ds

ď2πpM ` 1qε,

where M is an upper bound for |u|. To complete the proof, observe

upβq ´
1

2π

ż 2π

0

Prpα ´ tquptq dt “
1

2π

ż 2π

0

rPrpt´ αquptq ´ upβqs dt.

�

Theorem 22.4 (Dirichlet problem for D). If v : BDÑ R is continuous, then there exists
a continuous function u : DÑ R such that

(i) u|D is harmonic; and
(ii) u|BD “ v.

Moreover, f : DÑ C defined by

fpreiαq “
1

2π

ż 2π

0

1` reipα´tq

1` reipα`tq
vpeitq dt

is analytic in D and u|D “ Re f .

Proof. Define ṽ : r´π, πs Ñ R by ṽptq “ vpeitq. Define u : DÑ R by,

upreiαq “

#

1
2π

ş2π

0
Prpα ´ tqṽptq dt z “ reiα, 0 ď r ă 1

vpeiαq z “ eiα
.
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Proposition 22.3 says u is continuous at each point in BD.

To complete the proof, it suffices to establish the moreover part of the theorem.
Toward this end, define g : Dˆ RÑ C by

gpz, tq “
1` ze´it

1´ ze´it
ṽptq.

An application of Lemma 5.1 shows

fpzq “

ż 2π

0

gpz, tq dt

is analytic. Hence f is analytic and consequently u|D “ Re f is harmonic (and in
particular continuous). �

Corollary 22.5. If U : DÑ R is continuous and harmonic on D, then, for z “ reiα P D,

Upzq “
1

2π

ż 2π

0

Prpα ´ tqUpe
it
q dt

:

Proof. Let v “ U |BD and let u denote the function produced by Theorem 22.4. Thus u
and U are both continuous on BD, are continuous on D and are harmonic in D. Therefore,
by Corollary 21.5, u “ U . �

Theorem 22.6. If Ω Ă C is open and u : Ω Ñ C is continuous and has the mean value
property, then u is harmonic.

Proof. Fix y P Ω and r ą 0 such that Bpy; rq Ă Ω. From Theorem 22.4, there is a

continuous function w on Bpy; rq such that w agrees with u on t|z ´ y| “ ru and w
is harmonic in Bpy; rq. In particular, w has the mean value property and therefore

u ´ w has the mean value property on Bpy; rq, is continuous on Bpy; rq and is zero on
the boundary of Bpy; rq. Thus, by Corollary 21.5, u ´ w “ 0 in Bpy; rq. Thus u is
harmonic. �

22.1. Subharmonic functions revisited.

Proposition 22.7. Suppose G is region and u : G Ñ R is continuous. If, u is locally
subharmonic, then u is subharmonic. :

Proof. Fix y P G and R ą 0 such that Bpy;Rq Ă G. We are to show upyq ď Aupy;Rq.
Let B “ Bpy;Rq. There exists a continuous function ϕ : B Ñ R such that ϕ|BB “ u|BB
and ϕ|B is harmonic. It follows that ψ “ pu ´ ϕqB satisfies the hypothesis of Theorem
21.2. Thus, u ď ϕ on B since ψ|BB ď 0. Consequently,

upyq ď ϕpyq “ Aϕpy;Rq “ Aupy;Rq.

�

Proposition 22.8. Suppose G Ă C is a bounded domain, u : G Ñ R is subharmonic
and B “ Bpy; rq Ă G. Let û denote the solution to the Dirichlet problem
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(a) û : B Ñ R is continuous;
(b) û|BB “ u|BB; and
(c) û|Bpy;rq is harmonic.

The function v : GÑ R defined by

vpzq “

#

upzq z P GzBpy; rq

ûpzq z P B

is subharmonic and upyq ď vpyq.

In particular, if u : GÑ R is continuous, u|G is subharmonic and Bpy; rq Ă G, then
there is a continuous function v : GÑ R such that v|Bpy;rq is harmonic, upyq ď vpyq and
v|BG “ u|BG. :

Proof. The strategy is to show v is locally subharmonic and apply Proposition 22.7. If
w P Bpy; rq, then vpsq “ Avpw; sq for all 0 ă s ă r ´ |y ´ w| since v is harmonic on

Bpw; r ´ |y ´ w|q. Likewise, if w P GzBpy; rq, then

Avpw; sq “ Aupw; sq ě upwq “ vpwq,

for 0 ă s ă rw :“ mint|y ´ w| ´ r, distpw, BGqu, since u “ v on Bpw; rwq.

Now suppose w P BBpy; rq and observe vpzq ě upzq in Bpy; rq by Theorem 21.2.
Thus u ď v. For s sufficiently small,

Avpw; sq ě Aupw; sq ě upwq “ vpwq.

�

23. Harnack’s inequality

Remark 23.1. Let Har`0 pDq denote the set of harmonic functions u on D with positive
real part (Reupzq ě 0 for all z P D) and normalized by up0q “ 1 viewed as a subset of
HarpDq, the set of harmonic functions on D. It is immediate that Har`0 pDq is a convex
set. It is a bit of an exercise to show, for each α P R, the function

uαpz “ reiαq “ Re
1` eipα´tq

1´ eipα´tq
“ Re

1` ze´it

1´ ze´it

is an extreme point of the Har`0 pDq. Theorem 22.4 says, if u P Har`0 pDq extends to be
continuous on D, then u is not an extreme point. As a generalization of Theorem 22.4,
if u P Har`0 pDq, then there is a probability measure µ on BD such that, for z P D,

upreiαq “
1

2π

ż

Prpα ´ tq dµptq.

In particular, the functions uα are exactly the extreme points of Har`0 pDq (and they
correspond to µ equal to point mass at eiα). ˛
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Theorem 23.2 (Harnack’s inequality). Fix y P C and r ą 0. If u : Bpy; rq Ñ R is
continuous, harmonic on Bpy; rq and u ě 0 (pointwise), then for each 0 ď r ă R and
α P R,

R ´ r

R ` r
upaq ď upa` reiαq ď

R ` r

R ´ r
upaq.

Proof. Without loss of generality suppose a “ 0 and R “ 1. In this case, by Theorem
22.4,

upreiαq “
1

2π

ż 2π

0

Prpα ´ tqupe
it
q dt.

Using,

Prpα ´ tq “
1´ r2

1´ 2r cospα ´ tq ` r2
“

1´ r2

|eit ´ reiα|2

estimate
1´ r

1` r
ď Prpα ´ tq ď

1` r

1´ r
.

Substituting these inequalities into the integral representation for upreiαq and using the
mean value property of u completes the proof. �

Given an open set Ω Ă C, let HarpΩq denote the set of harmonic function on Ω
viewed a subspace of the metric space CpΩ,Cq of continuous functions on Ω (with the
topology of uniform convergence on compact sets).

Proposition 23.3. The (metric) subspace HarpΩq of CpΩ,Cq is complete. :

Proof. Since CpΩ,Cq is complete, it suffices to show HarpΩq is closed. To this end,
suppose punq is a sequence from HarpΩq that converges to some u P CpΩ,Cq. Fix an
open set U Ă Ω such that K “ U Ă Ω. In particular, punq converges to u uniformly on
K from which it immediately follows that u has the mean value property on U . Since u
is also continuous, by Theorem 22.6, u is harmonic on U . Hence u is harmonic. �

Theorem 23.4 (Harnack). Suppose G is a domain and punq is a sequence from HarpGq.
If punq is pointwise increasing, then either punq converges uniformly on compact sets to
8 or punq converges in HarpGq.

Proof. For each z P G, then sequence punpzqq converges to some upzq, either 8 or a real
number. Let

F “ tz P G : upzq P Ru, I “ tz P G : upzq “ 8u.

Fix y P G and an R ą 0 such that Bpy;Rq Ă G. For 0 ă r ă R and all n Theorem 23.2
gives

R ´ r

R ` r
unpyq ď unpy ` re

iα
q ď

R ` r

R ´ r
unpyq. (11)

It follows that if y P F , then Bpy;Rq Ă F ; and if y P I, then Bpy;Rq Ă I. Thus both F
and I are open. By connectedness of G, one of these sets is empty and the other is G.
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Now suppose G “ F . From

R ´ r

R ` r
unpyq ´ upyq ď unpy ` re

iα
q ´ upyq ď

R ` r

R ´ r
unpyq ´ upyq,

it follows that u is continuous at y. By the monotone convergence theorem and the
fact that each un has the mean value property, for each y P G and r ą 0 such that
Bpy; rq Ă G,

upyq “ lim
nÑ8

unpyq “ lim
nÑ8

1

2π

ż 2π

0

unpy ` re
it
q dt “

1

2π

ż 2π

0

upy ` reitq dt.

Thus u is continuous and has the mean value property. By Theorem 22.6, u is harmonic.

Finally, to prove that the convergence is uniform on compact sets, observe that
vn “ u´ un ě 0 and harmonic and converges to 0 pointwise. Thus using Theorem 23.2,
equation (11) applied to vn shows that for each point y P G there is an s ą 0 such

that vn converges to 0 uniformly on Bpy; sq. Thus vn converges to 0 uniformly on each
compact subset of G. �

24. The Dirichlet Problem

A bounded domain G Ă C is a Dirichlet domain if foreach continuous function
f : BG Ñ R there is a continuous function u : G Ñ R such that u|G is harmonic and
u|BG “ f . (It is possible to work with unbounded domains G.) Theorem 22.4 says that
D is a Dirichlet domain.

Proposition 24.1. The punctured disk D “ t0 ă |z| ă 1u is not a Dirichlet domain. :

Proof. Note that BD “ t0u Y t|z| “ 1u and D “ D. Suppose u : D Ñ R is a continuous
function such that u is harmonic on D and upzq “ 0 for |z| “ 1. In particular, u|D
is a bounded harmonic function on D. By Proposition 20.8,u|D extends to a harmonic
function on D and thus, by continuity, u|D is harmonic. Thus u is continuous on D,
u|BD “ 0 and u|D is harmonic. Thus, by Corollary 21.5, ũ is identically 0 and in particular,
up0q “ 0. It follows that there does not exist a solution to the Dirichlet problem on
D with continuous boundary data: find u : D Ñ R such that upzq “ 0 for|z| “ 1 and
up0q “ 1. �

24.1. The method of Perron. Let S “ S pGq Ă CpGq denote the set of continuous
functions u : GÑ R such that u|G is subharmonic. Fix, for the remainder of this section,
a continuous f : BGÑ R. The lower Perron family for f is the set

Sf pGq “ tu P S pGq : u|BG ď fu.

By the maximum principle, Theorem 21.2, for z P G,

pf pzq “ suptupzq : u P Sf pGqu ďM,

where M is the maximum of fpzq on BG. The functionpf : GÑ R is the Perron solution
for f or the Perron lower solution for f .
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Theorem 24.2. The function pf is harmonic.

Proof. Fix y P G and choose r ą 0 such that Bpy; rq Ă G. There is a sequence punq
fromSf pGq such that punpyqq converges to pf pyq.

By replacing un with maxtu1, . . . , unu (pointwise) we may assume, in view of Propo-
sition 21.6, punq isan increasing sequence. By Proposition 22.8 it may also be assumed
that each un is harmonic in Bpy; rq. Let u denote the pointwise limit of the sequence punq.
In particular, u ď pf in G and u|BG ď f . ByTheorem 23.2 (Harnack), pun|Bpy;rqq con-
verges uniformly on compacts sets to u|Bpy;rq and u|Bpy;rq is harmonic and upyq “ pf pyq.

Now fix p P Bpy; rq. And again choose a sequence prunqn from Sf pGq such that
prunppqq converges to pf ppq. By replacing run by maxtrun, unu we mayassume un ď run
(pointwise). As before, we can assume prunq is pointwise increasing and each run is
harmonic on Bpy; rq. Let ru denote the pointwise limit of prunq.As before ru ď pf in G and
ru|Bpy;rq is harmonic. Summarizing, converges uniformly on compact sets to a harmonic
function ru : Bpy, rq Ñ R. Thus,

(a) u ď ru on G;
(b) ru ď pf on G;
(c) rupyq “ upyq;
(d) ruppq “ pf ppq;
(e) u and ru are harmonic on Bpy; rq.

Since ru ´ u ě 0 is harmonic on Bpy; rq and is 0 at y, it follows that ru “ u on Bpy; rq
and therefore uppq “ ruppq “ pf ppq. Since p P Bpy; rq was arbitrary, pf “ u on Bpy, rq.
Thus pf is harmonic on Bpy; rq. Since y was arbitrary, pf is harmonic on all of G. �

24.2. Geometric sufficient conditions. A barrier at a point b P BG is a continuous
function ϕ : GÑ C such that ϕ|G is harmonic, ϕpbq “ 0 and ϕpzq ă 0 for z P Gztbu. If
G is a Dirichlet domain, thenG has a barrier at each point of BG (by Uryshon’s Lemma
for perfectly normal (e.g. metric) spaces).

Theorem 24.3. If G is a bounded domain with a barrier at b P BG, then

lim
zÑb

pf pzq “ fpbq.

Proof. Without loss of generality assume fpbq “ 0. Let M “ maxt|fpzq| : z P BGu.

Let ϕ be a barrier at b. Let ε ą 0 be given. There is an open set b P U Ă BG
such that |fpzq ´ fpbq| ă ε for z P U . On the set BGzU the function ϕ takes negative
values and achieves its maximum which, by scaling, we can assume is ´1. Consider the
harmonic function ψ : GÑ R definedby

ψpzq “ ε´Mϕpzq.

Note that ψpzq ą ε ą fpzq on the set U . On the otherhand, on BGzU where ´ϕpzq ě 1,
we also have ψpzq ě M ě fpzq. Thus, ψpzq ě fpzq for z P BG. Hence ψpzq ě upzq for
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all z P G and u P Sf pGq by the maximum principle. Thus ψpzq ě pf pzq for all z P G
and consequently,

lim sup
zÑb

pf pzq ď lim
zÑb

ψpzq “ ε.

To prove the reverse inequality, consider the harmonic function ψ : GÑ R by

ψpzq “Mϕpzq ´ ε.

Evidently ψpzq ă ´ε for z P U and hence ψpzq ă fpzq for z P U . On the other hand, if
z P BGzU , then Mϕpzq ď ´M and hence ψpzq ď fpzq. It follows that ψ P Sf pGq and
henceψpzq ď pf pzq for z P G. Therefore,

´ε “ lim
zÑb

ψpzq ď lim inf
zÑb

pf pzq.

We conclude that limzÑb pf pzq exists and is equal to0 “ fpbq. �

Corollary 24.4. The bounded domain G Ă C is a Dirichlet domain if and only if G
has a barrier at each point of BG. :

The following result gives an easily applied and fairly general sufficient condition for
G to be a Dirichlet domain.

Proposition 24.5. Let G Ă C be a domain and suppose b P BG. If there is a point a
such that Kb, aK Ă CzG, then there is a barrier at b. :

Proof. Let D “ CzJb, aK and let D` “ D Y tbu “ CzKb, aK. In particular, G Ă D` and
G Ă D. There is a continuous map ψ : D` Ñ C such that ψ|D isanalytic, ψpbq “ 0 and
ψpDq “ H “ tz : Im z ă 0u. (Follow a Mobius map taking a to 0 and b to ´8 and
the segment Ja, bK to the negative real axis with the function ´

?
z using the principle

branch of the log.) The function ϕ “ Imψ|G is a barrier atb. �

It seems the best one can do with the Perron approach is the following result, which
we will not prove.

Theorem 24.6. Suppose G Ă C is a domain (not necessarily bounded). If each compo-
nent of the complement of G contains at least two points, then G is a Dirichlet domain.

Corollary 24.7. If G Ă C is simply connected, then G is a Dirichlet domain. :

Remark 24.8. The situation in higher dimensions pn ě 3q is far more complicated. ˛

25. Green’s function

Let G denote a bounded domain and suppose y P G. A function gy : Gztyu Ñ R
such that

(a) gy restricted to Gztyu is harmonic;
(b) gy “ 0 on BG; and
(c) there is a harmonic function f on Gztyu such that fpzq “ gypzq ` logp|z ´ y|q on

Gztyu
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is called a Green’s function for y.

Proposition 25.1. Let G be a bounded domain and suppose y P G and suppose G has
greens function gy for y.

(i) gy is unique (and hence is the green’s function); and
(ii) gy ą 0 on Gztyu.

:

Proposition 25.2. If G is a bounded Dirichlet domain, then there is a Green’s function
for each y P G. :

Proof. Fix y P G. Let u denote the solution of the Dirichlet problem upzq “ logp|z ´ y|q
on BG and define g : Gztyu Ñ R by gpzq “ upzq ´ logp|z ´ y|q. �

Suppose BG “ tγu is the trace of a continuously differentiable simple closed curve γ
and G is a Dirichlet region. Let gpz, yq denote the Green’s function gypzq. If f : BGÑ R
is continuous, then the solution to the Dirichlet problem with boundary data f is

upyq “

ż

γ

fpzq
Bg

Bn
pz, yq ds

where the derivative is the normal derivative and s is arclength. A proof of this statement
is left to the interested reader. (Shockingly it involves Green’s Theorem.)

In the special case G “ D, one easily checks that the Green’s function is gpz, yq “
logp|ϕypzq|q where ϕypzq “

z´y
1´yz

. Write y “ reit and z “ ueiθ. In this case, the normal

derivative of gpz, yq on the boundary is the derivative with respect to u evaluated at
u “ 1. Writing gpz, yq as 1

2
plogp|z ´ y|2q ´ logp|1´ yz|2qq we see this normal derivative

is

1

2

“p2u´ eiθy ´ e´iθyq ´ p2u|y|2 ´´eiθy ´ e´iθyq

|1´ yueiθ|2
‰

|u“1

“
1´ |y|2

|1´ yeiθ|2

“Prpt´ θq,

where Prptq is the Poisson kernel. In this case ds “ 1
2π
dθ. Compare with Theorem 22.4.

26. Jensen’s Formula

Theorem 26.1 (The Poisson-Jensen formula). Suppose Ω Ă C is open, f : Ω Ñ C is

analytic, r ą 0 and Bp0; rq Ă Ω. Let a1, . . . , ak denote the zeros of f in Bp0; rq counted
according to multiplicity. If f |z| ă r and fpzq ‰ 0, then,

logp|fpzq|q “ ´
k
ÿ

`“1

log

ˆ

r2 ´ a`z

rpz ´ a`q

˙

`
1

2π

ż 2π

0

<pre
it ` z

reit ´ z
q logp|fpreitq| dt.
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The result of the following problem will be needed in the sequel. It gives an initial
indication between the location of the zeros of an entire function and its rate of growth.

Problem 26.1. If f is entire and fp0q “ 1, then logp2qnprq ďMp2rq.

We will prove Theorem 26.1 assuming r “ 1 in which case Bp0; rq “ D. For
notational convenience, let

Kpz, tq “ <1` ze´it

1´ ze´it
.

Thus, writing z “ seiα, K and the Poisson kernel are related by Kpz, tq “ Pspα ´ tq.

Lemma 26.2. For 0 ă s ă 1 and |t| ď π
6
,

1 ě |1´ seit|2 ě |s| |1´ eit|2

:

Proof. Compute,

1´ |1´ seit|2 “1´
`

1´ 2s cosptq ` s2
˘

“sp2 cosptq ´ sq ě 0

for cosptq ě 1
2
. Likewise,

|1´ seit|2 ´ s |1´ eit|2 “ p1´ sq2

for all t. �

Lemma 26.3. The function λ : r´π
6
,´π

6
s Ñ R defined by λptq “

ˇ

ˇ logp|1´eit|q
ˇ

ˇ is L1. :

Proof. Observe |1 ´ eit|2 “ 2p1 ´ cosptqq. By considering the power series expansion for
cosptq, there exists η ą 0 and 1 ě δ ą 0 and an entire function f such that |fpzq| ě η
for |z| ď δ and 1´ cosptq “ t2fptq for t P R. Thus the result follows from

ż 1

0

| logptq| dt “ ´

ż 1

0

´ logptq dt “ rtplogptq ´ 1qs10 “ 1.

�

Lemma 26.4. For |z| ă 1,

lim
sÑ1,0ăsă1

ż π
6

´π
6

Kpz, tq logp|1´ seit|q dt “

ż π
6

´π
6

Kpz, tq logp|1´ eit|q dt.

:

Proof. For |t| ď π
6

and 0 ă s ă 1 and |z| ă 1, by Lemma 26.2,

´Kpz, tq logp|1´ eit|q ě ´Kpz, tq logp|1´ seit|q ě 0.

Using Lemma 26.3, we can apply dominated convergence to complete the proof. �
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Lemma 26.5. For |z| ă 1,

logp|1´ z|q “
1

2π

ż 2π

0

Kpz, tq logp|1´ eit|q dt.

:

Proof. From Lemma 26.4 it follows that

lim
sÑ1,0ăsă1

ż π

´π

Kpz, tq logp|1´ seit|q dt “

ż π

´π

Kpz, tq logp|1´ eit|q dt.

On the other hand, logp|1 ´ sz|q is continuous on D and harmonic in D and therefore,
by Theorem 22.4,

logp|1´ sz|q “
1

2π

ż π

´π

Kpz, tq logp|1´ seit|q dt.

�

Proof of Poisson-Jensen. If f has no zeros in a neighborhood of D,then

logp|fpzq|q “
1

2π

ż

Kpz, tq logp|fpeitq|q dt. (12)

follows immediately from Theorem 22.4.

Now suppose y P BD and f has no zeros in aneighborhood of D except at y. Let
g “ f

z´y
. Hence g now has no zeros in a neighborhood of D and therefore by Lemma

26.5,

logp|fpzq|q “ logp|gpzq|q ´ logp|y ´ z|q

“
1

2π

„
ż

Kpz, tqrlogp|gpeitq|q ´ logp|y ´ eit|qs dt



“
1

2π

ż

Kpz, tq logp|fpeitq|q dt.

Inducting, it now follows that if f has no zeros in D, then the equality (12) holds.

Now suppose fpzq ‰ 0 and f has zeros a1, . . . , ak in D counted with multiplicity.
Let B denote the Blaschke factor

Bpzq “
k
ź

`“1

z ´ a`
1´ a`z

and let F pzq “ fpzqBpzq´1. Hence F has no zeros in D and thus equation (12) holds
with F in place of f . Using |F | “ |f | for |z| “ 1 and

logp|F pzq|q “ logp|fpzq|q ´
k
ÿ

`“1

logp
|z ´ a`|

|1´ a`z|
q.

Combining this last identity with the equality of equation (12) completes the proof. �
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For an entire function f and r ą 0, let Mprq “ Mf prq “ maxt|fpzq| : |z| “ ru and
let nprq “ nf prq denote the number of zeros of f in Bp0; rq.

27. Entire functions of finite genus

Recall the Weierstrass factorization Theorem. Let f be an entire functions with non-
zero zeros pajq counted with multiplicity. The factorization of Theorem 17.12 requires a
choice of nonnegative integers pn such that

ÿ

j

ˆ

r

|aj|

˙pn`1

converges.

To see that there is a relation with the previous section, observe that Jensen’s
formula (the case of z “ 0 in the Poisson-Jensen formula) bounds the growth of the
zeros of f in Bp0; rq in terms of the modulus of f on t|z| “ ru.

The entire function f has finite rank if there is a non-negative integer p such that

8
ÿ

h“1

|aj|
´pp`1q (13)

converges. If f has only finitely many zeros, its rank is ´1. Otherwise, the rank of f
is the smallest p such that the series converges. If f has rank p, then one can choose
pn “ p in Theorem 17.12 to obtain the standard form or standard factorization,

fpzq “ zmegpzq P pzq, (14)

where g is entire, m is a non-negative integer (the order of the zero of f at 0) and

P pzq “
8
ź

j“1

Epp
z

aj
q.

Moreover, g is now uniquely determined up to an additive multiple of 2πi. Hence, we
may make the following definition. If the g (in the standard factorization of f in equation
(14)) is a polynomial, then g has finite genus and the genus of f is the maximum of the
degree of g and the rank p of f .

Proposition 27.1. If f is an entire function of finite genus µ, then for each α ą 0
there is an r ą 0 such that, for all |z| ą r,

|fpzq| ď exppα|z|µ`1q
q.

:

We break the proof down into several lemmas.

Lemma 27.2. Suppose ν is a positive integer. For each A, ε ą 0 there is an R ą 0 such
that |Eνpzq| ď A|z|ν`ε for all |z| ą R. :
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Proof. Estimate,

logp|Eνpzq|q ď logp|1´ z|q `
ν
ÿ

j“1

|z|j

j
.

Given A ą 0 there is an R ą 0 such that logp|1´ z|q `
řν
j“1

|z|j

j
ď A|z|ν`ε. �

Lemma 27.3. If ν is a positive integer and ε ą 0, then there exist positive numbers B
and M such that M such that, for all z,

logp|Eνpzq|q ďM |z|ν`1

and

logpEνpzqq ď B|z|ν`ε, |z| ě
1

2
:

Proof. Recall the power series expansion

´ logp1´ zq “
ÿ

j

zj

j
, |z| ă 1.

Thus, for |z| ď 1
2
,

logp|Eνpzq|q “Re
`

logp1´ zq `
ν
ÿ

j“1

zj

j

˘

“Rep´
8
ÿ

j“ν`1

zj

j
q

ď

8
ÿ

j“ν`1

|z|j

j

ď|z|ν`1 2

ν ` 1
.

Applying Lemma 27.2 with A “ 2 produces an R ą 0 such that logp|Eνpzq|q ď
A|z|ν`1 for |z| ą R.

On the set A “ t1
2
ď |z| ď Ru the function logp|Eνpzq|q is continuous except for

a singularity at 1 where it diverges to ´8. Hence logp|Eνpzq|q is bounded by some
multiple of |z|ν`1 on A and the proof is complete. �

Lemma 27.4. Suppose pajq is a sequence of non-zero complex numbers, ν is a nonneg-
ative integer and

8
ÿ

j“1

|aj|
´pν`1q

converges. Let

Qpzq “
8
ź

j“1

Eνp
z

aj
q.
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For each α ą 0 there is an R ą 0 such that logp|Qpzq|q ď α |z|ν`1 for |z| ą R. :

Proof. Let α ą 0 be given. Choose M as in Lemma 27.3 based upon ν. There is an N
so that

8
ÿ

j“N`1

|aj|
´pν`1q

ď
α

2M
.

In particular,
8
ÿ

j“N`1

logp|Eνp
z

aj
q|q ď

α

2
|z|ν`1. (15)

Choose A “ α
2N

in Lemma 27.2 to obtain an R1 ą 0 such that, for |z| ą R1,

logp|Eνpzq|q ď
α

2N
|z|ν`1.

Let R2 “ maxt|aj| : 1 ď j ď NuR1. Thus,

N
ÿ

j“1

logp|Eνp
z

aj
q|q ď N

α

2N
|z|ν`1

“
α

2
|z|ν`1. (16)

Combining the inequalities of equations (15) and (16) gives

logp|Qpzq|q ď α |z|ν`1.

�

Proof of Proposition 27.1. Express f as in equation (14). Let ν denote the rank of P .
In particular, ν ď µ. By Lemma 27.4, there is an R1 ą 1 such that |P pzq| ď α|z|µ`1 ď

α|z|ν`1 for |z| ą R1.

Writing g “
řµ
j“0 gjz

j,

logp|zm expphpzqq|q ď m logp|z|q `
ÿ

|gj| |z|
j

there is an R2 ą 0 such that

logp|zm expphpzqq|q ď
α

2
|z|µ`1, |z| ą R2.

Choose R “ maxtR1, R2u and take exponentials to complete the proof. �

Problem 27.1. Suppose pajq is a sequence of non-zero numbers, 0 ě ρ ă p` 1 and

A “
8
ÿ

j“1

|aj|
ρ
ă 8.

Suppose 0 ă |a1| ď |a2| ď . . . . Fix z P C and choose N so that | z
aj
| ď 1

2
for j ą N and

| z
aj
| ą 1

2
for j ď N . Show

8
ÿ

j“N`1

logp|Epp
z

aj
q|q ď A|z|ρ.
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Now show there exists a C such that for all z,

8
ÿ

j“1

logp|Epp
z

aj
q|q ď C|z|ρ.

28. Entire functions of finite order

An entire function f has finite order if there exists an a ą 0 and R ě 1 such that

|fpzq| ď expp|z|aq

for |z| ą R. It is evident that if b ě a, then |fpzq| ď expp|z|bq for |z| ą R too. If f has
finite order, then

λ “ infta ą 0 : DR ě 1 such that|fpzq| ď expp|z|aq for all |z| ą Ru

is the order of the entire function f . In particular, if λ is the order of f and b ą λ, then
there is an R ą 0 such that |fpzq| ď expp|z|bq for |z| ą R and if 0 ă c ă λ, then for each
R ě 1 there is a z such that |z| ą R and |fpzq| ą expp|z|cq.

Proposition 28.1. If f is an entire function of finite genus µ, then f is of finite order
λ ď µ` 1. :

If f does not have finite order, then f has infinite order and λ “ 8. For examples,
exppexppzqq has infinite order and if g is a polynomial of degree n, then exppgq has order
n.

For the entire function f and r ą 0, let Mprq “Mf prq “ maxt|fpzq| : |z| “ ru. If f
is not constant, then for r sufficiently large, Mf prq ą 1.

Proposition 28.2. If f is a nonconstant entire function, then the order of f is given
by

σ “ lim sup
rÑ8

logplogpMprqqq

logprq
.

:

Proof. Suppose f has order λ ă 8 and let ε ą 0 be given. There is an R ą 0 such that
for |z| ą R, we have logp|fpzq|q ď |z|λ`ε. Thus, for r ą R,

logplogp|Mprq|q ď pλ` εq logprq.

Hence σ ď λ` ε and thus σ ď λ.

On the other hand, if σ ă 8, then by the definition of lim sup, given ε ą 0 there is

an R ě 1 such that if |z| ą R, then logplogpMprqqq
logprq

ď σ ` ε. It follows that

Mprq ď expprσ`εq

for all r ą R. Hence λ ď σ ` ε and therefore λ ď σ. �
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Problem 28.1. Suppose pajq is a sequence of non-zero numbers, p is a nonnegative
integer and p1 ě ρ ą 0. Show, if

8
ÿ

j“1

|aj|
´ρ
ă 8,

then the canonical product

P pzq “
8
ź

j“1

Epp
z

aj
q

has finite order λ ď ρ.

29. Hadamard Factorization

Theorem 29.1. If f is an entire of finite order λ, then f has finite genus µ ď λ.

Before proving Theorem 29.1, we collect some consequences.

Theorem 29.2. If f is a non-constant entire function of finite order, then f assumes
each complex number with at most one exception. Moreover, if f does omit a value, then
the order of f is an integer.

Proof. Suppose f is entire of finite order λ and the range of f omits the point x. It follows
that f ´ x is an entire function of finite order λ and f never vanishes. In particular,
by Corollary 7.10, there is an entire function g such that f ´ x “ eg. Since f ´ x has
finite order, by Theorem 29.1, f has finite genus and therefore g is a polynomial. It now
follows that the order of f is an integer. Since g is a polynomial, it is either constant
or g assumes every value (by the fundamental theorem of algebra). Hence either f is
constant or f ´x takes every value except of course 0 so that f takes every value except
x. �

Theorem 29.3. If f is entire of finite order λ and if λ is not an integer, then f assumes
each value infinitely often.

Proof. Suppose f has finitely many zeros so that the standard form for f is

fpzq “
n
ź

j“1

pz ´ ajq exppgpzqq,

for some n, complex numbers aj and entire function g. By Theorem 29.1, g is a polyno-
mial. On the other hand, the order of f and exppgq are the same and, since the order of
exppgq is an integer, so is the order of f . Thus if the order of f is not an integer, then
f is zero infinitely often.

Fixing x P C and applying what has already been proved to f ´ x it follows that f
takes the value x infinitely often. �
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29.1. Proof of Theorem 29.1.

Proposition 29.4. Suppose f is entire, fp0q “ 1 with zeros pajq
8
j“1 arranged in increas-

ing order of modulus. Let g denote the lograthmic derivative of f ; i.e., g “ f 1

f
. If f has

finite order λ and p ą λ´ 1, then the p-th derivative of g has the representation,

gppqpzq “ ´p!
8
ÿ

j“1

paj ´ zq
´pp`1q, fpzq ‰ 0.

:

Recall the definitions of Mprq and nprq.

Lemma 29.5. For z P C,

lim
rÑ8

nprq
ÿ

j“1

„

aj
r2 ´´ajz

p`1

“ 0. (17)

:

Proof. For r ą 2|z| and j ď nprq,

|r2
´´ajz| ě

1

2
r2

since |aj| ă r. Hence,
„

|aj|

|r2 ´´ajz|

p`1

ď
`2

r

˘p`1
.

Using logp2qnprq ď Mp2rq (see Problem 26.1), the sum in equation (17) is bounded

by Mp2rq
logp2q

`

2
r

˘p`1
. Recall f has order λ ă p ` 1. Choose ε ą 0 such that λ ` ε ă p ` 1.

Proposition 28.2 implies

logpMp2rqq
`2

r

˘p`1
ď p2rqλ`ε

`2

r

˘p`1
ď 4p`1 r´ε

for r sufficiently large. The conclusion of the lemma now follows. �

Lemma 29.6. For z P C,

lim
rÑ8

ż 2π

0

reit
`

reit ´ z
˘´pp`2q

logp|fpreitq|q dt “ 0.

:

Proof. Choose ε ą 0 such that µ “ λ` ε ă p` 1. By Proposition 28.2, for r sufficiently
large logp|fpreitq|q ď rλ`ε. Thus for r large,

ˇ

ˇ

ˇ
reit

`

reit ´ z
˘´pp`2q

logp|fpreitq|q
ˇ

ˇ

ˇ
ďr|

`

reit ´ z
˘´pp`2q

| logpMprqq

ďrλ`ε`1
|
`

reit ´ z
˘´pp`2q

| « r´ε.

�



D
RA
FT

76 MAA6406-07 COURSE NOTES 2016-17

Lemma 29.7. Suppose U is open. If f : U Ñ C is analytic and never zero, then, with
upzq “ logp|fpzq|q,

Bu

Bx
´ i
Bu

By
“
f 1

f
.

:

Proof of Proposition 29.4. For h “ rpz´aq
r2´az

, verify that

h1pzq

hpzq
“

1

z ´ a
`

a

r2 ´ az
.

For fpzq ‰ 0 and r ą |z|, use Theorem 26.1, an application of Lemma 29.7 along with
differentiating under the integral sign to obtain

gpzq :“
f 1pzq

fpzq
“

nprq
ÿ

j“1

„

1

z ´ aj
`

aj
r2 ´ ajz



`
1

2π

ż 2π

0

2reit

preit ´ zq2
logp|fpeitq|q dt.

Differentiating this last equality p times gives,

gppqpzq “ ´ p!

nprq
ÿ

j“1

„

p
1

z ´ aj
q
p`1

` p
aj

r2 ´ ajz
q
p`1



` pp` 1q!
1

2π

ż 2π

0

2reit

preit ´ zqp`2
logp|fpeitq|q dt.

By Lemmas 29.5 and 29.6 the last two terms on the right hand side tend to 0 with r. �

Proposition 29.8. Suppose f is an entire function with non-zero zeros a1, a2, . . . . If f
has finite order λ, then for each σ ą λ,

8
ÿ

j“1

|aj|
´σ
ă 8.

In particular, f has finite rank at most λ. :

Lemma 29.9. If f is entire, has finite order λ, m is a nonnegative integer and fpzq “
zmgpzq, where gp0q ‰ 0, then the order of g is the same as the order of f . :

Proof of Proposition 29.8. By Lemma 29.9, without loss of generality fp0q “ 1. Fix
1 ą ε ą 0 and τ ą 0. There is no harm in assuming 0 ă |a1| ď |a2| ď . . . . Recall, from
Problem 26.1, that logp2qnprq ď Mp2rq. Since f has order λ, there is an R ą 0 such
that logpMp2rqq ď p2rqλ`ε for r ą R by Proposition 28.2. Thus, for r ą R,

nprq ď
p2rqλ`ε

logp2q
ď rλ`ε 2λ`2.

Using k ď np|ak|q, it follows that there is a K such that for k ě K,

k ď np2|ak|q ď p2|ak|q
λ`ε2λ`2

ď |ak|
λ`ε4λ`2.

Thus, for k ě K,
4p1`τqpλ`2q k´p1`τq ě |ak|

´p1`τqpλ`εq.
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Since the series
ř

kc converges for c ă ´1, the result now follows by choosing ε and τ
such that p1` τqpλ` εq ă σ and applying the comparison test. �

Proof of Theorem 29.1. By Proposition 29.8, if f has finite order, then f has finite rank
at most τ ď λ. Hence, there is an integer λ ě p ą λ ´ 1 with p ě τ . Without loss of
generality assume fp0q “ 1. Express (using Theorem 17.12) f in standard form

fpzq “ egpzq P pzq,

where P pzq “
ś

Eτ p
z
aj
q and g is an entire function. If z is not a zero of f , then

h “
f 1

f
pzq “

P 1

P
pzq ` g1pzq.

Differentiating p times and applying Proposition 29.4 to h gives,

´p!
8
ÿ

j“1

paj ´ zq
´pp`1q

“ Qppqpzq ` gpp`1q
pzq

where Qpzq “ P 1pzqP´1pzq. On the other hand, for a given a, and F pzq “ Eτ p
z
a
q “

p1´ z
a
qeψpzq, where ψ is a polynomial of degree τ ,

F 1

F
pzq “

1

a´ z
` ψ1z.

Thus,

Qppqpzq “ ´p!
8
ÿ

j“1

paj ´ zq
´pp`1q.

Therefore gpp`1q “ 0 and hence g is a polynomial of degree at most p ď λ. The conclusion
follows. �

29.2. The exponent of convergence and further results. The exponent of conver-
gence of a sequence pajq of nonzero complex numbers is

ρ “ inftc :
ÿ

|aj|
´c
ă 8u.

In this language Proposition 29.8 says if f has order λ, then the exponent of convergence
of the non-zero zeros of f is at most λ.

Problem 29.1. Show the P defined as in Problem 28.1 has order equal to the exponent
of convergence of the sequence of its non-zero zeros.

Problem 29.2. Suppose g is a polynomial of degree n and P is as in Problem 28.1.
Show the order of f “ exppgpzqqP pzq is the maximum of the degree of g and the order
of P . (Suggestion: Use Proposition 29.8 and Problem 27.1.)

Problem 29.3. Suppose f1, f2 are entire of finite orders λ1, λ2 respectively. Show, if
λ1 ‰ λ2, then the product f1f2 has order λ “ maxtλ1, λ2u.

Show, by example, the conclusion can fail in the case λ1 “ λ2.
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30. Bloch’s Theorem

Theorem 30.1. Suppose Ω Ă C is open and contains D. If f : Ω Ñ C is analytic,
fp0q “ 0 and f 1p0q “ 1, then there exists and a disk D Ă D such that f |D is one-one
and fpDq contains a disk of radius 1

72
.

Corollary 30.2. Suppose R ą 0. If f is analytic in an open set Ω containing the closure
of Bp0;Rq, then fpBp0;Rqq contains a disk of radius 1

72
R|f 1p0q|. :

30.1. Proof of Theorem 30.1.

Lemma 30.3. If f : DÑ C is analytic, fp0q “ 0 and f 1p0q “ 1, then M “ supt|fpzq| :
z P Du ě 1 and

Bp0;
1

6M
q Ă rangepfq.

:

Proof. The Schwarz Lemma (Lemma 12.5) implies M ě 1. Express f as the power series
fpzq “ z `

ř8

j“2 ajz
j. For 0 ă r ă 1 and j ě 1, Cauchy’s estimate gives |aj| ď Mr´n.

Hence |aj| ďM . Thus, for |z| “ p4Mq´1,

|fpzq| ě|z| ´
8
ÿ

j“2

|aj||z|
j

ěp4Mq´1
´

8
ÿ

j“2

Mp4Mq´j

ěp4Mq´1
´ 16M3

8
ÿ

j“0

p4Mq´j

“p4Mq´1
´

1

16M
1´

1

4M

“
1

4

4M ´ 2

Mp4M ´ 1q

ě
1

6M
.

�

Lemma 30.4. Let M,R ą 0 be given. If f : Bp0;Rq Ñ Bp0,Mq is analytic, fp0q “ 0
and f 1p0q ‰ 0, then

B
`

0;
R2|f 1p0q|2

6M

˘

Ă fpBp0;Rqq.

:

Proof. Define g : DÑ C by

gpzq “
fpRzq

Rf 1p0q
and verify that g defines the hypothesis of Lemma 30.3. �
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Lemma 30.5. Suppose R ą 0, a P C and f : Bpa;Rq Ñ C is analytic. If

|f 1pzq ´ f 1paq| ă |f 1paq|

for a ‰ z P Bpa;Rq, then f is one-one. :

Proof. Fix z ‰ w P Bpa;Rq, let γptq “ tz ` p1´ tqw and estimate

|fpzq ´ fpwq| “

ˇ

ˇ

ˇ

ˇ

ż 1

0

f 1pγptqqrz ´ ws dt

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ż 1

0

f 1paqrz ´ ws dt

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ż 1

0

rf 1pγptqq ´ f 1paqsrz ´ ws dt

ˇ

ˇ

ˇ

ˇ

“|z ´ w|

„

|f 1paq| ´

ˇ

ˇ

ˇ

ˇ

ż 1

0

rf 1pγptqq ´ f 1paqs dt

ˇ

ˇ

ˇ

ˇ



ě|z ´ w|

„

|f 1paq| ´

ż 1

0

|f 1pγptqq ´ f 1paq| dt



“|z ´ w|

ż 1

0

r|f 1paq| ´ |f 1pγptqq ´ f 1paq|s dt ą 0.

�

Lemma 30.6. Suppose ρ ą 0, a P C and let D “ Bpa; ρ
3
q. If f : Bpa; ρq Ñ C is analytic

and

(i) |f 1paq| “ 1
2ρ

; and

(ii) |f 1pzq| ă 1
ρ

for z P Bpa; ρq,

then f |D is one-one and fpDq contains a disk of radius 1
72

. :

Proof. First observe if g : Bpa; rq Ñ Bp0;Rq is analytic and gpaq “ 0, then h, defined by

hpzq “
gp z
r
`aq

R
is an analytic function h : D Ñ D with hp0q “ 0. Hence, by the Schwarz

Lemma 12.5,

|hpzq| ď |z|, |z| ă 1.

It follows that

|gpwq| “ R |hp
z ´ a

r
q| ď

R|z ´ a|

r
.

Combining items (i) and (ii) gives

|f 1pzq ´ f 1paq| ă
3

2ρ
.

Applying the version of the Schwarz lemma above with g “ f 1´f 1paq, r “ ρ and R “ 3
2ρ

gives

|f 1pzq ´ f 1paq| ď
3|z ´ a|

2ρ2
.
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Thus, for z P D,

|f 1pzq ´ f 1paq| ă
1

2ρ
“ |f 1paq|.

An application of Lemma 30.5 shows f |D is one-one.

To complete the proof, without loss of generality assume a “ 0. For z P D, and
with gpzq “ fpzq ´ fpaq,

|gpzq| “ |z| |

ż 1

0

f 1ptzq dt|.

Using item (ii),

|gpzq| ď
|z|

ρ
ă

1

3
.

By Lemma 30.4 with R “ ρ
3

and M “ 1
3

gives,

gpDq Ą Bp0;
ρ2|f 1p0q|2

18
q “ Bp0;

1

72
q.

Hence fpDq contains the disk of radius 1
72

centered to fpaq. �

Remark 30.7. For an entire function f , the function Mprq “ Mf prq is increasing and
continuous. ˛

Proof of Theorem 30.1. Define h : r0, 1s Ñ R by hprq “ p1 ´ rqMf 1prq. Thus h is
continuous, hp0q “ 1 and hp1q “ 0. By continuity of h (see Lemma 30.7) the set
h´1pt1uq is closed and hence contains its sup, r. In particular, hprq “ 1 and hpsq ă 1
for s ą r. Choose |a| “ r such that |f 1paq| “Mf 1prq. Hence,

|f 1paq| “
hprq

1´ r
“

1

1´ r
.

Let ρ “ 1
2
p1´ rq. Thus |f 1paq| “ 1

2ρ
. Further, if |z ´ a| ă ρ, then

|z| ă
1

2
p1´ rq ď

1

2
p1` rq ă 1.

Hence, as 1
2
p1` rq ą r (and again using Lemma 30.7),

|f 1pzq| ďMf 1p|z|q

ďMf 1p
1

2
p1` rqq

“hp
1

2
p1` rqqp1´

1

2
p1` rqq´1

ă
1

1´ 1
2
p1` rq

“
1

ρ
.

An application of Lemma 30.6 completes the proof. �
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31. Picard’s little theorem

Theorem 31.1 (The Little Picard Theorem). If f is entire and omits two values, then
f is constant.

Theorem 31.2 (Schottky’s Theorem). For each 0 ď β ď 1 there a constant Cβ such
that if

(i) f analytic in a simply connected set containing D;
(ii) f omits the values 0 and 1;

(iii) and |fp0q| ď 1,

then |fpzq| ď Cβ for |z| ă β.

The following Corollary to Theorem 31.2 will be used in the proof of the Picard’s
Great Theorem discussed in the next section.

Corollary 31.3. For each 0 ď β ď 1 and R ą 0, there is a constant Cβ such that if

(i) f is analytic on a simply connected region containing Bp0;Rq;
(ii) f omits the values 0 and 1; and

(iii) |fp0q| ď 1,

then |fpzq| ď Cβ for |z| ď βR. :

Proof. Apply Theorem 31.2 to the function gpzq “ fpRzq. �

Aside from several problems at the end, the rest of this section is devoted to proving
Theorems 31.1 and 31.2.

Lemma 31.4. If x, y, z P Czt0u and x2 “ z and y2 “ z ´ 1, then

1

4
rpx` yq `

1

x` y
s
2
“ z

and
px` yq2 ` px` yq´2

“ 4z ´ 2.

:

Proof. Let S “ x` y and compute,

1

4

“

S `
1

S

‰2
“

1

4

pS2 ` 1q2

S2

“
1

4

px2 ` y2 ´ 2xy ` 1q2

px2 ` y2 ´ 2xyq

“
1

4

p2z ´ 2xyq2

2h´ 1´ 2xy

“
1

4

4z2 ` 4z2 ´ 4z ´ 8zxy

2z ´ 1´ 2xy

“z.
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The second part of the lemma follows immediately from the first. �

Let

L “ t˘plogp
?
n´

?
n´ 1qq `

ikπ

2
: n P N`, k P Zu.

Lemma 31.5. If f is analytic on a simply connected domain and if the range of f
contains neither 0 nor 1, then there is an analytic function g : Bp0;Rq Ñ C such that

(i)

f “ ´ exppiπ coshp2gq.

(ii) the range of f is disjoint from L; and
(iii) the set L intersects every disk of radius two.

:

Proof of Lemma 31.5 and Theorem 31.2. Let G denote the simply connected domain of
f . Since f omits the value 0, by Corollary 7.10(iv), there is an analytic function h on G
such that f “ expp2πihq. Without loss of generality, we may assume 0 ď Rehp0q ă 1.
Since f omits the value 1, the range of h contains no integers. In particular, there are
analytic functions ψj on G such that

hpzq “ exppψ0pzqq, hpzq ´ 1 “ exppψ1pzqq.

Let Sjpzq “ expp1
2
ψjpzqq so that S2

0 “ h and S2
1 “ h´ 1. The function S “ S0´S1 does

not take the value 0. Hence there is an analytic function g on G such that S “ exppgq.
Without loss of generality, assume 0 ď Im gp0q ă 2π. Compute, using Lemma 31.4,

coshp2gq ` 1 “
expp2gq ` expp´2gq

2
` 1

“
1

2

“

exppgq ` expp´gq
‰2

“
1

2

“

S `
1

S

‰2

“2h.

Thus,

fpzq “ exppπircoshp2gq ` 1sq “ ´ exppπi coshp2gqq.

At this point the proof of item (i) of Lemma 31.5 is complete.

To prove item (ii), arguing the contrapositive, suppose there is a point y P Ω Ă C
and n P N` and k P Z such that

gpyq “ ˘plogp
?
n`

?
n´ 1qq `

ikπ

2
.

In this case, and taking frequent advantage of the identity p
?
n `

?
n´ 1q´1 “

?
n ´?

n´ 1,

expp˘2gpyqq “ ˘p
?
n`

?
n´ 1q¯2.
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Hence, using Lemma 31.4,

coshp2gpyqq “
˘

2

“

p
?
n`

?
n´ 1q¯2

` p
?
n`

?
n´ 1q˘2

‰

“ ˘p2n´ 1q.

Hence,

fpyq “ ´ expp˘πip2n´ 1qq “ 1.

Turning to item (iii), fix a point z “ a ` bi with a, b P R. There is a k P Z
such that ikπ

2
ď b ď ipk`1qπ

2
. Likewise, assuming a ě 0, there is an n P N` such that

logp
?
n`

?
n´ 1q ď a ď logp

?
n` 1`

?
nq. Now,

logp
?
n` 1`

?
nq ´ logp

?
n`

?
n´ 1q ď 1.

Hence, the distance from z to L is at most
a

1` pπ
2
q2 ď 2. The proof of Lemma 31.5 is

now complete.

To prove Theorem 31.2, first observe that, by rotating, it can be assumed that
fp0q is real and 0 ď fp0q ď 1. For now, suppose in fact 1

2
ď fp0q ď 1. In this case,

logp2q ě logp|fp0q|q ě 0 and

logp|fp0q|q “ logpexpp2π Imhp0qqq “ 2πRehp0q.

Thus,

|hp0q| ď |Rehp0q| ` | Imhp0q| ď 1`
logp2q

2π
.

Let C0 “ 1` logp2q
2π

.

Next,
ˇ

ˇS0p0q ˘ S1p0q
ˇ

ˇ ď|S0p0q| ` |S1p0q|

“|hp0q|
1
2 ` |hp0q ´ 1|

1
2

ďC
1
2
0 ` pC0 ` 1q

1
2 .

Let C1 “ C
1
2
0 ` pC0 ` 1q

1
2 .

If |Sp0q| ě 1, then

|gp0q| ď|Re gp0q| ` | Im gp0q|

ď logp|Sp0q|q ` 2π ď logpC1q ` 2π.

If |Sp0q| ď 1, then logp|Sp0q|q ă 0 and

|gp0q| ď|Re gp0q| ` | Im gp0q|

ď ´ logp|Sp0q|q ` 2π

“ logp
1

Sp0q
` 2π

“ logpS0p0q ` S1p0qq ` 2π ď logpC1q ` 2π.

Hence in any event, |gp0q| ď C2 :“ logpC1q ` 2π.
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For a P D, Corollary 30.2 says the set gpBpa; 1 ´ |a|qq contains a disk of radius
p1´|a|q|g1paq|

72
. On the other hand, items (ii) and (iii) imply that the range of g contains no

disk of radius two. Hence, for |a| ă 1,

|g1paq| ď
72

1´ |a|
.

It follows that

|gpaq| ď|gp0q| ` |gpaq ´ gp0q|

ďC2 `

ż 1

0

|g1ptaq||a| dt

ďC2 `
72|a|

1´ |a|
.

Thus if |z| ď β ă 1, then

|gpaq| ď C2 `
72β

1´ β

and, in view of the relation between f and g, the proof is complete in the case 1
2
fp0q ď 1;

i.e., there is a constant Dβ such that |fpzq| ď Dβ for |z| ď β.

Finally, suppose 0 ď fp0q ď 1
2
. In this case f̃ “ 1 ´ f satisfies 1

2
f̃p0q ď 1 and

consequently,

|1´ fpzq| “ |f̃pzq| ď C2 `
72β

1´ β
.

Choosing Cβ “ 1`Dβ completes the proof. �

Proof of Theorem 31.1. Suppose f omits the values y ‰ w and fix R ą 0. Let F pzq “
fpzq´y
w´y

omits the values 0, 1. Hence, by Lemma 31.5, there is an entire g such that

F “ ´ exppiπ2gq such that the range of g is disjoint from L. Hence the range of g
contains no disk of radius two by Lemma 31.5(iii). If g is not constant, then there is
a point p P C such that g1ppq ‰ 0. From Corollary 30.2, gpBpp;Rqq contains a disk of
radius 1

72
R|g1ppq|, a contradiction. �

31.1. Problems.

Problem 31.1. Show, a nonconstant meromrphic function omits at most three values
in C8.

Problem 31.2. Show, if n ě 3 is an integer, then fn ` gn “ 1 has no nontrivial entire
solutions.

Show, if f, g are entire and f 2` g2 “ 1, then there is an entire function h such that
f “ cosphq and g “ sinphq.
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32. The Montel-Caratheodory Theorem

Theorem 32.1. Let Ω Ă C be an open connected set. The

F “ tf : Ω Ñ C : f is analytic and omits the values 0, 1u

is a normal family. In particular, if pfnq is a sequence from F , then there is a subse-
quence pgkq of pfnq such that pgnq converges uniformly on compact sets to 8 or to some
analytic function g : Ω Ñ C.

Proof. Fix a point b P Ω and let

F1 “tf P F : |fpbq| ď 1u

F2 “tf P F : |fpbq| ě 1u.

The first step is to use Theorem 14.4 (Montel’s Theorem) to very that F1 is normal.
Accordingly it suffices to show that F1 is locally bounded. Evidently the set of points S
in Ω for which F1 is locally bounded is an open set. To prove S is closed, suppose pznq
is a sequence from S that converges to z0 P Ω. There is an r ą 0 such that Bpz0; rq Ă Ω.
There is an N so that |zN ´ z0| ă

r
2
. Since F1 is bounded at zN , there is a C such

that |fpzNq| ď C1 for all f P F1. An application of Schottky’s Theorem (Theorem 31.2)
to the ball BpzN ; r

2
q gives a constant C2 such that |fpzq| ď C2C1 for all f P F1 and

z P BpzN ; r
2
q. Since S is a nonempty subset of Ω that is both open and closed, S “ Ω.

Observe, if f P F2, then, as f never vanishes, 1
f
P F. In particular, as F1 is normal,

if pfnq is a sequence from F2, then, by passing to a subsequence if necessary, there is
an analytic function h on Ω such that p 1

fn
q converges uniformly on compact sets to h.

By Theorem 14.2, since noe of the 1
fn

are zero, either h never vanishes of h is identically

zero. Now verify, if h is identically 0, then pfnq converges to 8 uniformly on compact
sets; and otherwise pfnq converges uniformly to 1

h
on compact sets. Hence F2 is normal.

An easy argument based on normality of Fj for j “ 1, 2 completes the proof. �

33. The Great Picard Theorem

Compate the following Theorem to Theorem 9.6.

Theorem 33.1 (The Great Picard Theorem). If Ω Ă C is open, y P Ω, f : Ωztyu Ñ C
is analytic and has an essential singularity at y, then f assumes every value, with at
most one exception, infinitely often.

Corollary 33.2. If f is entire and not a polynomial, then, with at most one exception,
f assumes every value infinitely often. :

Given a polynomial p with n distinct zeros. The function fpzq “ ppzq exppzq takes
every value except 0 infinitely often and the value 0 exactly n times. Hence, there is no
general statement about the number of times the possible exceptional value is assumed.

Proof. If f has a pole at infinity, then f is a polynomial by Problem 9.4. �
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Proof of Theorem 33.1. Arguing the contrapositive, suppose f omits two values. With-
out loss of generality, assume

(i) Ω “ Bp0;Rq (for some R ą 0);
(ii) f has an essential singularity at 0;
(iii) f omits the values 0 and 1.

For notational ease, let U “ Bp0;Rqzt0u. Define fn : U Ñ C by fnpzq “ fp z
n
q. Thus

each fn omits the values 0 and 1 and therefore pfnq is a sequence from the normal family
of Theorem 32.1 (Montel-Caratheodory). Hence there is a subsequence pgkq of pfnq such
that pgnq converges uniformly on compact sets to either 8 or to some analytic function
g : U Ñ C. In the case of convergence to 8, the function f has a pole at 0.

Suppose pgk “ fnkq converges uniformly on copmpact sets to an analytic function
g. The function g is bounded, by some M on t|z| “ R

2
. Hence |fnkpzq| ď M ` 1 on

|z| “ R
2nk

for k sufficiently large. Using the maximum modulus theorem, it follows that

f is bounded the annuli tr ă |z| ă R
2
u for each 0 ă r sufficiently small. Hence f has a

removable singularity at 0.

�

33.1. Problems.

Problem 33.1. Show that sinpzq “ z has infinitely many solutions.

Problem 33.2. Show fpzq “ ez ´ z takes every value infinitely often.

34. Harmonic Conjugates

Recall a function u on an open set Ω Ă C “ R2 is harmonic if it has continuous
second partials (denoted u P C2) and satisfies Laplace’s equation (9). Assuming only
that u P C2, define

Bu “ ux ´ iuy.

Remark 34.1. If u has a harmonic conjugate v (and locally it does), then f “ u ` iv
is analytic and, by the Cauchy-Riemann equations,

Bu “ ux ` ivx “ f 1.

˛

Proposition 34.2. Suppose Ω Ă C is open and u : Ω Ñ R is C2. The function u is
harmonic if and only if f “ Bu is analytic. In this case, if γ is a closed rectifiable curve
in Ω, then

ż

γ

Bu “ i

ż

γ

puxdy ´ uydxq.

:
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In the context of Proposition 34.2,

˚du “ uxdy ´ uydx.

is the conjugate differential of u. If u has a harmonic conjugate v, then

dv “ vxdx` vydy “
˚du.

Theorem 34.3. Suppose Ω Ă C is an open set and u : Ω Ñ R is C2. The following are
equivalent.

(i) u has a harmonic conjugate in Ω;
(ii) Bu has a primitive;

(iii) ˚du is an exact differential (in Ω); and
(iv) for each closed rectifiable curve in Ω,

ż

γ

˚du “ 0.

34.1. Proofs.

Proof of Proposition 34.2. Assuming the domain of γ is r0, 1s, writing γptq “ aptq` ibptq
and using exactness of uxdx` uydy and closedness of γ,

ż

γ

i˚du “
1

2

ż 1

0

iruxpγptqqb
1
ptq ´ uypγptqqa

1
ptqs dt

“

ż 1

0

iruxpγptqqb
1
ptq ´ uypγptqqa

1
ptqs dt`

ż 1

0

ruxpγptqqa
1
ptq ` uypγptqqb

1
ptqs dt

“

ż 1

0

ruxpγptqq ´ iuypγptqqs ra
1
ptq ` ib1ptqs dt

“

ż

γ

Bu.

�

Proof of Theorem 34.3. Assuming (i), there is a harmonic function v such that g “ u`iv
is analytic. Hence from the Cauchy-Riemann equations,

g1 “ ux ` ivx “ ux ´ iuy “ 2Bu.

Conversely, if there is an analytic g “ u ` iv such that g1 “ 2Bu, then from the
equation above vx “ ´uy. On the other hand, g1 “ ´iuy ` vy and hence vy “ ux. Hence
v is a harmonic conjugate of u.

A discussion earlier in this section shows (i) implies (iii). The converse is easily seen
to be true.

It is a standard fact from calculus that (iii) implies (iv). On the other hand, condition
(iv) implies (ii) from Corollary 2.2 (a version of Cauchy’s Theorem). �
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35. Gauss’s Theorem and Green’s Formula

In these notes, a nice domain Ω of genus g is an open subset of C bounded by g` 1
smooth (continuously differentiable) closed non-intersecting curves Γ “ pΓ0,Γ1, . . . ,Γgq.
Further, we assume that CzΩ “ K0 Y

g
j“1 Kj where the Kj are compact domains, K0

is the unbounded component and Γj is the boundary of Kj. Often for simplicity Γ0 is
taken as the unit circle and all the other curves are assumed to lie in the disk. The
curve(s) Γ is assumed oriented (so we view Γ as a (union of) curve(s)) so that the region
lies to the left. A nice multiply connected domain is a domain of genus g for some g.

The following theorem is a standard fact from multivariable calculus.

Theorem 35.1 (Gauss’s Theorem). Suppose Ω is a nice multiply connected domain with
boundary Γ. If p, q are defined in a an open set containing the closure of Ω and have
continuous first partials, then

ĳ

Ω

rpx ` qys dA “

ż

Γ

pdy ´ qdx.

(The left hand side is the integral against the area element dA “ dx dy and the left the
line integral over the (oriented) curve Γ.)

Suppose u : Ω Ă CÑ R is C1 and γpsq “ pxpsq, ypsqq is a C1 path in Ω parameter-
ized by arclength s. For fpsq “ upγpsqq, by the chain rule

f 1psq “
Bu

Bx

dx

ds
`
Bu

By

dy

ds
“ ∇u ¨ T,

where T is the tangent vector to the curve at s. Note that this derivative really only
depends upon T , and not the particular curve γ. Accordingly, define the tangential
derivative of u at p “ γpsq by

Bu

Bs
“ ∇u ¨ T.

(The partial notation reflects the idea that we are differentiating in the tangential di-
rection The normal derivative or derivative with respect to the outward normal is, by
definition

Bu

Bn
“
Bu

By

dx

ds
´
Bu

Bx

dy

ds
“ ∇u ¨N,

where N “ pb,´aq is the normal vector. In particular, Bu
Bn
ds “ uydx´ uxdy.

Define the Laplacian
4u “ uxx ` vyy.

Thus u is harmonic if and only if 4u “ 0.

Theorem 35.2 (Green’s Formula). If Ω is a nice multiply connected domain and u, v
are defined and C2 in a neighborhood of the closure of Ω, then

ĳ

Ω

pu4v ´ v4uqdA “
ż

Γ

ˆ

u
Bv

Bn
´ v

Bu

Bn

˙

ds. (18)
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Proof. Let p “ u Bv
Bx

and q “ uBv
By

and observe,

px “ uvxx ` uxvx, qy “ uvyy ` uyvy.

By Theorem 35.1,
ĳ

Ω

ruvxx ` uxvx ` uvyy ` uyvys dA “

ż

Γ

ruvxdy ´ uvydxs.

Hence,
ĳ

Ω

u4vdA`
ĳ

Ω

ruxvx ` uyvys dA “

ż

Γ

urvxdy ´ vydxs “

ż

Γ

u
Bv

Bn
ds. (19)

Using the analogous equation obtained by switching the roles of u and v and taking the
difference yields formula (18). �

36. The periods of a harmonic function

Sheldon Axler, in an article in the American Math Monthly, refers to the following
result as the logarithmic conjugation theorem and champions it as a way to avoid talking
about the periods of a harmonic function.

Suppose Ω is a nice multiply connected domain of genus g with complement Ygj“0Kj

(with K0 being the unbounded component). A set γ “ tγ1, . . . , γgu of smooth curves in
Ω is a is a basis if nγjpwq “ 1 for w P Kj and nγjpwq “ 0 for w P Kk for k ‰ j.

Theorem 36.1. Suppose Ω is a nice multiply connected domain of genus g with com-
plement Ygj“1Kj and γ “ tγ1, . . . , γgu is a basis for Ω. Given a harmonic function
u : Ω Ñ C, let

cj “
1

2πi

ż

γj

Bu “
1

2π

ż

γj

˚du (20)

The numbers cj are real and independent of the choice of basis γ and for any choice
aj of points from the interior of Kj for 1 ď j ď g, there is an analytic function f : Ω Ñ C
such that

upzq “ Re fpzq `
g
ÿ

j“1

cj logp|z ´ aj|q. (21)

Finally, if the partials of u extend continuously to the boundary, then so does f ; and
if f extends continuously to the boundary, then so does u and the formula of (21).

The cj are the periods of u about the boundary component Γj.

Remark 36.2. The idea behind the proof is the following. Fix a base point b P Ω. It is
possible to define locally an analytic function whose real part is u by choosing a path γ
from b to z and considering, somewhat informally,

ż z

b

Bu :“

ż

γ

Bu` upbq.
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The difficulty is that different paths from b to z can lead to different values. On the
other hand, these values differ in a predictable fashion, namely up to some Z linear
combination of the periods, by the Cauchy integral formula. Our forefathers referred
to these as multiple-valued functions. The proof of theorem then amounts to correcting
the periods, in this case using the harmonic functions (with well understood periods)
logp|z ´ aj|q. ˛

The proof of Theorem 36.1 will use the following lemma.

Lemma 36.3. Given a point a P C,

B logp|z ´ a|q “
1

z ´ a
.

:

Proof. Given a point z, choose a branch of the logarithm logpz ´ aq in a neighborhood
N of z. In particular, u “ Re logpz ´ aq and thus the imaginary part of logpz ´ aq is a
harmonic conjugate of u. The lemma now follows by Remark 34.1 �

Proof of Theorem 36.1. Choose curves γj in Ω such that nγjpwq “ 1 for w P Kj and
nγjpwq “ 0 for w P Ki for i ‰ j. Let

cj “
1

2πi

ż

γj

Bu.

Since

Im cj “
´1

2π
Re

ż

γj

Bu

“
´1

2π
Re

ż

γj

rux ´ iuyspdx` idyq

“
´1

2π
ruxdx` uydys “ 0

since the expression is the integral of an exact differential over a closed curve. Thus cj
is real. Let

gpzq “ rBu´
g
ÿ

j“1

cj
z ´ aj

s.

Now suppose σ is a closed curve in Ω with winding number nj about Kj (meaning
nσpwq “ nj for each w P Kj). It follows that γ is homologous to γ “

řg
j“1mjγj; i.e.,

σ ´ γ is homologous to 0. Hence, by Cauchy’s integral formula,
ż

σ

g “

ż

γ

g

“nj
ÿ

j

ż

γj

Bu´
ÿ

cjnγjpajq “ 0
(22)
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by the choice of the cj. It follows, from Corollary 16.3, that g has a primitive f ; i.e.,
there is an analytic function f : Ω Ñ C such that f 1 “ g. Indeed, a choice of f is
obtained by fixing a point b P Ω and defining fpzq “

şz

b
g from which it will follow that

f extends continuously to the boundary if the partials of u do.

Let

vpzq “ Re fpzq `
g
ÿ

j“1

cj logp|z ´ aj|q.

Let hpzq “ Re fpzq and note that hx “ Re f 1. Likewise, let hjpzq “ logp|z ´ aj|q and
observe, by Lemma 36.3,

phjqx “ Re Bhj “ Re
1

z ´ aj
.

Thus

vx “ Rerf 1 `
g
ÿ

j“1

cjBhjs “ Re Bu “ ux.

A similar argument shows vy “ uy. Hence u and v agree up to a constant. Adjusting f
by this constant gives formula (21). �

37. The reflection principle for harmonic functions

An analytic closed curve γ is the image of the unit circle T under a mapping that
is bianalytic in an open set containing T. The nice multiply connected domain Ω has
analytic boundary if each of the boundary components Γj is a simple analytic closed
curve. In this case we may assume that the bianalytic mappings defining Γj map the
inside of the unit circle into Ω.

Theorem 37.1. Suppose the boundary of Ω consists of simple closed analytic arcs. If
u : Ω Ñ R is continuous, harmonic on Ω and u|Γj is constant for 0 ď j ď g, then u

extends to a harmonic function on an open set containing Ω.

The proof of Theorem 37.1 occupies the rest of this section.

Lemma 37.2. Suppose ρ ą 0 and let

H “ tz : 0 ă Im z ă ρu, H` “ tz : 0 ď Im z ă ρu.

If

(1) u : H` Ñ R is continuous;
(2) u|H is harmonic; and
(3) u|tIm z“0u “ 0,

then u extends uniquely to a harmonic function on S “ t´ρ ă Im z ă ρu. Moreover, if
u is 2π periodic, then so is its extension. :
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Proof. Define v : SÑ R by

vpzq “

#

upzq z P H`

´upzq ´ρ ă Im z ă 0.

Thus v extends u and is continuous in view of items (1) and (3). Moreover, v is harmonic
in H by hypotheses from which it follows by a simple calculation that v is harmonic on
the set t´ρ ă 0 ă Im zu. By Theorem 22.6, it is enough to show that for each point
z P S there is an R ą 0 such that v satisfies the maximum principle in Bpz;Rq Ă S.

Hence, it suffices to show that if Im z “ 0, r ą 0 and Bpz; rq Ă S, then
ż 2π

0

vpz ` reitqdt “ vpzq “ 0,

a conclusion that follows from the symmetry vpz ` re´itq “ vpz ` ritq “ ´vpz ` ritq.

Finally, if u is 2π periodic, then, from its definition, so is v. �

Lemma 37.3. Fix r ą 0 and consider the annular regions

A “ tr ă |z| ă 1u, A` “ tr ă |z| ď 1u.

If

(i) u : A` Ñ R is continuous;
(ii) u|A is harmonic; and

(iii) u “ 0 on T,

then u extends to a harmonic function on an open set containing A`. :

Proof. Let ρ “ ´ logprq ą 0 and let S denote the strip t´ρ ă =z ă ρu. In particular,
epzq “ exppizq maps S conformally onto the annular region A “ tr ă |z| ă 1

r
u. Define

H and H` as in Lemma 37.2 and defined ũ : H` Ñ R by ũ “ u ˝ e. It follows that ũ is
continuous, 2π periodic and ũ|H is a harmonic. Hence, by Lemma 37.2, ũ extends to a
2π periodic harmonic function ṽ on all of S. Since ṽ is 2π periodic, there is a harmonic
function v on A such that ṽ “ v ˝ e. (Compare with Lemma 20.6.) Indeed, given
z P A , simply observe, that if `1 and `2 are any two branches of the log defined in a
neighborhood of z, the `1pζq “ `2pζq`2πik for some integer k. Hence, vpzq “ ṽpi`jpzqq is
well defined. It is harmonic as it is the composition of a harmonic function with (locally)
an analytic function. Now v ˝ e “ ṽ and thus v ˝ e|H` “ ũ “ u ˝ e. Hence v|A` “ u.

�

Lemma 37.4. Let Ω be a nice multiply connected domain with boundary Γ “ YΓj. Fix
k. If

(1) u is continuous on ΩY Γk;
(2) Γk is an simple closed analytic curve;
(3) u is constant on Γk,

then there is an open set Ω1 Ą ΩY Γk and a harmonic function on Ω1 extending u. :
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Theorem 37.5 (Jordan Curve Theorem). If γ is a simple closed curve in C, then the
open set Cztγu consists of two components.

The unbounded component is the outside of tγu. The bounded component is the
inside of tγu.

Proof of Lemma 37.4. Assume, without loss of generality, that u “ 0 on Γk. By hypoth-
esis, there is an annular region A “ tr ă |z| ă 1

r
u and an analytic function f : A Ñ C

bianalytic on to its range such that Γk is the image of T. Without loss of generality we
may assume this mapping takes A “ tr ă |z| ă 1u into Ω; and A1 “ t1 ă |z| ă 1

r
u into

the complement of Ω. The composition u ˝ f defined on A` “ tr ă |z| ď 1u satisfies the
hypotheses Lemma 37.3. Hence u ˝ f extends to a harmonic function v̂ on A . Letting
v “ v̂ ˝ f´1 completes the proof. �

Proof of Theorem 37.1. The hypotheses allow the application of Lemma 37.4 to each
boundary component. �

38. Harmonic measure, the period matrix and the Abel-Jacobi map

A nice multiply connected domain Ω of genus g with boundary Γ is a Dirichlet
domain. Let wj denote the solution to the Dirichlet problem on Ω with boundary values
wj|Γi “ 1 if i “ j and 0 if i ‰ j. The harmonic functions w0, w1, . . . , wg are harmonic
measure for Ω. This terminology is of course rather outdated. Let, for tγ1, . . . , γgu a
basis for Ω,

pj,k “
1

2π

ż

γj

Bwk
Bn

ds “

ż

Γ

Bwk
Bn

ds.

Thus Pj,k is the period of wk about Γj. Note that Green’s Theorem implies Pk,j “ Pj,k
and thus P “ P T . The matrix P “ ppj,kq is the period matrix for Ω.

For the remainder of this section, assume Γ consists of simple closed analytic curves.

Proposition 38.1. The period matrix is symmetric and positive definite. :

Proof. The harmonic measures wj extend harmonically across the boundary by Theorem
37.1. Given real numbers c1, . . . , cg not all zero, let w “

ř

cjwj. By the primitive version
of Greens’ formula applied to u “ w “ v, equation (19),

0 ă

ĳ

Ω

pw2
x ` w

2
yq dA “

g
ÿ

j,k“1

cjck

ż

Γ

wj
Bwk
Bn

ds

“
ÿ

j,k

Pj,k cj ck.

It follows, letting c P Rg denote the vector with entries cj, that cTPc ą 0 whenever
c ‰ 0. Since also P is symmetric, it is positive definite. �
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Let Zg denote column vectors with entries from Z and let L denote the lattice

L “ Zg ` iPZg “ tm` iPn : m,n P Zgu,
where P is the period matrix for Ω. The Jacobian variety of Ω is the quotient space
Cg{L. Let w1, . . . , wg denote the harmonic measures for Ω, let

w “

¨

˝

w1
...
wg

˛

‚

and define Bw in the obvious fashion.

Proposition 38.2. Fix a point b P Ω. If γ is a closed (rectifiable) path in Ω, then

1

2π

ż

γ

Bw P iPZg.

Thus the mapping f : Ω Ñ Cg defined by

fpzq “
1

π

ż z

b

1

2
Bw,

where the integral is taken over any path from b to z in Ω, is well defined and analytic. :

Proof. The curve γ is homologous to
ř

mjΓj for some choice of integers mj. Hence,

1

2π

ż

γ

Bwk “ i
ÿ

Pj,kmj

and therefore
1

2π

ż

γ

Bw “ iPm.

It follows that f is well defined. It is locally analytic and hence analytic.

Finally, �
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39. Appendix A

Lemma 39.1. Suppose Ω Ă C is an open set, γ : ra, bs Ñ Ω is a rectifiable path. If
F is an equicontinuous family offunctions f : Ω Ñ C, then for every ε ą 0 there exists
a polygonal path Γ : ra, bs Ñ Ω such that Γpaq “ γpaq and Γpbq “ γpbq and, for each
f P F ,

ˇ

ˇ

ˇ

ˇ

ż

γ

f ´

ż

Γ

f

ˇ

ˇ

ˇ

ˇ

ă ε.

:

Proof. Observe that the proof in Conway works at this level of generality �
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Apy; rq, 56
C2, 86
Ep, 45
Prptq, 59
şy

x
f , 8

lim sup, 57
Jx, yK, 8
D, 31
S pGq, 64
B8Ω, 30
ś

zj , 43
˚du, 87
(fixed endpoint) homotopic (in Ω), 19

analytic boundary, 91
analytic closed curve, 91
annulus, 24

barrier at a point, 65
basis, 89

conjugate differential, 87
converges absolutely, 24, 43
converges uniformly on compact sets, 35
converges uniformly on compact subsets, 24
correcting the periods, 90

degree of a polynomial, 10
derivative with respect to the outward normal,

88
determining set, 11
Dirichlet domain, 64
domain, 6
domain of genus g, 88

entire function, 10
equicontinuous, 37
essential singularity, 23
exact, 87
exhaustion, 33
exponent of convergence, 77

finite genus, 70
finite order, 73
finite rank, 70

genus, 70
Green’s function, 67

harmonic, 53, 86

harmonic conjugate, 54
harmonic conjugates, 54
harmonic measure, 93
homologous to zero (in Ω), 14
homotopic, 16
homotopic to 0, 17
hyperbolic distance, 33

index, 14
infinite product, 43
inside, 93
isolated singularity, 23

Laplacian, 88
Laurent Series, 24
line segment, 8
locally bounded, 39
locally rectifiable path connected, 20
locally subharmonic, 56

maximum principle, 56
mean value property, 56
meromorphic, 28
monic, 10
multiple-valued functions, 90
multiplicity, 21

nice, 88
nice multiply connected domain, 88
normal, 36
normal derivative, 88

order of a zero, 11, 21
order of the entire function, 73
order of the pole, 24
oriented triangle, 8
outside, 93

period matrix, 93
periods, 89
Perron family, 64
Perron solution, 64
Poincare, 33
pointwise bounded, 37
pointwise equicontinuous, 37
Poisson kernel, 59
pole, 23
polynomially convex, 51
polynomially convex hull, 51
precompact, 36
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rank, 70
removable, 23

semi-metric, 33
simple zero, 22
simply connected, 20
singular part, 24
standard factorization, 70
standard form, 70
star shaped, 17
star shaped with respect to y, 17
subharmonic, 56
superharmonic, 56

tangential derivative, 88
the unit disk, 31

unbounded component, 13
unimodular, 32

Weierstrass elementary factors, 46
winding number, 14

zero of a function, 10
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