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MAA6616 COURSE NOTES
FALL 2016

1. σ-algebras

Let X be a set, and let 2X denote the set of all subsets of X. Let Ec denote the
complement of E in X, and for E,F ⊂ X, write E \ F = E ∩ F c.

Definition 1.1. Let X be a set. A Boolean algebra is a nonempty collection A ⊂ 2X

which is closed under finite unions and complements. A σ-algebra is a Boolean algebra
which is also closed under countable unions.

/

Remark 1.2. If E ⊂ 2X is any collection of sets in X, then(⋃
E∈E

Ec

)c

=
⋂
E∈E

E. (1)

Hence a Boolean algebra (resp. σ-algebra) is automatically closed under finite (resp.
countable) intersections. It follows that a Boolean algebra (and a σ-algebra) on X
always contains ∅ and X. (Proof: X = E ∪ Ec and ∅ = E ∩ Ec.) �
Definition 1.3. A measurable space is a pair (X,M ) where M ⊂ 2X is a σ-algebra. A
function f : X → Y from one measurable space (X,M ) to another (Y,N ) is measurable
if f−1(E) ∈M whenever E ∈ N . /

Definition 1.4. A topological space X = (X, τ) consists of a set X and a subset τ of
2X such that

(i) ∅, X ∈ τ ;
(ii) τ is closed under finite intersections;

(iii) τ is closed under arbitrary unions.

The set τ is a topology on X.

Date: November 18, 2016.
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(a) Elements of τ are open sets;
(b) A subset S of X is closed if X \ S is open;
(c) S is a Gδ if S = ∩∞j=1Oj for open sets Oj;
(d) S is an Fσ if it is an (at most) countable union of closed sets;
(e) A subset C of X is compact, if for any collection F ⊂ τ such that C ⊂ ∪{T : T ∈ F}

there exist a finite subset G ⊂ F such that C ⊂ ∪{T : T ∈ G}; if σ ⊂ τ ; and
(f) If (X, τ) and (Y, σ) are topological spaces, a function f : X → Y is continuous if

S ∈ σ implies f−1(S) ∈ τ .

/

Example 1.5. If (X, d) is a metric space, then the collection τ of open sets (in the
metric space sense) is a topology on X. There are important topologies in analysis that
are not metrizable (do not come from a metric). 4

Remark 1.6. There is a superficial resemblance between measurable spaces and topo-
logical spaces and between measurable functions and continuous functions. In particular,
a topology on X is a collection of subsets of X closed under arbitrary unions and finite
intersections, whereas for a σ-algebra we insist only on countable unions, but require
complements also. For functions, recall that a function between topological spaces is
continuous if and only if pre-images of open sets are open. The definition of measur-
able function is plainly similar. The two categories are related by the Borel algebra
construction appearing later in these notes. �

The disjointification trick in the next Proposition is often useful.

Proposition 1.7 (Disjointification). Suppose ∅ 6= M ⊂ 2X is closed with respect to
complements, finite intersections and countable disjoint unions. If M ⊂ 2X is a σ-
algebra and (Gj)

∞
j=1 is a sequence of sets from M , then there exists a sequence (Fj)

∞
j=1

of pairwise disjoint sets from M such that
n⋃
j=1

Fj =
n⋃
j=1

Gj

for n either a positive integer or ∞.

Hence, M is a σ-algebra if and only if M is closed under complement, finite inter-
sections and countable disjoint unions. †

Proof. The proof amounts to the observation that if (Gn) is a sequence of subsets of X,
then the sets

Fn = Gn \

(
n−1⋃
k=1

Gk

)
= Gn ∩ (∩n−1

k=1G
c
k) (2)

are disjoint, in M and
⋃n
j=1 Fj =

⋃n
j=1Gj for all n ∈ N+ (and thus

⋃∞
j=1 Fj =

⋃∞
j=1Gj).

To prove the second part of the Proposition, given a sequence (Gn) from M use
the disjointification trick to obtain a sequence of disjoint sets Fn ∈M such that ∪Gn =
∪Fn. �
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Example 1.8. Let X be a nonempty set.

(a) The power set 2X is the largest σ-algebra on X.
(b) At the other extreme, the set {∅, X} is the smallest σ-algebra on X.
(c) Let X be an uncountable set. The collection

M = {E ⊂ X : E is at most countable or X \ E is at most countable } (3)

is a σ-algebra (the proof is left as an exercise).
(d) If M ⊂ 2X a σ-algebra, and E is any nonempty subset of X, then

ME := {A ∩ E : A ∈M } ⊂ 2E

is a σ-algebra on E (exercise).
(e) If {Mα : α ∈ A} is a collection of σ-algebras on X, then their intersection ∩α∈AMα

is also a σ-algebra (checking this statement is a simple exercise). Hence given any
set E ⊂ 2X , we can define the σ-algebra

M (E ) =
⋂
{M : M is a σ-algebra and E ⊂M }. (4)

Note that the intersection is over a nonempty collection since E is a subset of the
σ-algebra 2X . The set M (E ) is the σ-algebra generated by E . It is the smallest
σ-algebra on X containing E .

(f) An important instance of the construction in item (e) is when X is a topological
space and E is the collection of open sets of X. In this case the σ-algebra generated
by E is the Borel σ-algebra and is denoted BX . The Borel σ-algebra over R is
studied more closely in Subsection 1.1.

(g) If (Y,N ) is a measurable space and f : X → Y, then the collection

f−1(N ) = {f−1(E) : E ∈ N } ⊂ 2X (5)

is a σ-algebra on X (check this) called the pull-back σ-algebra. The pull-back σ-
algebra is the smallest σ-algebra on X such that the function f : X → Y is measur-
able.

(h) More generally given a family of measurable spaces (Yα,Nα), where α ranges over
some index set A, and functions fα : X → Yα, let

E = {f−1
α (Eα) : α ∈ A,Eα ∈ Nα} ⊂ 2X

and let M = M (E ). The σ-algebra M is the smallest σ-algebra on X such that
each of the functions fα is measurable. Unlike the case of a single f , the collection
E need not be σ-algebra in general. An important special case of this construction
is the product σ-algebra (see Subsection 1.2).

(i) If (X,M) is a measurable space and f : X → Y , then

Ωf = {E ⊂ Y : f−1(E) ∈M} ⊂ 2Y

is a σ-algebra.

4

The following proposition is trivial but useful.
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Proposition 1.9. If M ⊂ 2X is a σ-algebra and E ⊂M , then M (E ) ⊂M . †

The proposition is used in the following way. To prove a particular statement say
P is true for every set in some σ-algebra M ⊂ 2X (say, the Borel σ-algebra BX): (1)
check to see if the collection of sets P ⊂ 2X satisfying property P is itself a σ-algebra
(otherwise it is time to look for a different proof strategy); and (2) find a collection of
sets E (say, the open sets of X) such that each E ∈ E has property P and such that
M (E ) = M . It then follows that M = M (E ) ⊂ P. (The monotone class lemma
which we will study later is typically used in a similar way.)

A function f : X → Y between topological spaces is said to be Borel measurable if
it is measurable when X and Y are equipped with their respective Borel σ-algebras.

Proposition 1.10. If X and Y are topological spaces and if f : X → Y is continuous,
then f is Borel measurable. †

Proof. Problem 7.7. (Hint: follow the strategy described after Proposition 1.9.) �

1.1. The Borel σ-algebra over R. Before going further, we take a closer look at the
Borel σ-algebra over R, beginning with the following useful lemma on the structure of
open subsets of R which may be familiar to you from advanced calculus.

Lemma 1.11. Every nonempty open subset U ⊂ R is an (at most countable) disjoint
union of open intervals. †

Here the “degenerate” intervals (−∞, a), (a,+∞), (−∞,+∞) are allowed.

Proof outline. First verify that if I and J are intervals and I ∩ J 6= ∅, then I ∪ J is an
interval. Given x ∈ U , let

αx = sup{a : [x, a) ⊂ U}
βx = inf{b : (b, x] ⊂ U}

and let Ix = (αx, βx). Verify that, for x, y ∈ U either Ix = Iy or Ix ∩ Iy = ∅. Indeed,
x ∼ y if Ix = Iy is an equivalence relation on U . Hence, U = ∪x∈UIx expresses U as
a disjoint union of nonempty intervals, say U = ∪p∈P Ip where P is an index set and
the Ip are nonempty intervals. For each q ∈ Q ∩ U there exists a unique pq such that
q ∈ Ipq . On the other hand, for each p ∈ P there is a q ∈ Q∩U such that q ∈ Ip. Thus,
the mapping from Q ∩ U to P defined by q 7→ pq is onto. It follows that P is at most
countable. �

Proposition 1.12 (Generators of BR). Each of the following collections of sets E ⊂ 2R

generates the Borel σ-algebra BR :

(i) the open intervals E1 = {(a, b) : a, b ∈ R};
(ii) the closed intervals E2 = {[a, b] : a, b ∈ R};

(iii) the (left or right) half-open intervals E3 = {[a, b) : a, b ∈ R} or E4 = {(a, b] : a, b ∈
R};
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(iv) the (left or right) open rays E5 = {(−∞, a) : a ∈ R} or E6 = {(a,+∞) : a ∈ R};
(v) the (left or right) closed rays E7 = {(−∞, a] : a ∈ R} or E8 = {[a,+∞) : a ∈ R}.

†

Proof. Only the open and closed interval cases are proved, the rest are similar and left
as exercises. The proof makes repeated use of Proposition 1.9. Let O denote the open
subsets of R. Thus, by definition, BR = M (O). To prove M (E1) = BR, first note that
since each interval (a, b) is open and thus in O, M (E1) ⊂ M (O) by Proposition 1.9.
Conversely, each open set U ⊂ R is a countable union of open intervals, so M (E1)
contains O and hence (after another application of Proposition 1.9) M (O) ⊂M (E1).

For the closed intervals E2, first note that each closed set is a Borel set, since it is
the complement of an open set. Thus E2 ⊂ BR so M (E2) ⊂ BR by Proposition 1.9.
Conversely, each open interval (a, b) is a countable union of closed intervals [a+ 1

n
, b− 1

n
].

Indeed, for −∞ < a < b <∞,

(a, b) =
∞⋃
n=N

[a+
1

n
, b− 1

n
]

and a similar construction handles the cases that either a = −∞ or b = ∞. It follows
that E1 ⊂M (E2), so by Proposition 1.9 and the first part of the proof,

BR = M (E1) ⊂M (E2).

�

Sometimes it is convenient to use a more refined version of the above Proposition,
where we consider only dyadic intervals.

Definition 1.13. A dyadic interval is an interval of the form

I =

(
k

2n
,
k + 1

2n

]
(6)

where k, n are integers. /

(Draw a picture of a few of these to get the idea). A key property of dyadic intervals
is the nesting property: if I, J are dyadic intervals, then either they are disjoint, or one is
contained in the other. Dyadic intervals are often used to “discretize” analysis problems.

Proposition 1.14. Every open subset of R is a countable disjoint union of dyadic in-
tervals. †

Proof. Problem 7.5. �

It follows (using the same idea as in the proof of Proposition 1.12) that the dyadic
intervals generate BR. The use of half-open intervals here is only a technical convenience,
to allow us to say “disjoint” in the above proposition instead of “almost disjoint.”
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1.2. Product σ-algebras. Suppose n ∈ N+ and (Xj,Mj) are σ-algebras for j =
1, 2, . . . , n. Let X =

∏n
j=1Xj, the product space. Thus X = {(x1, . . . , xn) : xj ∈

Xj, j = 1, . . . , n}. Let πj : X → Xj denote the j-th coordinate projection, π(x) = xj.
The product σ-algebra, defined below, is the smallest σ-algebra on X such that each πj
is measurable.

Definition 1.15. Given measurable spaces (Xj,Nj), j = 1, . . . n, the product σ-algebra
⊗nj=1Nj is the σ algebra on X =

∏n
j=1Xj generated by

{π−1
j (Ej) : Ej ∈ Nj, j = 1, . . . n}.

/

Remark 1.16. Given Ej ∈ Nj for j = 1, . . . , n, the set ×nj=1Ej ∈ ⊗nj=1Nj is a mea-
surable rectangle. In particular, the set of measurable rectangles generates the product
σ-algebra. �

There are now two canonical ways of constructing σ-algebras on Rn. The Borel
σ-algebra BRn and the product σ-algebra obtained by giving each copy of R the Borel
σ-algebra BR and forming the product σ-algebra ⊗n1BR. It is reasonable to suspect that
these two σ-algebras are the same, and indeed they are.

Proposition 1.17. BRn = ⊗nj=1BR. †

Proof. We use Proposition 1.9 to prove inclusions in both directions. By definition, the
product σ-algebra ⊗nk=1BR is generated by the collection of sets

E = {π−1
j (Ej) : Ej ∈ BR, j = 1, . . . n},

where πj(x1, . . . xn) = xj is the projection map, π : Rn → R. Summarizing, M (E) =
⊗nj=1BR.

For each j, the projection πj is continuous and hence, by Proposition 1.10, Borel
measurable. Consequently, if Ej ∈ BR, the

π−1
j (Ej) = R× · · · × R× Ej × R× · · · × R ∈ BRn .

where Ej is the jth factor. Hence E ⊂ BRn and, by Proposition 1.9, M (E) ⊂ BRn .

To prove the reverse inclusion, it suffices to identify a subset B of the product
σ-algebra ⊗nj=1BR such that M (B) ⊃ BRn , since then

⊗nj=1BR ⊃M (B) ⊃ BRn .

Let B denote the collection of open boxes, B = (a1, b1) × · · · × (an, bn) =
∏n

j=1(aj, bj).
Since these boxes are measurable rectangles, they are elements of ⊗nj=1BR. Let On

denote the open sets in Rn. Each U ∈ On is a countable union of open boxes (just
take all the open boxes contained in U having rational vertices). Hence On ⊂ M (B)
and consequently BRn ⊂ M(B). (Equality holds, of course. But we only need this
inclusion.) �
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2. Measures

Definition 2.1. Let X be a set and M a σ-algebra on X. A measure on M is a function
µ : M → [0,+∞] such that

(i) µ(∅) = 0; and
(ii) if (Ej)

∞
j=1 is a sequence of disjoints sets in M , then

µ

(
∞⋃
j=1

Ej

)
=
∞∑
j=1

µ(Ej).

If µ(X) <∞, then µ is finite. If X = ∪∞j=1Xj with µ(Xj) <∞ for each j, then µ is
σ-finite.

A triple (X,M , µ) where X is a set, M is a σ-algebra and µ a measure on M , is a
measure space. /

Almost all of the measures of importance in analysis are σ-finite.

Here are some simple measures and some procedures for producing new measures
from old. Non-trivial examples of measures will have to wait for the Caratheodory and
Hahn-Kolmogorov theorems in the following sections.

Example 2.2. (a) Let X be any set and, for E ⊂ X, let |E| denote the cardinality of
E, in the sense of a finite number or ∞. The function µ : 2X → [0,+∞] defined by
µ(E) = |E| is a measure on (X, 2X), called counting measure. It is finite if and only
if X is finite, and σ-finite if and only if X is countable.

(b) Let X be an uncountable set and M the σ-algebra of (at most) countable and co-
countable sets (Example 1.8(b)). The function µ : M → [0,∞] defined by µ(E) = 0
if E is countable and µ(E) = +∞ if E is co-countable is a measure.

(c) Let (X,M , µ) be a measure space and E ∈ M . Recall ME from Example 1.8(c).
The function µE(A) := µ(A∩E) is a measure on (E,ME). (Why is the assumption
E ∈M necessary?)

(d) (Linear combinations) If µ is a measure on M and c > 0, then (cµ)(E) =: c µ(E) is
a measure, and if µ1, . . . µn are measures on the same M , then

(µ1 + · · ·µn)(E) := µ1(E) + · · ·µn(E)

is a measure. Likewise a countably infinite sum of measures
∑∞

n=1 µn is a measure.
(The proof of this last fact requires a small amount of care. See Problem 7.9.)

4

One can also define products and pull-backs of measures, compatible with the con-
structions of product and pull-back σ-algebras. These examples will be postponed until
we have built up some more machinery of measurable functions.

Theorem 2.3 (Basic properties of measures). Let (X,M , µ) be a measure space.
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(a) (Monotonicity) If E,F ∈ M and E ⊂ F , then µ(F ) = µ(F \ E) + µ(E). In
particular, µ(E) ≤ µ(F ) and if µ(E) <∞, then µ(F \ E) = µ(F )− µ(E).

(b) (Subadditivity) If (Ej)
∞
j=1 ⊂M , then µ(

⋃∞
j=1 Ej) ≤

∑∞
j=1 µ(Ej).

(c) (Monotone convergence for sets) If (Ej)
∞
j=1 ⊂M and Ej ⊂ Ej+1 ∀j, then limµ(Ej)

exists and moreover µ(∪Ej) = limµ(Ej).
(d) (Dominated convergence for sets) If (Ej)

∞
j=1 is a decreasing (Ej ⊃ Ej+1 for all j)

from M and µ(E1) <∞, then limµ(Ej) exists and moreover µ(∩Ej) = limµ(Ej).

Proof. (a) By additivity, µ(F ) = µ(F \ E) + µ(E) ≥ µ(E).

(b) For 1 ≤ j ≤ g, let

Fj = Ej \

(
j−1⋃
k=1

Ek

)
.

By proposition 1.7, the Fj are pairwise disjoint, Fj ⊂ Ej for all j and ∪∞j=1Fj = ∪∞j=1Ej.
Thus by countable additivity and (a),

µ

(
∞⋃
j=1

Ej

)
= µ

(
∞⋃
j=1

Fj

)
=
∞∑
j=1

µ(Fj) ≤
∞∑
j=1

µ(Ej).

(c) With the added assumption that the sequence (Ej)
∞
j=1 is nested increasing,⋃j

k=1 Fk = Ej for each j. Thus, by countable additivity,

µ

(
∞⋃
j=1

Ej

)
= µ

(
∞⋃
j=1

Fj

)

=
∞∑
k=1

µ(Fk)

= lim
j→∞

j∑
k=1

µ(Fk)

= lim
j→∞

µ

(
j⋃

k=1

Fk

)
= lim

j→∞
µ(Ej).

(d) The sequence µ(Ej) is decreasing (by (a)) and bounded below, so limµ(Ej)
exists. Let Fj = E1 \ Ej. Then Fj ⊂ Fj+1 for all j, and

⋃∞
j=1 Fj = E1 \

⋂∞
j=1 Ej. So by
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(a) and (c) applied to the Fj, and since µ(E1) <∞,

µ(E1)− µ(
∞⋂
j=1

Ej) = µ(E1 \
∞⋂
j=1

Ej)

= limµ(Fj)

= lim(µ(E1)− µ(Ej))

= µ(E1)− limµ(Ej).

Again since µ(E1) <∞, it can be subtracted from both sides. �

Example 2.4. Note that in item (d) of Theorem 2.3, the hypothesis “µ(E1) <∞” can
be replaced by “µ(Ej) < ∞ for some j”. However the finiteness hypothesis cannot be
removed entirely. For instance, consider (N, 2N) equipped with counting measure, and
let Ej = {k : k ≥ j}. Then µ(Ej) =∞ for all j but µ(

⋂∞
j=1Ej) = µ(∅) = 0. 4

For any set X and subset E ⊂ X, there is a function 1E : X → {0, 1} defined by

1E(x) =

{
1 if x ∈ E
0 if x 6∈ E

,

called the characteristic function or indicator function of E. It is easily verified, if (X,M )
is a measure space and E ⊂ X, then E ∈M if and only if 1E is (M ,BR) measurable.
For a sequence of subsets (En) of X, by definition (En) converges to E pointwise if
1En → 1E pointwise1. This notion allows the formulation of a more refined version of
the dominated convergence theorem for sets, which foreshadows (and is a special case
of) the dominated convergence theorem for the Lebesgue integral. See Problems 7.12
and 7.13.

Definition 2.5. Let (X,M , µ) be a measure space. A null set (or µ-null set) is a set
E ∈M with µ(E) = 0. /

It follows immediately from countable subadditivity that a countable union of null
sets is null. The contrapositive of this statement is a measure-theoretic version of the
pigeonhole principle:

Proposition 2.6 (Pigeonhole principle for measures). If (En)∞n=1 is a sequence of sets
in M and µ(∪En) > 0, then µ(En) > 0 for some n. †

It will often be tempting to assert that if µ(E) = 0 and F ⊂ E, then µ(F ) = 0, but
one must be careful: F need not be a measurable set. This caveat is not a big deal in
practice, however, because we can always enlarge the σ-algebra on which a measure is
defined so as to contain all subsets of null sets, and it will usually be convenient to do
so.

Definition 2.7. If (X,M , µ) has the property that F ∈M whenever E ∈M , µ(E) = 0,
and F ⊂ E, then µ is complete. /

1What would happen if we asked for uniform convergence?
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Theorem 2.8. Suppose (X,M , µ) be a measure space and let N := {N ∈M |µ(N) =
0}. The collection

M := {E ∪ F |E ∈M , F ⊂ N for some N ∈ N }

is a σ-algebra, and µ : M → [0,∞] given by

µ(E ∪ F ) := µ(E)

is a well-defined function and a complete measure on M such that µ|M = µ.

The measure space (X,M , µ) is the completion of (X,M , µ). It is evident that if
M ⊂ N ⊂ 2X is a σ-algebra, ν is a measure on N such that ν|M = µ and (X,N , ν)
is complete, then M ⊂ N and ν|M = µ.

Some of the proof. First note that M and N are both closed under countable unions,
so M is as well. To see that M is closed under complements, consider E ∪F ∈M with
E ∈M , F ⊂ N ∈ N . Using, F c = N c ∪ (N \ F ),

(E ∪ F )c = Ec ∩ F c = (Ec ∩N c) ∪ (N ∩ F c ∩ Ec).

The first set on the right hand side is in M and the second is a subset of N . Thus the
union is in M as desired.

To prove that µ is well defined, suppose G = E ∪ F = E ′ ∪ F ′ for E,E ′ ∈M and
F, F ′ ∈ N . In particular, there exists µ-null sets N,N ′ ∈M with F ⊂ N and F ′ ⊂ N ′.
Observe that

M 3 E \ E ′ ⊂ G \ E ′ ⊂ F ′ ⊂ N ′.

Thus µ(E \ E ′) = 0. On the other hand,

E = (E ∩ E ′) ∪ (E \ E ′).

Thus, µ(E) = µ(E ∩ E ′). By symmetry, µ(E ′) = µ(E ′ ∩ E).

The proof that µ is a complete measure on M which extends µ, is left as an exercise
(Problem 7.14). �

3. Outer measures and the Caratheodory Extension Theorem

The point of the construction of Lebesgue measure on the real line is to extend the
naive notion of length for intervals to a suitably large family of subsets of R. Indeed, this
family should be a σ-algebra containing all open intervals and hence the Borel σ-algebra.

Definition 3.1. Let X be a nonempty set. A function µ∗ : 2X → [0,+∞] is an outer
measure if

(i) µ∗(∅) = 0;
(ii) (Monotonicity) if A ⊂ B, then µ∗(A) ≤ µ∗(B);
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(iii) (Subadditivity) if (Aj)
∞
j=1 ⊂ 2X , then

µ∗

(
∞⋃
j=1

Aj

)
≤

∞∑
j=1

µ(Aj).

/

Definition 3.2. If µ∗ is an outer measure on X, then a set E ⊂ X is outer measurable
(or µ∗-measurable, or measurable with respect to µ∗, or just measurable) if

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) (7)

for every A ⊂ X. /

The significance of outer measures and (outer) measurable sets stems from the following
theorem.

Theorem 3.3 (Caratheodory Extension Theorem). If µ∗ is an outer measure on X,
then the collection M of outer measurable sets is a σ-algebra and the restriction of µ∗

to M is a complete measure.

The outer measures encountered in these notes arise from the following construction.

Proposition 3.4. Suppose E ⊂ 2X and ∅, X ∈ E . If µ0 : E → [0,+∞] and µ0(∅) = 0,
then the function µ∗ : 2X → [0,∞] defined by

µ∗(A) = inf

{
∞∑
n=1

µ0(En) : En ∈ E and A ⊂
∞⋃
n=1

En

}
(8)

is an outer measure. †

Note that we have assumed ∅, X ∈ E , so there is at least one covering of A by sets
in E (take E1 = X and all other Ej empty), so the definition (8) makes sense. On the
other hand, Proposition 3.4 is mute on whether E ∈ E is µ∗-outer measurable or, in the
case E is outer measurable, whether µ∗(E) and µ0(E) agree.

Proof of Proposition 3.4. It is immediate from the definition that µ∗(∅) = 0 (cover the
empty set by empty sets) and that µ∗(A) ≤ µ∗(B) whenever A ⊂ B (any covering of B
is also a covering of A). To prove countable subadditivity, we make our first use of the
“ε/2n” trick. Let (An) be a sequence in 2X and let ε > 0 be given. Then for each n ≥ 1
there exists a countable collection of sets (En,k)

∞
k=1 in E such that An ⊂

⋃∞
k=1 En,k and

∞∑
k=1

µ0(En,k)− ε2−n < µ∗(An).

But now the countable collection (En,k)
∞
n,k=1 covers ∪∞n=1An, and

µ∗(∪An) ≤
∞∑

k,n=1

µ0(En,k) <
∞∑
n=1

(µ∗(An) + ε2−n) = ε+
∞∑
n=1

µ∗(An).
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(How was Problem 7.9 used here?) Since ε > 0 was arbitrary, µ∗(∪Aj) ≤
∑∞

n=1 µ
∗(An).

�

Example 3.5. [Lebesgue outer measure] Let E ⊂ 2R be the collection of all open inter-
vals (a, b) ⊂ R, with −∞ < a < b < +∞, together with ∅ and R. Define m0((a, b)) =
b− a, the length of the interval; µ0(∅) = 0; and µ0(R) = +∞. The corresponding outer
measure is Lebesgue outer measure and it is the mapping m∗ : 2R → [0,∞] defined, for
A ∈ 2X , by

m∗(A) = inf

{
∞∑
n=1

(bn − an) : A ⊂
∞⋃
n=1

(an, bn)

}
(9)

where we allow the degenerate intervals R = (−∞,+∞) and ∅. The value m∗(A) is the
Lebesgue outer measure of A. In the next section we will construct Lebesgue measure
from m∗ via the Caratheodory Extension Theorem. The main issues will be to show
that the outer measure of an interval is equal to its length, and that every Borel subset
of R is outer measurable. The other desirable properties of Lebesgue measure (such as
translation invariance) will follow from this construction. 4

Before proving Theorem 3.3 will make repeated use of the following observation.
Namely, if µ∗ is an outer measure on a set X, to prove that a subset E ⊂ X is outer
measurable, it suffices to prove that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A \ E)

for all A ⊂ X, since the opposite inequality for all A is immediate from the subadditivity
of µ∗.

The following lemma will be used to show the measure constructed in the proof of
Theorem 3.3 is complete. A set E ⊂ X is called µ∗-null if µ∗(E) = 0.

Lemma 3.6. Every µ∗-null set is µ∗-measurable. †

Proof. Let E be µ∗-null and A ⊂ X. By monotonicity, A ∩ E is also µ∗-null, so by
monotonicity again,

µ∗(A) ≥ µ∗(A \ E) = µ∗(A ∩ E) + µ∗(A \ E).

Thus the lemma follows from the observation immediately preceding the lemma. �

Proof of Theorem 3.3. We first show that M is a σ-algebra. It is immediate from Defi-
nition 3.2 that M contains ∅ and X, and since (7) is symmetric with respect to E and
Ec, M is also closed under complementation. Next we check that M is closed under
finite unions (which will prove that M is a Boolean algebra). So, let E,F ∈M and fix
an arbitrary A ⊂ X. Since F is outer measurable,

µ∗(A ∩ Ec) = µ∗((A ∩ Ec) ∩ F ) + µ∗((A ∩ Ec) ∩ F c). (10)

By subadditivity and the set equality A ∩ (E ∪ F ) = (A ∩ E) ∪ (A ∩ (F ∩ Ec)),

µ∗(A ∩ (E ∪ F )) ≤ µ∗(A ∩ E) + µ∗(A ∩ (F ∩ Ec)). (11)
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Using equations (11) and (10) and the outer measurability of E in that order,

µ∗(A ∩ (E ∪ F ))+µ∗(A ∩ ((E ∪ F )c))

≤µ∗(A ∩ E) + µ∗(A ∩ (F ∩ Ec)) + µ∗(A ∩ (F c ∩ Ec))

=µ∗(A ∩ E) + µ∗(A ∩ Ec)

=µ∗(A).

Hence E ∪ F is outer measurable.

Now we show that M is closed under countable disjoint unions. (It then follows
from Proposition 1.7 that M is a σ-algebra.) Let (En) be a sequence of disjoint outer
measurable sets, and let A ⊂ X be given. It is enough to show

µ∗(A) ≥ µ∗(A ∩
∞⋃
n=1

En) + µ∗(A \
∞⋃
n=1

En).

For each N ≥ 1, we have already proved that GN =
⋃N
n=1 En is outer measurable, and

therefore

µ∗(A) ≥ µ∗(A ∩
N⋃
n=1

En) + µ∗(A \
N⋃
n=1

En).

By monotonicity, µ∗(A \
⋃N
n=1En) ≥ µ∗(A \

⋃∞
n=1 En). Thus it suffices to prove

lim
N→∞

µ∗(A ∩
N⋃
n=1

En) ≥ µ∗(A ∩
∞⋃
n=1

En). (12)

(The limit exists as an extended real number since the sequence is increasing by mono-

tonicity of the outer measure.) By the outer measurability of GN =
⋃N
n=1 En and

disjointness of the En,

µ∗(A ∩
N+1⋃
n=1

En) =µ∗(A ∩GN+1)

=µ∗(A ∩GN+1 ∩GN) + µ∗(A ∩GN+1 ∩Gc
N)

=µ∗(A ∩
N⋃
n=1

En) + µ∗(A ∩ EN+1)

Iterating this identity gives

µ∗(A ∩
N+1⋃
n=1

En) =
N+1∑
k=0

µ∗(A ∩ Ek) (13)

and taking limits,

lim
N→∞

µ∗(A ∩
N⋃
n=1

En) =
∞∑
N=0

µ∗(A ∩ EN+1).
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From countable subadditivity,

lim
N→∞

µ∗(A ∩
N⋃
n=1

En) =
∞∑
N=0

µ∗(A ∩ EN+1) ≥ µ∗(A ∩
∞⋃
j=1

Ej),

proving the inequality of equation (12) and thus that M is a σ-algebra. Further, from
monotonicity,

µ∗(A ∩
∞⋃
n=1

En) ≥ µ∗(A ∩
N⋃
n=1

En) =
N∑
n=0

µ∗(A ∩ En))

and hence

µ∗(A ∩
∞⋃
n=1

En) ≥
∞∑
n=1

µ∗(A ∩ En).

Since the reverse inequality holds by subadditivity,

µ∗(A ∩
∞⋃
n=1

En) =
∞∑
n=1

µ∗(A ∩ En).

In particular, choosing A = X proves that µ∗ is countably additive on the σ-algebra of
µ∗-outer measurable sets and hence µ∗|M is a measure.

Finally, that µ∗ is a complete measure on M is an immediate consequence of
Lemma 3.6. �

4. Construction of Lebesgue measure

In this section, by an interval we mean any set I ⊂ R of the from (a, b), [a, b], (a, b], [a, b),
including ∅, open and closed half-lines and R itself. Let |I| = b − a, the length of the
interval I, interpreted as +∞ in the line and half-line cases and 0 for ∅. Recall the
definition of Lebesgue outer measure of a set A ⊂ R from Example 9:

m∗(A) = inf

{
∞∑
n=1

|In| : A ⊂
∞⋃
n=1

In

}
where the In are open intervals, or empty.

Theorem 4.1. If I ⊂ R is an interval, then m∗(I) = |I|.

Proof. We first consider the case where I is a finite, closed interval [a, b]. For any ε > 0,
the single open interval (a − ε, b + ε) covers I, so m∗(I) ≤ (b − a) + 2ε = |I| + 2ε, and
thus m∗(I) ≤ |I|. For the reverse inequality, again choose ε > 0, and let (In) be a cover
of I by open intervals such that

∑∞
n=1 |In| < m∗(I) + ε. Since I is compact, there is a

finite subcollection (Ink)
N
k=1 of the In which covers I. Then

N∑
k=1

|Ink | > b− a = |I|. (14)
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To verify this statement, observe that by passing to a further subcollection, we can
assume that none of the intervals Ink is contained in another one. Then re-index I1, . . . IN
so that the left endpoints a1, . . . aN are listed in increasing order. Since these intervals
cover I, and there are no containments, it follows that a2 < b1, a3 < b2, ...aN < bN−1.
(Draw a picture.) Therefore

N∑
k=1

|Ik| =
N∑
k=1

(bk − ak) = bN − a1 +
N−1∑
k=1

(bk − ak+1) ≥ bN − a1 > b− a = |I|.

From the inequality (14) it follows m∗(I) = |I|.
Now we consider the cases of bounded, but not closed, intervals (a, b), (a, b], [a, b).

If I is such an interval and I = [a, b] its closure, then, since m∗ is an outer measure, by
monotonicity m∗(I) ≤ m∗(I) = |I|. On the other hand, for all ε > 0 sufficiently small,
Iε := [a + ε, b− ε] ⊂ I, so by monotonicity again m∗(I) ≥ m∗(Iε) = |I| − 2ε and letting
ε→ 0 gives m∗(I) ≥ |I|.

Finally, the result is immediate in the case of unbounded intervals, since any un-
bounded interval contains arbitrarily large bounded intervals. �

Theorem 4.2. Every Borel set E ∈ BR is m∗-measurable.

Proof. By the Caratheodory extension theorem, the collection of m∗-measurable sets is a
σ-algebra, so by Propositions 1.12 and 1.9, it suffices to show that the open rays (a,+∞)
are m∗-measurable. Fix a ∈ R and an arbitrary set A ⊂ R. We must prove

m∗(A) ≥ m∗(A ∩ (a,+∞)) +m∗(A ∩ (−∞, a]).

To simplify the notation put A1 = A ∩ (a,+∞), A2 = A ∩ (−∞, a]. Let (In) be a cover
of A by open intervals. For each n let I ′n = In ∩ (a,+∞) and I ′′n = In ∩ (−∞, a]. The
families (I ′n), (I ′′n) are intervals (not necessarily open) that cover A1, A2 respectively. Now

∞∑
n=1

|In| =
∞∑
n=1

|I ′n|+
∞∑
n=1

|I ′′n|

=
∞∑
n=1

m∗(I ′n) +
∞∑
n=1

m∗(I ′′n)

≥ m∗(
∞⋃
n=1

I ′n) +m∗(
∞⋃
n=1

I ′′n)

≥ m∗(A1) +m∗(A2),

where the second equality follows from Theorem 4.1, the first inequality from sub-
additivity and the last inequality by monotonicity. Since this inequality holds for
all coverings of A by open intervals, taking the infimum on the left hand side gives
m∗(A) ≥ m∗(A1) +m∗(A2). �

Definition 4.3. A set E ⊂ R is called Lebesgue measurable if

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec) (15)
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for all A ⊂ R. The restriction of m∗ to the Lebesgue measurable sets is called Lebesgue
measure, denoted m. /

By Theorem 3.3, m is a measure. By Theorem 4.2, every Borel set is Lebesgue
measurable, and by Theorem 4.1 the Lebesgue measure of an interval is its length. It
should also be evident by now that m is σ-finite. So, we have arrived at the promised
extension of the length function on intervals to a measure. (A proof of uniqueness of m
will have to wait until for the Hahn Uniqueness Theorem. See Corollary 5.5.)

Next we prove that m has the desired invariance properties. Given E ⊂ R, x ∈ R,
and t > 0, let

E+x = {y ∈ R : y−x ∈ E}, −E = {y ∈ R : −y ∈ E}, and tE = {y ∈ R : y/t ∈ E}.
It is evident that m∗(E + x) = µ∗(E), m∗(−E) = m∗(E) and, m∗(tE) = tm∗(E) since,
if I is an interval, then |I+x| = |I|, |− I| = |I| and |tI| = t|I|. Thus m∗ has the desired
invariance properties. In particular, if both E and E+x are Lebesgue measurable, then
m(E + x) = m(E). What remains to be shown is that if E is Lebesgue measurable,
then so are E+x, −E and tE each of which are easy consequences of the corresponding
invariance property of m∗.

Theorem 4.4. If E ⊂ R is Lebesgue measurable, x ∈ R, and t > 0, then the sets E+x,
−E, and tE are Lebesgue measurable. Moreover m(E + x) = m(E), m(−E) = m(E),
and m(tE) = tm(E).

Proof. We give the proof for E + x. Proof of the others are similar and left as exercises.
Accordingly, suppose E is measurable. To prove E+x is measurable, let A ⊂ R be given
and observe that A∩ (E+x) = ((A−x)∩E) +x and A∩ (E+x)c = ((A−x)∩Ec) +x.
Thus,

m∗(A) = m∗(A− x)

= m∗((A− x) ∩ E) +m∗((A− x) ∩ Ec)

= m∗((A− x) ∩ E + x) +m∗((A− x) ∩ Ec + x)

= m∗(A ∩ (E + x)) +m∗(A ∩ (E + x)c),

where measurability of E is used in the second equality. Hence E + x is Lebesgue
measurable and m(E + x) = m(E). �

The condition (15) does not make clear which subsets of R are Lebesgue measurable.
Theorems 4.5 and 4.6 are fundamental approximation results. They say 1) up to sets of
measure zero, every Lebesgue measurable set is a Gδ or an Fσ, and 2) if we are willing to
ignore sets of measure ε, then every set of finite Lebesgue measure is a union of intervals.
(Recall that a set in a topological space is called a Gδ-set if it is a countable intersection
of open sets, and an Fσ-set if it is a countable union of closed sets.)

Theorem 4.5. Let E ⊂ R. The following are equivalent.

(a) E is Lebesgue measurable.
(b) For every ε > 0, there is an open set U ⊃ E such that m∗(U \ E) < ε.
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(c) For every ε > 0, there is a closed set F ⊂ E such that m∗(E \ F ) < ε.
(d) There is a Gδ set G such that E ⊂ G and m∗(G \ E) = 0.
(e) There is an Fσ set F such that E ⊃ F and m∗(E \ F ) = 0.

Proof. To prove (a) implies (b) let E a (Lebesgue) measurable set and ε > 0 be given.
Further, suppose for the moment that m(E) < ∞. There is a covering of E by open
intervals In such that

∑∞
n=1 |In| < m(E) + ε. Put U =

⋃∞
n=1 In. By subadditivity of m,

m(U) ≤
∞∑
n=1

m(In) =
∞∑
n=1

|In| < m(E) + ε.

Since U ⊃ E and m(E) < ∞ (and both U and E are Lebesgue measurable), Theorem
2.3 implies m∗(U \ E) = m(U \ E) = m(U)−m(E) < ε.

To remove the finiteness assumption on E, we apply the ε/2n trick: for each n ∈ Z
let En = E ∩ (n, n + 1]. The En are disjoint measurable sets whose union is E, and
m(En) < ∞ for all n. For each n, by the first part of the proof we can pick an open
set Un so that m(Un \ En) < ε/2|n|. Let U be the union of the Un. Thus U is open and
U \ E ⊂

⋃∞
n=1(Un \ En). The subadditivity of m gives m(U \ E) <

∑
n∈Z ε2

−|n| = 3ε.

To prove that (b) implies (d), let E ⊂ R be given and for each n ≥ 1 choose (using
(b)) an open set Un ⊃ E such that m∗(Un \ E) < 1

n
. Put G =

⋂∞
n=1 Un. Thus G is

a Gδ containing E, and G \ E ⊂ Un \ E for every n. By monotonicity of m∗ we see
m∗(G \ E) < 1

n
for every n and thus m∗(G \ E) = 0. (Note that in this portion of the

proof we cannot (and do not!) assume E is measurable.)

To prove (d) implies (a), suppose G is a Gδ set such that E ⊂ G and µ∗(G\E) = 0.
Since G is a Gδ, it is a Borel set and hence Lebesgue measurable by Theorem 4.2. By
Lemma 3.6, every m∗-null set is Lebesgue measurable, so G \ E, and therefore also
E = G \ (G \ E), is Lebesgue measurable.

To prove that (a) implies (c), suppose E is Lebesgue measurable and let ε > 0
be given. Thus Ec is Lebesgue measurable and, by the already established implication
(a) implies (b), there is an open set U such that Ec ⊂ U and m(U \ Ec) < ε. Since
U \ Ec = U ∩ E = E \ U c, it follows that µ(E \ U c) < ε. Observing that U c is closed
completes the proof.

Now suppose E ⊂ R and (c) holds. Choose a sequence of closed sets (Fn) such that
Fn ⊂ E and µ∗(E \ Fn) < 1

n
. The set F = ∪∞j=1Fj is an Fσ and, by monotonicity, for

each n we have µ∗(E \F ) ≤ µ∗(E \Fn) < 1
n
. Hence µ∗(E \F ) = 0. Thus (c) implies (e).

Finally, if (e) holds, then E = F∪(E\F ) for some closed set F ⊂ E with µ∗(E\F ) =
0. Thus, E is the union of a closed (and hence Lebesgue) set and a set of outer measure
zero (which is thus Lebesgue). Since the Lebesgue sets are closed under union, E is
Lebesgue and the proof is complete. �

Recall the symmetric difference of sets A,B ⊂ X is A∆B = (A \ B) ∪ (B \ A) =
(A ∪B) \ (A ∩B).
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Theorem 4.6. If E is Lebesgue measurable and m(E) < ∞, then for each ε > 0 there
exists a set A which is a finite union of open intervals such that m(E∆A) < ε.

Proof. Let (In) be a covering of E by open intervals such that
∞∑
n=1

|In| < m(E) + ε/2. (16)

Since the sum is finite there exists an integer N so that
∞∑

n=N+1

|In| < ε/2. (17)

Let U =
⋃∞
n=1 In and A =

⋃N
n=1 In. Then A\E ⊂ U \E, so m(A\E) ≤ m(U)−m(E) <

ε/2 by (16). Similarly E \A ⊂ U \A ⊂
⋃∞
n=N+1 In, so m(E \A) < ε/2 by (17). Therefore

m(E∆A) < ε. �

Thus, while the “typical” measurable set can be quite complicated in the set-
theoretic sense (i.e. in terms of the Borel hierarchy), for most questions in analysis
this complexity is irrelevant. In fact, Theorem 4.6 is the precise expression of a useful
heuristic:

Littlewood’s First Principle of Analysis: Every measurable set E ⊂ R with m(E) <
∞ is almost a finite union of intervals.

Definition 4.7. Let X be a topological space. A neighborhood U of a point x ∈ X is
an open set such that x ∈ U .

A topological space X is locally compact if for each x ∈ X there is a neighborhood
Ux of x and a compact set Cx such that x ∈ Ux ⊂ Cx.

A topological space is Hausdorff if given x, y ∈ X with x 6= y, there exists neigh-
borhoods U and V of x and y respectively such that U ∩ V = ∅. (Distinct points can
be separated by open sets.)

A Borel measure is a measure on the Borel σ-algebra BX of a locally compact
Hausdorff space X.

A Borel measure µ is outer regular if, for all E ∈ BX ,

µ(E) = inf{µ(U) : U ⊃ E and U is open}
and is inner regular if

µ(E) = sup{µ(K) : K ⊂ E and K is compact}.
Finally µ is regular if it is both inner and outer regular. /

Theorem 4.8. If E ⊂ R is Lebesgue measurable, then

m(E) = inf{m(U) : U ⊃ E and U is open}
= sup{m(K) : K ⊂ E and K is compact}
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That is, m is a regular Borel measure.

Proof. Fix E. Let ρ(E) denote the infimum in the first equality. By monotonicity,
ρ(E) ≥ m(E). If m(E) = ∞, then equality is evident. The case m(E) < ∞ follows
from Theorem 4.5(b) (together with the additivity of m).

For the second equality, let ν(E) be the value of the supremum on the right-hand
side. By monotonicity m(E) ≥ ν(E). For the reverse inequality, first assume m(E) <∞
and let ε > 0. By Theorem 4.5(c), there is a closed subset F ⊂ E with m(E \F ) < ε/2.
Since m(E) < ∞, by additivity m(E) < m(F ) + ε/2. Thus m(F ) > m(E) − ε/2.
However this F need not be compact. To fix this potential shortcoming, for each n ≥ 1
let Kn = F ∩ [−n, n]. Then the Kn are an increasing sequence of compact sets whose
union is F . By monotone convergence for sets (Theorem 2.3(c)), there is an n so that
m(Kn) > m(F )− ε/2. It follows that m(Kn) > m(E)− ε, and thus ν(E) ≥ m(E). The
case m(E) = +∞ is left as an exercise. �

Example 4.9. [The Cantor set] Recall the usual construction of the “middle thirds”
Cantor set. Let E0 denote the unit interval [0, 1]. Obtain E1 from E0 by deleting the
middle third (open) subinterval of E0, so E1 = [0, 1

3
] ∪ [2

3
, 1]. Continue inductively as

follows. At the nth step delete the middle thirds of all the intervals present at that step.
So, En is a union of 2n closed intervals of length 3−n. The Cantor set is defined as the
intersection C =

⋂∞
n=0 En. It is well-known (though not obvious and not proven here)

that C is uncountable. It is clear that C is a closed set (hence Borel) but contains no
intervals, since if J is an interval of length ` and n is chosen so that 3−n < `, then
J 6⊂ En and thus J 6⊂ C. The Lebesgue measure of En is (2/3)n, which goes to 0 as
n → ∞, and thus by monotonicity m(C) = 0. So, C is an example of an uncountable,
closed set of measure 0. Another way to see that C has measure zero, is to note that at
the nth stage (n ≥ 1) we have deleted a collection of 2n−1 disjoint open intervals, each
of length 3−n. Thus the Lebesgue measure of [0, 1] \ C is

∞∑
n=1

2n−13−n =
1

2

2
3

1− 2
3

= 1.

Thus m(C) = 0. 4

Example 4.10. [Fat Cantor sets] The standard construction of the Cantor set can be
modified in the following way. Fix a number 0 < c < 1 and imitate the construction
of the Cantor set, except at the nth stage delete, from each interval I present at that
stage, an open interval centered at the midpoint of I of length 3−nc. (In the previous
construction c = 1.) Again at each stage we have a set En which is a union of 2n closed
intervals each of which has length at most (3−c

6
)n and m([0, 1] \ En) =

∑n
j=1 2j−1 c

3j
.

Let F =
⋂∞
n=0 En. One can prove (in much the same way as for C) that 1) F is an

uncountable, closed set; 2) F contains no intervals; and 3) m(F ) = 1− c > 0. Thus, F
is a closed set of positive measure, but contains no intervals. 4

Example 4.11. [Not every set is Lebesgue measurable] Define an equivalence relation
on R by declaring x ∼ y if and only if x− y ∈ Q. This relation partitions R into disjoint
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equivalence classes whose union is R. In particular, for each x ∈ R its equivalence class
is the set {x + q : q ∈ Q}. Each equivalence class C contains an element of the closed
interval [0, 1]. By the axiom of choice, there is a set E ⊂ [0, 1] that contains exactly one
member xC from each class C. We claim the set E is not Lebesgue measurable.

To prove the claim, let y ∈ [0, 1] be given. Let C denote the equivalence class of y.
Thus y differs from xC by some rational number in the interval [−1, 1]. Hence

[0, 1] ⊂
⋃

q∈[−1,1]∩Q

(E + q).

On the other hand, since E ⊂ [0, 1] and |q| ≤ 1,⋃
q∈[−1,1]∩Q

(E + q) ⊂ [−1, 2].

Finally, by the construction of E the sets E+ p and E+ q are disjoint if p, q are distinct
rationals. So if E were measurable, then the sets E + q would be also, and, by the
countable additivity and monotonicity of m,

1 ≤
∑

q∈[−1,1]∩Q

m(E + q) ≤ 3.

But by translation invariance, all of the m(E+q) must be equal, which is a contradiction.
4

Remark: The construction of Example 4.11 can be modified to show if F is any
Lebesgue set with m(F ) > 0, then F contains a nonmeasurable (i.e., a non-Lebesgue)
subset. See Problem 7.29.

5. Premeasures and the Hahn-Kolmogorov Theorem

Definition 5.1. Let A ⊂ 2X be a Boolean algebra. A premeasure on A is a function
µ0 : A → [0,+∞] satisfying

(i) µ0(∅) = 0; and
(ii) if (Aj)

∞
j=1 is a sequence of disjoint sets in A and ∪∞1 Aj ∈ A , then

µ0

(
∞⋃
j=1

Aj

)
=
∞∑
j=1

µ0(Aj)

/

Finiteness and σ-finiteness are defined for premeasures in the same way as for mea-
sures. Note that a premeasure is automatically finitely additive and hence monotone.

Example 5.2. By an h-interval we mean a (finite or infinite) interval of the form (a, b].
(By convention (a,+∞) is an h-interval.) The collection A ⊂ 2R of finite unions of
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h-intervals is a Boolean algebra. The function µ0 : A → [0,∞] defined by

µ0(I) =
n∑
j=1

bj − aj

for I ∈ A written as the disjoint union ∪n1 (aj, bj] is a premeasure on A . (Warning:
that µ0 is well defined and a premeasure is immediate if we have already constructed
Lebesgue measure, but it is not as obvious as it seems to prove from scratch - there are
many different ways to decompose a given I as a finite or countable disjoint union of
h-interval. Thus verifying that µ0 is well defined and countable additivity is somewhat
delicate. See Section 6.) 4

Theorem 5.3 (Hahn-Kolmogorov Theorem). If µ0 is a premeasure on a Boolean algebra
A ⊂ 2X and µ∗ is the outer measure on X defined by (8), then every set A ∈ A is outer
measurable and µ∗|A = µ0. In particular, if µ0 : A → [0,+∞] is a premeasure on a
Boolean algebra A , then there exists a σ-algebra B ⊃ A and a measure µ : B → [0,+∞]
such that µ|A = µ0.

Proof. If A ⊂ 2X is a Boolean algebra and µ0 : A → [0,+∞] is a premeasure, then
µ0 determines an outer measure µ∗ by Proposition 3.4. We will prove that (1) µ∗|A =
µ0, and (2) every set in A is µ∗-outer measurable. The theorem then follows from
Theorem 3.3.

To prove (1), let E ∈ A . It is immediate that µ∗(E) ≤ µ0(E), since for a covering
of E we can take A1 = E and Aj = ∅ for all other j. For the reverse inequality, let (Aj)
be any covering of E by sets Aj ∈ A and define sets Bn ∈ A by

Bn = E ∩ (An \
n−1⋃
j=1

Aj).

The Bn are disjoint sets in A whose union is E, and Bn ⊂ An for all n. Thus by the
countable additivity and monotonicity of µ0,

µ0(E) =
∞∑
n=1

µ0(Bn) ≤
∞∑
n=1

µ0(An)

Since the covering was arbitrary, µ0(E) ≤ µ∗(E).

For (2), let E ∈ A , A ⊂ X, and ε > 0 be given. There exists a sequence of sets
(Bj) ⊂ A such that A ⊂

⋃∞
j=1Bj and

∑∞
j=1 µ0(Bj) < µ∗(A) + ε. By additivity and

monotonicity of µ0,

µ∗(A) + ε >

∞∑
j=1

µ0(Bj)

=
∞∑
j=1

µ0(Bj ∩ E) +
∞∑
j=1

µ0(Bj ∩ Ec).
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Since (Bj ∩ E) is a sequence from A and A ∩ E ⊂ ∪∞j=1(Bj ∩ E), it follows that

µ∗(A ∩ E) ≤
∞∑
j=1

µ0(Bj ∩ E)

and similarly for Ec. Thus µ∗(A) + ε ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec) and since ε > 0 A ⊂ R
and E ∈ A are arbitrary, the proof is complete. �

The measure µ constructed in Theorem 5.3 is the Hahn-Kolmogorov extension of the
premeasure µ0. The relationship between premeasures, outer measures, and measures
in this construction is summarized in the following table:

domain additivity condition
premeasure Boolean alge-

bra A
countably additive, when
possible

outer measure all of 2X monotone, countably
subadditive

measure σ-algebra
containing A

countably additive

The premeasure µ0 has the right additivity properties, but is defined on too few subsets
of X to be useful. The corresponding outer measure µ∗ constructed in Proposition 3.4
is defined on all of 2X , but we cannot guarantee countable additivity. By Theorem 5.3,
restricting µ∗ to the σ-algebra of outer measurable sets is “just right.”

We have established that every premeasure µ0 on an algebra A can be extended to
a measure on the σ-algebra generated by A . The next theorem addresses the uniqueness
of this extension.

Theorem 5.4 (Hahn uniqueness theorem). If µ0 is a σ-finite premeasure on a Boolean
algebra A , then there is a unique extension of µ0 to a measure µ on the σ-algebra
generated by A .

Uniqueness can fail in the non-σ-finite case. An example is outlined in Problem 7.20.

Proof. Let M be the σ-algebra generated by A , let µ denote the Hahn-Kolmogorov
extension of µ0, but restricted to M , and let µ′ be any other extension of µ0 to M . To
prove that µ = µ′, we first show, if E ∈ M , then µ′(E) ≤ µ(E). Let E ∈ M and let
(An) be a sequence in A such that E ⊂

⋃∞
n=1An. Then

µ′(E) ≤
∞∑
n=1

µ′(An) =
∞∑
n=1

µ0(An)

Taking the infimum over all such coverings of E, it follows that µ′(E) ≤ µ(E). (Recall
the definition of µ.)
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Next we show, if E ∈M and µ(E) <∞, then µ(E) ≤ µ′(E). As a first observation,
note that given a sequence (An) from A and letting A =

⋃∞
n=1An ∈ M , monotone

convergence for sets implies

µ′(A) = lim
N→∞

µ′(
N⋃
n=1

An) = lim
N→∞

µ(
N⋃
n=1

An) = µ(A).

Now let ε > 0 be given and choose a covering (An) of E by sets in A such that, letting
A =

⋃∞
n=1An, we have µ(A) < µ(E) + ε, and consequently µ(A \ E) < ε. In particular,

µ′(A \ E) ≤ µ(A \ E) < ε, since A \ E ∈M . Thus

µ(E) ≤ µ(A)

= µ′(A)

= µ′(E) + µ′(A \ E)

≤ µ′(E) + µ(A \ E)

< µ′(E) + ε.

Since ε was arbitrary, we conclude µ(E) ≤ µ′(E). Observe that up to this the σ-finiteness
assumption has not been used. Write X =

⋃∞
n=1 Xn with the Xn mutually disjoint and

µ0(Xn) <∞ for all n. If E ∈M , then

µ(E) =
∞∑
n=1

µ(E ∩Xn) =
∞∑
n=1

µ′(E ∩Xn) = µ′(E).

�

Corollary 5.5 (Uniqueness of Lebesgue measure). If µ is a Borel measure on R such
that µ(I) = |I| for every interval I, then µ(E) = m(E) for every Borel set E ⊂ R. †

6. Lebesgue-Stieltjes measures on R

Let µ be a Borel measure on R. (Thus the domain of µ contains all Borel sets,
though we allow that the domain of µ may be larger.) The measure µ is locally finite
if µ(I) < ∞ for every compact interval I. (Equivalently, µ(I) is finite for every finite
interval.) Given a locally finite Borel measure, define a function F : R→ R by

F (x) =


0 if x = 0,

µ((0, x]) if x > 0,

−µ((x, 0]) if x < 0.

(18)

It is not hard to show, using dominated and monotone convergence for sets, that F
is nondecreasing and continuous from the right; that is, F (a) = limx→a+ F (x) for all
a ∈ R (see Problems 7.22 and 7.23). In this section we prove the converse: given any
increasing, right-continuous function F : R → R, there is a unique locally finite Borel
measure µ such that (18) holds. The proof will use the Hahn-Kolmogorov extension
theorem.
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Let A ⊂ 2R denote the Boolean algebra generated by the half-open intervals (a, b].
(We insist that the interval be open on the left and closed on the right, a convention
compatible with the definition of F .) More precisely, A consists of all finite unions of
intervals of the form (a, b] (with (−∞, b] and (a,+∞) allowed). Fix a nondecreasing,
right-continuous function F : R → R. Since F is monotone, the limits F (+∞) :=
limx→+∞ F (x) and F (−∞) := limx→−∞ F (x) exist (possibly +∞ or −∞ respectively).
For each interval I = (a, b] in A , we define its F -length by

|I|F := F (b)− F (a).

Given a set A ∈ A , we can write it as a disjoint union of intervals A =
⋃N
n=1 In with

In = (an, bn]. Define

µ0(A) =
N∑
n=1

|In|F =
N∑
n=1

F (bn)− F (an). (19)

Proposition 6.1. The expression (19) is a well-defined premeasure on A . †

Proof. That µ0 is well-defined and finitely additive on A is left as an exercise.

To prove that µ0 is a premeasure, let (In) be a disjoint sequence of intervals in A
and suppose J =

⋃∞
n=1 In ∈ A is an interval. By finite additivity,

µ0(J) = µ0

(
N⋃
n=1

In

)
+ µ0

(
J \

N⋃
n=1

In

)
≥ µ0

(
N⋃
n=1

In

)
=

N∑
n=1

µ0(In).

Taking limits, we conclude µ(
⋃∞
n=1 In) ≥

∑∞
n=1 µ0(In).

For the reverse inequality, we employ a compactness argument similar to the one
used in the proof of Theorem 4.1. However, the situation is more complicated since
we are dealing with half-open intervals. The strategy will be to shrink J to a slightly
smaller compact interval, and enlarge the In to open intervals, using the right-continuity
of F and the ε/2n trick to control their F -lengths.

So, first suppose that J = (a, b] is a finite interval and fix ε > 0. By right continuity
of F , there is a δ > 0 such that F (a+δ)−F (a) < ε. Likewise, writing In = (an, bn], there
exist δn > 0 such that F (bn+δn)−F (bn) < ε2−n. Let J̃ = [a+δ, b] and Ĩn = (an, bn+δn).
It follows that J̃ ⊂ J = ∪In ⊂ Ĩn. Hence, by compactness, finitely many of the Ĩn cover
J̃ , and these may be chosen so that none is contained in another, and they may be
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relabeled Ĩ1, . . . ĨN so their left endpoints are listed in increasing order. It follows that

µ0(J) ≤ F (b)− F (a+ δ) + ε

≤ F (bN + δN)− F (a1) + ε

= F (bN + δN)− F (aN) +
N−1∑
j=1

(F (aj+1)− F (aj)) + ε

≤ F (bN + δN)− F (aN) +
N−1∑
j=1

(F (bj + δj)− F (aj)) + ε

≤
∞∑
n=1

µ0(In) + 2ε.

Since ε was arbitrary, we are done in the case I = (a, b] is finite. The infinite cases are
left as an exercise.

Finally, if J = ∪mk=1Jk is a finite union of intervals from A , then each Jk is the at
most countable disjoint union

Jk = ∪{Ij : Ij ⊂ Jk}.
From what has already been proved, µ0(Jk) =

∑
{µ0(Ij) : Ij ⊂ Jk}. An appeal to finite

additivity of µ0 completes the proof. �

By the Hahn-Kolmogorov Theorem, µ0 extends to a Borel measure µF , called the
Lebesgue-Stieltjes measure associated to F . It is immediate from the definition that µ0

is σ-finite (each interval (n, n + 1] has finite F -length), so the restriction of µF to the
Borel σ-algebra is uniquely determined by F . In particular we conclude that the case
F (x) = x recovers Lebesgue measure.

Example 6.2. (a) (Dirac measure) Define the Heaviside function

H(x) =

{
1 if x ≥ 0

0 if x < 0

Then for any interval I = (a, b], µH(I) = 1 if 0 ∈ I and 0 otherwise. Since Dirac
measure δ0 is a Borel measure and also has this property, and the intervals (a, b]
generate the Borel σ-algebra, it follows from the Hahn Uniqueness Theorem (The-
orem 5.4) that µH(E) = δ0(E) for all Borel sets E ⊂ R. There is nothing special
about 0 here. Given p ∈ R, let δp denote the Borel measure defined by δ(E) = 1 if
p ∈ E and 0 if p /∈ E. For a finite set x1, . . . xn in R and positive numbers c1, . . . cn,
let F (x) =

∑n
j=1 cjH(x − xj). Then µF =

∑n
j=1 cjδxj . Not that F is continuous

except at the points xj where F (xj−) = cj.
(b) (Infinite sums of point masses) Even more generally, if (xn)∞n=1 is an infinite sequence

in R and (cn) is a sequence of positive numbers with
∑∞

n=1 cn < ∞, define F (x) =∑
cnH(x− xn) =

∑
n:xn≤x cn. It follows, using Theorem 5.4 and Problem 7.9, that

µF (E) =
∑

n:xn∈E cn; i.e., µF =
∑∞

n=1 cnδxn . A particularly interesting case is when
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the xn enumerate the rationals; the resulting function F is continuous precisely on
the irrationals. We will return to this example after the Radon-Nikodym theorem.

(c) (Cantor measure) Recall the construction of the Cantor set C from Example 4.9.
Each number x ∈ [0, 1] has a base 3 expansion, of the form x =

∑∞
n=1 an3−n, where

an ∈ {0, 1, 2} for all n. The expansion is unique if we insist that every terminating
expansion (an = 0 for all n sufficiently large) is replaced with an expansion ending
with an infinite string of 2’s (that is, an = 2 for all n sufficiently large). With these
conventions, it is well-known that C consists of all points x ∈ [0, 1] such that the
base 3 expansion of x contains only 0’s and 2’s. (Referring again to the construction
of C, x belongs to E1 if and only if a1 is 0 or 2, x belongs to E2 if and only if both
a1, a2 belong to {0, 2}, etc.) Using this fact, we can define a function F : C → [0, 1]
by taking the base 3 expansion x =

∑∞
n=1 an3−n, setting bn = an/2, and putting

F (x) =
∑∞

n=1 bn2−n. (The ternary string of 0’s and 2’s is sent to the binary string of
0’s and 1’s.) If x, y ∈ C and x < y, then F (x) < F (y) unless x, y are the endpoints
of a deleted interval, in which case F (x) = p2−k for some integers p and k, and
F (x) and F (y) are the two base 2 expansions of this number. We can then extend
F to have this constant value on the deleted interval (x, y). The resulting F is
monotone and maps [0, 1] onto [0, 1]. Since F is onto and monotone, it has no jump
discontinuities, and again by monotonicity, F is continuous. This function is called
the Cantor-Lebesgue function, or in some books the Devil’s Staircase. Finally, if we
extend F to be 0 for x < 0 and 1 for x > 1, we can form a Lebesgue-Stieltjes measure
µF supported on C (that is, µF (E) = 0 if E ∩ C = ∅ equivalent µ(Cc) = 0). This
measure is called the Cantor measure. It is said to be singular because it is supported
on a set of Lebesgue measure 0 (see Problem 7.30). It will be an important example
of what is called a singular continuous measure on R.

4

One can prove that the Lebesgue-Stieltjes measures µF have similar regularity prop-
erties as Lebesgue measure; since the proofs involve no new ideas they are left as exer-
cises.

Lemma 6.3. Let µF be a Lebesgue-Stieltjes measure. If E ⊂ R is a Borel set, then

µF (E) = inf{
∞∑
n=1

µF (an, bn) : E ⊂
∞⋃
n=1

(an, bn)}

†

Proof. Problem 7.25. �

Theorem 6.4. Let µF be a Lebesgue-Stieltjes measure. If E ⊂ R is a Borel set, then

µF (E) = inf{µF (U) : E ⊂ U, U open}
= sup{µF (K) : K ⊂ E, K compact}

Proof. Problem 7.26. �
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7. Problems

Problem 7.1. Let X = {0, 1, 2, 3} and let

N =
{
∅, X, {0, 1}, {0, 2}, {0, 3}, {2, 3}, {1, 3}, {1, 2}

}
.

Verify that N is closed under complements and countable disjoint unions, but is not a
σ-algebra.

Problem 7.2. Prove the “exercise” claims in Example 1.8.

Problem 7.3. (a) Let X be a set and let A = (An)∞n=1 be a sequence of disjoint,
nonempty subsets whose union is X. Prove that the set of all finite or countable
unions of members of A (together with ∅) is a σ-algebra. (A σ-algebra of this type
is called atomic.)

(b) Prove that the Borel σ-algebra BR is not atomic. (Hint: there exists an uncountable
family of mutually disjoint Borel subsets of R.)

Problem 7.4. Can a σ-algebra be, as a set, countably infinite?

Problem 7.5. a) Prove Proposition 1.14. (First prove that every open set U is a union
of dyadic intervals. To get disjointness, show that for each point x ∈ U there is a unique
largest dyadic interval I such that x ∈ I ⊂ U .) b) Prove that the dyadic intervals
generate the Borel σ-algebra BR.

Problem 7.6. Fix an integer n ≥ 1. Prove that the set of finite unions of dyadic
subintervals of (0, 1] of length at most 2−n (together with ∅) is a Boolean algebra.

Problem 7.7. Prove that if X, Y are topological spaces and f : X → Y is continuous,
then f is Borel measurable.

Problem 7.8. Let (X,M ) be a measurable space and suppose µ : M → [0,+∞] is
a finitely additive measure which satisfies item (c) of Theorem 2.3. Prove that µ is a
measure.

Problem 7.9. Prove that a countably infinite sum of measures is a measure (Exam-
ple 2.2(d)). You will need the following fact from elementary analysis: if (amn)∞m,n=1 is a
doubly indexed sequence of nonnegative reals, then

∑∞
n=1

∑∞
m=1 amn =

∑∞
m=1

∑∞
n=1 amn

a fact which can be established by showing both sums are equal to

S = sup
F

∑
(m,n)∈F

amn

where the supremum is taken over all finite subsets of N × N. For use in the proof of
Proposition 3.4 in particular, note that

S =
∞∑
s=1

∑
m+n=s

amn.

Problem 7.10. Let A be an atomic σ-algebra generated by a partition (An)∞n=1 of a
set X (see Problem 7.3).
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(a) Fix n ≥ 1. Prove that the function δn : A → [0, 1] defined by

δn(A) =

{
1 if An ⊂ A

0 if An 6⊂ A

is a measure on A .
(b) Prove that if µ is any measure on (X,A ), then there exists a unique sequence (cn)

with each cn ∈ [0,+∞] such that

µ(A) =
∞∑
n=1

cnδn(A)

for all A ∈ A .

Problem 7.11. Let E∆F denote the symmetric difference of subsets E and F of a set
X,

E∆F := (E \ F ) ∪ (F \ E) = (E ∪ F ) \ (E ∩ F ).

Let (X,M , µ) be a measure space. Prove the following:

(a) If E,F ∈M and µ(E∆F ) = 0 then µ(E) = µ(F ).
(b) Define E ∼ F if and only if µ(E∆F ) = 0; then ∼ is an equivalence relation on M .
(c) For E,F ∈ M define d(E,F ) = µ(E∆F ). Then d defines a metric on the set of

equivalence classes M / ∼.

Problem 7.12. Let X be a set. For a sequence of subsets (En) of X, define

lim supEn =
∞⋂
N=1

∞⋃
n=N

En, lim inf En =
∞⋃
N=1

∞⋂
n=N

En.

a) Prove that lim sup 1En = 1lim supEn and lim inf 1En = 1lim inf En (thus justifying the
names). Conclude that En → E pointwise if and only if lim supEn = lim inf En = E.
(Hint: for the first part, observe that x ∈ lim supEn if and only if x lies in infinitely
many of the En, and x ∈ lim inf En if and only if x lies in all but finitely many En.)

b) Prove that if the En are measurable, then so are lim supEn and lim inf En. De-
duce that if (En) converges to E pointwise and all the En are measurable, then E is
measurable.

Problem 7.13. [Fatou theorem for sets] Let (X,M , µ) be a measure space, and let
(En) be a sequence of measurable sets.

a) Prove that

µ(lim inf En) ≤ lim inf µ(En). (20)

b) Assume in addition that µ(
⋃∞
n=1 En) <∞. Prove that

µ(lim supEn) ≥ lim supµ(En). (21)
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c) Prove the following stronger form of the dominated convergence theorem for sets:
suppose (En) is a sequence of measurable sets, and there is a measurable set F ⊂ X
such that En ⊂ F for all n and µ(F ) <∞. Prove that if (En) converges to E pointwise,
then (µ(En)) converges to µ(E). Give an example to show the finiteness hypothesis on
F cannot be dropped.

(For parts (a) and (b), use Theorem 2.3.)

Problem 7.14. Complete the proof of Theorem 2.8.

Problem 7.15. Complete the proof of Theorem 4.4.

Problem 7.16. Under construction.

Problem 7.17. Prove the following dyadic version of Theorem 4.6: If m(E) < ∞ and
ε > 0, there exists an integer n ≥ 1 and a set A, which is a finite union of dyadic intervals
of length 2−n, such that m(E∆A) < ε. (This result says, loosely, that measurable sets
look “pixelated” at sufficiently fine scales.)

Problem 7.18. a) Prove the following strengthening of Theorem 4.6: if E ⊂ R and
m∗(E) < ∞, then E is Lebesgue measurable if and only if for every ε > 0, there exists

a set A =
⋃N
n=1 In (a finite union of open intervals) such that m∗(E∆A) < ε.

b) State and prove a dyadic version of the theorem in part (a).

Problem 7.19. Prove the claims made about the Fat Cantor set in Example 4.10.

Problem 7.20. Let A ⊂ 2R be the Boolean algebra generated by the half-open intervals
(a, b]. For A ∈ A , let µ0(A) = +∞ if A is nonempty and µ0(∅) = 0.

(a) Prove that µ0 is a premeasure. If µ is the Hahn-Kolmogorov extension of µ0 and
E ⊂ R is a nonempty Borel set, prove that µ(E) = +∞.

(b) Prove that if µ′ is counting measure on (R,BR), then µ′ is an extension of µ0 different
from µ.

Here is a variant of this example. Let A ⊂ 2Q denote the Boolean algebra generated
by the half-open intervals (a, b] (intersect with Q of course). Note that the σ-algebra
generated by A is 2Q. For A ∈ A, let µ0(A) = +∞ if A is nonempty and µ0(∅) = 0.
Show µ0 is a premeasure and its Hahn-Kolmogorov extension µ to 2Q is given by µ(E) = 0
if E = ∅ and µ(E) =∞ otherwise. Show counting measure c is another extension of µ0

to 2Q. In particular, counting measure c is a σ-finite measure on 2Q, but the premeasure
obtained by restricting c to A is not σ-finite.

Problem 7.21. Suppose (X,M , µ) is a measure space and A ⊂ 2X is a Boolean algebra
which generates M and that there is a sequence (An) from A such that µ(An) <∞ and
∪An = X. Prove that if E ∈M and µ(E) <∞, then for every ε > 0 there exists a set
A ∈ A such that µ(E∆A) < ε. (Hint: let µ0 be the premeasure obtained by restricting
µ to A . One may then assume that µ is equal the Hahn-Kolmogorov extension of µ0.
(Why?))
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Problem 7.22. Prove that if µ is a locally finite Borel measure and F is defined by
(18), then F is nondecreasing and right-continuous. (Note, once it has been shown that
F is nondecreasing, all one sided limits of F exist. The only issue that remains is the
value of these limits.)

Problem 7.23. Let µF be a Lebesgue-Stieltjes measure. Write F (a−) := limx→a− F (x).
Prove that

(a) µF ({a}) = F (a)− F (a−),
(b) µF ([a, b)) = F (b−)− F (a−),
(c) µF ([a, b]) = F (b)− F (a−), and
(d) µF ((a, b)) = F (b−)− F (a).

Problem 7.24. Complete the proof of Proposition 6.1

Problem 7.25. Prove Lemma 6.3.

Problem 7.26. Prove Theorem 6.4. (Use Lemma 6.3.)

Problem 7.27. Let E ⊂ R measurable and m(E) > 0.

(a) Prove that for any α < 1, there is an open interval I such that m(E ∩ I) > αm(I).
(b) Show that the set E −E = {x− y : x, y ∈ E} contains an open interval centered at

0. (Choose I as in part (a) with α > 3/4; then E−E contains (−m(I)/2,m(I)/2).)

Problem 7.28. This problem gives another construction of a set E ⊂ R that is not
Lebesgue measurable.

(a) Prove that there is a subset E ⊂ Qc such that for each x ∈ Qc exactly one of x or
−x is in E and, for all rational numbers q, E + q = E. Suggestion: Well order the
rationals by say ≺ and let E denote the set of those irrational numbers x such that

min(x+ Q) ≺ min(−x+ Q).

(b) Prove that any set E with the properties above (for x ∈ Qc exactly one of x or −x
is in E and E + q = E for all q ∈ Q) is not Lebesgue measurable. (Hint: suppose it
is. Prove, for every interval I with rational endpoints, m(E ∩ I) = 1

2
|I| and apply

part (a) of Problem 7.27.)

Problem 7.29. Let E be the nonmeasurable set described in Example 4.11.

(a) Show that if F ⊂ E and F is Lebesgue measurable, then m(F ) = 0.
(b) Prove that if G ⊂ R has positive measure, then G contains a nonmeasurable subset.

(Observe G = ∪q∈QG ∩ (E + q).)

Problem 7.30. Suppose µ is a regular Borel measure on a compact Hausdorff space and
µ(X) = 1. Let O denote the collection of µ-null open subsets of X and let U = ∪O∈OO.
Prove U is also µ-null. Hence U is the largest µ-null subset of X. Prove there exists a
smallest compact subset K of X such that µ(K) = 1. The set K is the support of µ.

Problem 7.31. Given a set X and a subset ρ ⊂ 2X , there is a smallest topology τ on
X containing ρ, called the topology generated by ρ. Let N be a positive integer and
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(Xj, τj) for 1 ≤ j ≤ N be topological spaces. The product topology π on X =
∏
Xj is

the topology generated by the open rectangles; i.e., by the set

ρ = {
∏
j

Uj : Uj ∈ τj} ⊂ 2
∏
Xj .

Observe that each of the projection maps πj : X → Xj is continuous. Prove, if every
each open set W in the product topology on X is an at most countable union from ρ,
then ⊗BXj = BX ; i.e., the product of the Borel σ algebras on the Xj is the same as
the Borel sigma algebra on X given the product topology.

Problem 7.32. Give a proof of Theorem 4.6 based upon Theorem 4.8.

Problem 7.33. Prove, if X is a compact metric space, then every compact (closed)
set in X is a Gδ and likewise every open set an Fσ. Prove, a finite Borel measure on a
compact metric space is regular.
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8. Measurable functions

We will state and prove a few “categorical” properties of measurable functions be-
tween general measurable spaces, however in these notes we will mostly be interested in
functions from a measurable space taking values in the extended positive axis [0,+∞],
the real line R, or the complex numbers C.

Definition 8.1. Let (X,M ) and (Y,N ) be measurable spaces. A function f : X → Y
is called measurable (or (M ,N ) measurable) if f−1(E) ∈ M for all E ∈ N . A
function f : X → R is measurable if it is (M ,BR) measurable unless indicated otherwise.
Likewise, a function f : X → C is measurable if it is (M ,BC) measurable (where C is
identified with R2 topologically). /

It is immediate from the definition that if (X,M ), (Y,N ), (Z,O) are measurable
spaces and f : X → Y, g : Y → Z are measurable functions, then the composition
g ◦ f : X → Z is measurable. The following is a routine application of Proposition 1.9.
The proof is left as an exercise.

Proposition 8.2. Suppose (X,M ) and (Y,N ) are measurable spaces and the collection
of sets E ⊂ 2Y generates N as a σ-algebra. Then f : X → Y is measurable if and only
if f−1(E) ∈M for all E ∈ E . †

Corollary 8.3. Let X, Y be topological spaces equipped with their Borel σ-algebras
BX ,BY respectively. Every continuous function f : X → Y is (BX ,BY )-measurable
(or Borel measurable for short). In particular, if f : X → F is continuous and X is
given its Borel σ-algebra, then f is measurable, where F is either R or C, †

Proof. Since the open sets U ⊂ Y generate BY and f−1(U) is open (hence in BX) by
hypothesis, this corollary is an immediate consequence of Proposition 8.2. �

Definition 8.4. Let F = R or C. A function f : R → F is called Lebesgue measurable
(resp. Borel measurable) if it is (L ,BF) (resp. (BR,BF)) measurable. Here L is the
Lebesgue σ-algebra. /

Remark 8.5. Note that since BR ⊂ L , being Lebesgue measurable is a weaker con-
dition than being Borel measurable. If f is Borel measurable, then f ◦ g is Borel or
Lebesgue measurable if g is. However if f is only Lebesgue measurable, then f ◦ g need
not be Lebesgue measurable, even if g is continuous. (The difficulty is that we have
no control over g−1(E) when E is a Lebesgue set.) A counterexample is described in
Problem 13.7. �

It will sometimes be convenient to consider functions that are allowed to take the
values ±∞.

Definition 8.6. [The extended real line] Let R denote the set of real numbers together
with the symbols ±∞. The arithmetic operations + and · can be (partially) extended
to R by declaring

±∞+ x = x+±∞ = ±∞
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for all x ∈ R,
+∞ · x = x ·+∞ = +∞

for all nonzero x ∈ (0,+∞) (and similar rules for the other choices of signs),

0 · ±∞ = ±∞ · 0 = 0,

The order < is extended to R by declaring

−∞ < x < +∞
for all x ∈ R. /

The symbol +∞ + (−∞) is not defined, so some care must be taken in working
out the rules of arithmetic in R. Typically we will be performing addition only when
all values are finite, or when all values are nonnegative (that is for x ∈ [0,+∞]). In
these cases most of the familiar rules of arithmetic hold (for example the commutative,
associative, and distributive laws), and the inequality ≤ is preserved by multiplying
both sides by the same quantity. However cancellation laws are not in general valid when
infinite quantities are permitted; in particular from x·+∞ = y ·+∞ or x++∞ = y++∞
one cannot conclude that x = y.

The order property allows us to extend the concepts of supremum and infimum, by
defining the supremum of a set that is unbounded from above, or set containing +∞, to
be +∞; similarly for inf and −∞. This also means every sum

∑
n xn with xn ∈ [0,+∞]

can be meaningfully assigned a value in [0,+∞], namely the supremum of the finite
partial sums

∑
n∈F xn.

A set U ⊂ R will be called open if either U ⊂ R and U is open in the usual sense,
or U is the union of an open subset of R with a set of the form (a,+∞] or [−∞, b) (or
both). The collection of these open sets is a topology on the set R.

Definition 8.7. [Extended Borel σ-algebra] The extended Borel σ-algebra over R is
the σ-algebra over generated by the Borel sets of R together with the sets (a,+∞] for
a > 0. /

Definition 8.8. [Measurable function] Let (X,M ) be a measurable space. A function
f : X → R is called measurable if it is (M ,BR) measurable; that is, if f−1(U) ∈M for
every open set U ⊂ R. /

In particular, the following criteria for measurability will be used repeatedly.

Corollary 8.9 (Equivalent criteria for measurability). Let (X,M ) be a measurable
space.

(a) A function f : X → R is measurable if and only if the sets

f−1((t,+∞]) = {x : f(x) > t}
are measurable for all t ∈ R; and

(b) A function f : X → R or f : X → (−∞,∞] is measurable if and only if f−1(E) ∈M
for all E ∈ E , where E is any of the collections of sets Ej appearing in Proposi-
tion 1.12.
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(c) A function f : X → C is measurable if and only if f−1((a, b)× (c, d)) is measurable
for every a, b, c, d ∈ R. (Here (a, b) × (c, d) is identified with the open box {z ∈ C :
a < Re(z) < b, c < Im(z) < d}.)

†

Example 8.10. [Examples of measurable functions]

(a) An indicator function 1E is measurable if and only if E is measurable. Indeed, the
set {x : 1E(x) > t} is either empty, E, or all of X, in the cases t ≥ 1, 0 ≤ t < 1, or
t < 0, respectively.

(b) The next series of propositions will show that measurability is preserved by most of
the familiar operations of analysis, including sums, products, sups, infs, and limits
(provided one is careful about arithmetic of infinities).

(c) Corollary 8.20 below will show that examples (a) and (b) above in fact generate
all the examples in the case of R or C valued functions. That is, every measurable
function is a pointwise limit of linear combinations of measurable indicator functions.

4

Proposition 8.11. Let (X,M ) be a measurable space. A function f : X → C is
measurable if and only if Ref and Imf are measurable. †

Proof. Identify C with R2; the Borel σ-algebra of R2 is generated by open rectangles
(a, b)×(c, d). Suppose f : X → C is measurable. The real part u of f is measurable since
it is the composition u = π1◦f , of the continuous (hence Borel measurable) projection π1

of R2 onto the first coordinate with the measurable function f . Likewise the imaginary
part v of f is measuarable.

Conversely, suppose u, v are measurable. Fix an open rectangle R = (a, b) × (c, d)
and note that

f−1(R) = u−1((a, b)) ∩ v−1((c, d))

which lies in M by hypothesis. So f is measurable by Corollary 8.9. �

Theorem 8.12. Let (X,M ) be a measurable space.

(a) If f, g : X → C are measurable functions, and c ∈ C. Then cf , f + g, and fg are
measurable.

(b) If f, g : X → [−∞,∞] are measurable and, for each x, {f(x), g(x)} 6= {±∞}, then
f + g is measurable.

(c) If f, g : X → [−∞,∞] are measurable, then so is fg.

Proof. To prove (b), supppose f, g : X → [−∞,∞] are measurable and f +g is defined.
Using Corollary 8.9 (a), it suffices to prove, for a t ∈ R, that

{x ∈ X : f(x) + g(x) > t} =
⋃
q∈Q

{x : f(x) > q} ∩ {x : g(x) > t− q},

since all the sets in the last line are measurable, the intersection is finite and the union
countable. The inclusion of the set on the right into the set on the left is evident.
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Suppose f(x) + g(x) > t. In particular, g(x) 6= −∞ and thus f(x) > t− g(x). There is
a rational q ∈ Q such that f(x) > q > t− g(x) and the reverse inclusion follows.

Assuming f, g : X → [0,∞] are measurable, a proof that fg is measurable can be
modeled after the proof for f + g. The details are left as an exercise (Problem 13.8).
Likewise, it is an exercise to show that if f : X → [−∞,∞] is measurable, then so are
f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}. Of course f = f+ − f−. Let F =
f+g+ + f−g− and G = −f−g+ − f+g− and note that, for each x, {F (x), G(x)} 6= {±}.
Hence F + G is defined and fg = F + G. Because f±, g± take values in [0,∞] and are
measurable all the products f±g± are measurable. Hence, using (b) several times, F +G
is measurable.

The proof of (a) is straightforward using parts (b) and (c) and Proposition 8.11.

�

Proposition 8.13. Let (fn) be a sequence of R-valued measurable functions.

(a) The functions

sup fn, inf fn, lim sup
n→∞

fn, lim inf
n→∞

fn

are measurable;
(b) The set on which (fn) converges is a measurable set; and
(c) If (fn) converges to f pointwise, then f is measurable.

†

Proof. Let f(x) = supn fn(x). Given t ∈ R, we have f(x) > t if and only if fn(x) > t for
some n. Thus

{x : f(x) > t} =
∞⋃
n=1

{x : fn(x) > t}.

It follows that f is measurable. Likewise inf fn is measurable, since inf fn = − sup(−fn).
Consequently, gN = supn≥N fn is measurable for each positive integer N and hence
lim sup fn = inf gN is also measurable.

If (fn) converges to f , then f = lim sup fn = lim inf fn is measurable. Part (b) is
left as an exercise. �

In the previous proposition it is of course essential that the supremum is taken
only over a countable set of measurable functions; the supremum of an uncountable
collection of measurable functions need not be measurable. Problem 13.6 asks for a
counterexample.

Definition 8.14. Let F denote either R, R or C. Let (X,M , µ) be a measure space and
(fn) a sequence of measurable functions fn : X → F. If f : X → F is also measurable,
then sequence (fn) converges to f almost everywhere with respect to µ, abbreviated a.e.
µ if the set of points x where fn(x) does not converge to f(x), has measure 0. Generally,
a property holds a.e. µ if the set where it doesn’t hold has measure 0. /
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The next two propositions show that 1) provided that µ is a complete measure, a.e.
limits of measurable functions are measurable, and 2) one is not likely to make any
serious errors in forgetting the completeness requirement.

Proposition 8.15. Suppose (X,M , µ) is a complete measure space and (Y,N ) is a
measurable space.

(a) Suppose f, g : X → Y. If f is measurable and g = f a.e., then g is measurable.
(b) If fn : X → R are measurable functions and fn → f a.e., then f is measurable. The

same conclusion holds if R is replaced by C.

†

Proposition 8.16. Let (X,M , µ) be a measure space and (X,M , µ) its completion.
Let F denote either R, R or C.

(i) If f : X → F is a M -measurable function, then there is an M -measurable function
g such that µ({x : f(x) 6= g(x)}) = 0.

(ii) If (fn) is a sequence of M measurable functions, fn : X → F, which converges
a.e. µ to a function f , then there is a M measurable function g such that (fn)
converges a.e. µ to g.

†

The proofs of Propositions 8.15 and 8.16 are left to the reader as Problem 13.9.

Definition 8.17. [Unsigned simple function] Recall, a function f on a set X is unsigned
if its codomain is a subset of [0,∞]. An unsigned function s : X → [0,+∞] is called
simple if its range is a finite set. /

Many statements about general measurable functions can be reduced to the unsigned
case. For instance, one simple but important application of Proposition 8.13 is that if
f, g are R-valued measurable functions, then f ∧ g := min(f, g) and f ∨ g := max(f, g)
are measurable; in particular f+ := max(f, 0) and f− := −min(f, 0) are measurable
if f is. It also follows that |f | := f+ + f− is measurable when f is. Together with
Proposition 8.11, this shows that every C valued measurable function f is a linear
combination of four unsigned measurable functions (the positive and negative parts of
the real and imaginary parts of f).

A partition P of the set X is, for some n ∈ N, a set P = {E0, . . . , En} of pairwise
disjoint subsets of X whose union is X. If each Ej is measurable, then P is a measurable
partition.

Proposition 8.18. Suppose s is an unsigned function on X. The following are equiva-
lent.

(i) s is a (measurable) simple function;
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(ii) there exists an n, scalars c1, . . . , cn ∈ [0,∞] and (measurable) subsets Fj ⊂ X such
that

s =
n∑
j=1

cj1Fj ;

(iii) there exists a (measurable) partition P = {E1, . . . , Em}, and c1, . . . , cm in [0,∞]
such that

s =
m∑
k=1

ck1Ek .

†

The proof of this proposition is an easy exercise. Letting {c1, c2, . . . , cm} denote the
range of s,

s =
n∑
j=1

cjEj,

where Ej = s−1({cj}). Evidently {E1, . . . , En} is a partition of X which is measurable
if s is measurable. This is the standard representation of s.

Theorem 8.19 (The Ziggurat approximation). Let (X,M ) be a measurable space. If
f : X → [0,+∞] is an unsigned measurable function, then there exists a increasing
sequence of unsigned, measurable simple functions sn : X → [0,+∞) such that sn → f
pointwise increasing on X. If f is bounded, the sequence can be chosen to converge
uniformly.

Proof. For positive integers n and integers 0 ≤ k < n2n, let En,k = {x : k
2n
< f(x) ≤

k+1
2n
}, let En,n2n = {x : n < f(x)} and define

sn(x) =
n2n∑
k=0

k

2n
1En,k . (22)

Verify that (sn) is pointwise increasing with limit f and if f is bounded, then the
convergence is uniform. �

It will be helpful to record for future use the round-off procedure used in this proof.
Let f : X → [0,+∞] be an unsigned function. For any ε > 0, if 0 < f(x) < +∞ there
is a unique integer k such that

kε < f(x) ≤ (k + 1)ε.

Define the “rounded down” function fε(x) to be kε when f(x) ∈ (0,+∞) and equal to
0 or +∞ when f(x) = 0 or +∞ respectively. Similarly we can defined the “rounded
up” function f ε to be (k+ 1)ε, 0, or +∞ as appropriate. (So, in the previous proof, the
function gn was f1/n.) In particular, for ε > 0

fε ≤ f ≤ f ε,
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and fε, f
ε are measurable if f is. Moreover the same argument used in the above proof

shows that fε, f
ε → f pointwise as ε→ 0.

Finally, by the remarks following Proposition 8.13, the following corollary is imme-
diate (since its proof reduces to the unsigned case):

Corollary 8.20. Every R- or C-valued measurable function is a pointwise limit of mea-
surable simple functions. †

9. Integration of simple functions

We will build up the integration theory for measurable functions in three stages. We
first define the integral for unsigned simple functions, then extend it to general unsigned
functions, and finally to general (R or C-valued) functions. Throughout this section and
the next, we fix a measure space (X,M , µ); all functions are defined on this measure
space.

Suppose P = {E0, . . . , En} is a measurable partition of X and

s =
n∑
j=0

cj1Ej . (23)

If Q = {F0, . . . , Fm} is another measurable partition and

s =
m∑
k=0

dk1Fk ,

then it is an exercise (see Problem 13.10) to show
n∑
j=0

cnµ(En) =
m∑
k=0

dmµ(Fm).

Indeed, for this exercise it is helpful to consider the common refinement {Ej ∩ Fk : 1 ≤
j ≤ n, 1 ≤ k ≤ m} of the partitions P and Q. It is now possible to make the following
definition.

By convention, when writing a simple measurable function s as s =
∑N

n=0 cn1En the
sets En are assumed measurable.

Definition 9.1. Let (X,M , µ) be a measure space and f =
∑N

n=0 cn1En an unsigned
measurable simple function. The integral of f (with respect to the measure µ) is defined
to be ∫

X

f dµ :=
N∑
n=0

cnµ(En).

/

One thinks of the graph of the function c1E as “rectangle” with height c and “base”
E; since µ tells us how to measure the length of E the quantity c · µ(E) is interpreted
as the “area” of the rectangle. This intuition can be made more precise once we have
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proved Fubini’s theorem. Note too that the definition explains the convention 0 ·∞ = 0,
since the set on which s is 0 should not contribute to the integral.

Let L+ denote the set of all unsigned measurable functions on (X,M ). We begin
by collecting some basic properties of the integrals of simple functions. When X and µ
are understood we drop them from the notation and simply write

∫
f for

∫
X
f dµ.

Theorem 9.2 (Basic properties of simple integrals). Let (X,M , µ) be a measure space
and let f, g ∈ L+ be simple functions.

(a) (Homogeneity) If c ≥ 0, then
∫
cf = c

∫
f .

(b) (Monotonicity) If f ≤ g, then
∫
f ≤

∫
g.

(c) (Finite additivity)
∫
f + g =

∫
f +

∫
g.

(d) (Almost everywhere equivalence) If f(x) = g(x) for µ-almost every x ∈ X, then∫
f =

∫
g.

(e) (Finiteness)
∫
f < +∞ if and only if is finite almost everywhere and supported on

a set of finite measure.
(f) (Vanishing)

∫
f = 0 if and only if f = 0 almost everywhere.

Proof. (a) is trivial; we prove (b) and (c) and leave the rest as (simple!) exercises.

To prove (b), write f =
∑n

j=0 cj1Ej and g =
∑m

k=0 dk1Fk for measurable partitions

P = {E0, . . . , En} and Q = {F0, . . . , Fm} of X. It follows that R = {Ej ∩ Fk : 0 ≤ j ≤
n, 0 ≤ k ≤ m} is a measurable partition of X too and

f =
∑
j,k

cj1Ej∩Fk

and similarly for g. From the assumption f ≤ g we deduce that cj ≤ dk whenever
Ej ∩ Fk 6= ∅. Thus,∫

f =
∑
j,k

cjµ(Ej ∩ Fk) ≤
∑
j,k

dkµ(Ej ∩ Fk) =

∫
g.

For item (c), since Ej =
⋃m
k=0 Ej ∩ Fk for each j and Fk =

⋃n
j=0 Fk ∩Ej for each k,

it follows from the finite additivity of µ that∫
f +

∫
g =

∑
j,k

(cj + dk)µ(Ej ∩ Fk).

Since f+g =
∑

j,k(cj+dk)1Ej∩Fk , and {Ej∩Fk : 1 ≤ j ≤ n, 1 ≤ k ≤ m} is a measurable

partition, the right hand side is
∫

(f + g). �

If f : X → [0,+∞] is a measurable simple function, then so is 1Ef for any measur-
able set E. We write

∫
E
f dµ :=

∫
1Ef dµ.

Proposition 9.3. Let (X,M , µ) be a measure space. If f is an unsigned measurable
simple function, then the function

ν(E) :=

∫
E

f dµ
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is a measure on (X,M ). †

Proof. That ν is nonnegative and ν(∅) = 0 are immediate from the definition. Let
(En)∞n=1 be a sequence of disjoint measurable sets and let E =

⋃∞
n=1En. Write f as∑m

j=1 cj1Fj with respect to a measurable partition {F1, . . . , Fm} and observe

ν(E) =

∫
E

f dµ

=

∫
X

1Ef dµ

=
m∑
j=1

cjµ(E ∩ Fj)

=
m∑
j=1

cjµ(Fj ∩
∞⋃
n=1

En)

=
∞∑
n=1

m∑
j=1

cjµ(Fj ∩ En)

=
∞∑
n=1

ν(En).

�

10. Integration of unsigned functions

We now extend the definition of the integral to all (not necessarily simple) functions
in L+. First note that if (X,M , µ) is a measure space and s is a measurable unsigned
simple function, then, by Theorem 9.2(b),∫

X

s dµ = sup{
∫
X

t dµ : 0 ≤ s ≤ t, t is a measurable unsigned simple function}.

Hence, the following definition is consistent with that of the integral for unsigned simple
functions.

Definition 10.1. Let (X,M , µ) be a measure space. For an unsigned measurable
function f : X → [0,+∞], define the integral of f with respect to µ by∫

X

f dµ := sup{
∫
X

s dµ : 0 ≤ s ≤ f ; s simple } (24)

Often we write
∫
f instead of

∫
X
f dµ when µ and X are understood.

For E ∈M let ∫
E

f dµ =

∫
X

f1E dµ.

/
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Theorem 10.2 (Basic properties of unsigned integrals). Let (X,M , µ) be a measure
space and let f, g be unsigned measurable functions on X.

(a) (Homogeneity) If c ≥ 0 then
∫
cf = c

∫
f .

(b) (Monotonicity) If f ≤ g then
∫
f ≤

∫
g.

(c) (Almost everywhere equivalence) If f(x) = g(x) for µ-almost every x ∈ X, then∫
f =

∫
g.

(d) (Finiteness) If
∫
f < +∞, then f(x) < +∞ for µ-a.e. x.

(e) (Vanishing)
∫
f = 0 if and only if f = 0 almost everywhere.

(f) (Bounded) If f is bounded measurable function and µ(X) <∞, then
∫
f dµ <∞.

The integral is also additive; however the proof is surprisingly subtle and will have
to wait until we have established the Monotone Convergence Theorem.

Proof of Theorem 10.2. As in the simple case homogeneity is trivial. Monotonicity is
also evident, since any simple function less than f is also less than g.

Turning to item (c) let E be a measurable set with µ(Ec) = 0. If s is a simple
function, then 1Es and s are simple functions that agree almost everywhere. Thus∫

1Es =
∫
s, by Theorem 9.2(d). Further, if 0 ≤ s ≤ f, then 1Es ≤ 1Ef. Hence, using

monotonicity (item (b)) and taking suprema over simple functions,∫
1Ef ≤

∫
f = sup

0≤s≤f

∫
s = sup

0≤s≤f

∫
1Es ≤ sup

0≤t≤1Ef

∫
t =

∫
1Ef.

Now suppose f = g a.e. Thus, letting E = {f = g}, the set Ec has measure zero and
1Ef = 1Eg. Hence, from what has already been proved (twice),∫

f dµ =

∫
1Ef dµ =

∫
1Eg dµ =

∫
g dµ.

To prove item (d) observe if f = +∞ on a measurable set E and µ(E) > 0, then∫
f ≥

∫
n1E = nµ(E) for all n, so

∫
f = +∞. (A direct proof can be obtained from

Markov’s inequality below.)

If f = 0 a.e. and s ≤ f is a simple function, then by monotonicity
∫
s = 0 so∫

f = 0. Conversely, suppose there is a set E of positive measure such that f(x) > 0
for all x ∈ E. Let En = {x ∈ E : f(x) > 1

n
}. Then E =

⋃∞
n=1En, so by the pigeonhole

principle µ(EN) > 0 for some N . But then 1
N

1EN ≤ f , so
∫
f ≥ 1

N
µ(EN) > 0 and item

(e) is proved.

Finally, for item (f), by hypothesis there is a positive real number C so that 0 ≤
f(x) ≤ C for x ∈ X. With g denoting the simple function C1X , we have 0 ≤ f ≤ g.
Hence item (f) follows from monotonicity. �

Theorem 10.3 (Monotone Convergence Theorem). Let (X,M , µ) be a measure space
and suppose (fn) is a sequence of unsigned measurable functions fn : X → [0,∞]. If
(fn) increases to f pointwise, then

∫
fn →

∫
f, where f is the pointwise limit of (fn).
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Proof. Since (fn) converges pointwise to f and each fn is measurable, f is measurable.
By monotonicity of the integral, the sequence (

∫
fn) is increasing and

∫
fn ≤

∫
f for

all n. Thus the sequence (
∫
fn) converges (perhaps to ∞) and lim

∫
fn ≤

∫
f . For the

reverse inequality, fix a measurable simple function with 0 ≤ s ≤ f . Let ε > 0 be given.
Consider the sets

En = {x : fn(x) ≥ (1− ε)s(x)}.
Since (fn) is pointwise increasing, (En) is an increasing sequence of measurable sets
whose union is X. For all n,∫

fn ≥
∫
En

fn ≥ (1− ε)
∫
En

s.

By Monotone convergence for sets (Theorem 2.3(c)) applied to the measure ν(E) =
∫
E
s

(Proposition 9.3), we see that

lim

∫
En

s =

∫
X

s.

Thus lim
∫
fn ≥ (1− ε)

∫
s. Since 1 > ε > 0 is arbitrary, lim

∫
fn ≥

∫
s. Since 0 ≤ s ≤ f

was an arbitrary simple function, lim
∫
fn is an upper bound for the set whose supremum

is, by definition,
∫
f . Thus lim

∫
fn ≥

∫
f . �

Before going on we mention two frequently used applications of the Monotone Con-
vergence Theorem:

Corollary 10.4. (i) (Vertical truncation) If f is an unsigned measurable function,
then the sequence (

∫
min(f, n)) converges to

∫
f .

(ii) (Horizontal truncation) If f is an unsigned measurable function and (En)∞n=1 is an
increasing sequence of measurable sets whose union is X, then

∫
En
f →

∫
f .

†

Proof. Since min(f, n) and 1Enf are measurable for all n and increase pointwise to f ,
these follow from the Monotone Convergence Theorem. �

Theorem 10.5 (Additivity of the unisgned integral). If f, g are unsigned measurable
functions, then

∫
f + g =

∫
f +

∫
g.

Proof. By Theorem 8.19, there exist sequences of unsigned, measurable simple functions
fn, gn which increase pointwise to f, g respectively. Thus fn + gn increases to f + g, so
by Theorem 9.2(c) and the Monotone Convergence Theorem,∫

f + g = lim

∫
[fn + gn] = lim

[∫
fn +

∫
gn

]
=

∫
f +

∫
g.

�

Corollary 10.6 (Tonelli’s theorem for sums and integrals). If (fn) is a sequence of
unsigned measurable functions, then

∫ ∑∞
n=1 fn =

∑∞
n=1

∫
fn. †
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Proof. Let gN =
∑N

n=1 fn. Thus (gN) is an increasing sequence with pointwise limit
g =

∑∞
n=1 fn. In particular, g is measurable and by the Monotone convergence theorem

(
∫
gN) converges to

∫
g. By induction on Theorem 10.5,∫

gN =
N∑
n=1

∫
fn

and the result follows by taking the limit on N . �

Pointwise convergence is not sufficient to imply convergence of the integrals (see
Examples 10.8 below), however the following weaker result holds.

Theorem 10.7 (Fatou’s Theorem). If fn is a sequence of unsigned measurable functions,
then ∫

lim inf fn ≤ lim inf

∫
fn.

Proof. For n ∈ N, the function gn(x) := infm≥n fm(x) is unsigned, gn ≤ fn pointwise and,
by Proposition 8.13, measurable. By definition of the lim inf, the sequence (gn) increasing
pointwise to lim inf fn. By the Monotone Convergence Theorem and monotonicity∫

lim inf fn =

∫
lim gn = lim

∫
gn = lim inf

∫
gn ≤ lim inf

∫
fn.

�

Example 10.8. [Failure of convergence of integrals] This example highlights three
modes of failure of the convergence (

∫
fn) to

∫
f for sequences of unsigned measur-

able functions fn : R → [0,+∞] and Lebesgue measure. In each case (fn) converges to
the zero function pointwise, but

∫
fn = 1 for all n:

(1) (Escape to height infinity) fn = n1(0, 1
n

)

(2) (Escape to width infinity) fn = 1
2n

1(−n,n)

(3) (Escape to support infinity) fn = 1(n,n+1)

Note that in the second example the convergence is even uniform. These examples can
be though of as “moving bump” functions–in each case we have a rectangle and can
vary the height, width, and position. If we think of fn as describing a density of mass
distributed over the real line, then

∫
fn gives the total “mass”; Fatou’s theorem says

mass cannot be created in the limit, but these examples show mass can be destroyed. 4

Proposition 10.9 (Markov’s inequality). If f is an unsigned measurable function, then
for all t > 0

µ({x : f(x) > t}) ≤ 1

t

∫
f

†

Proof. Let Et = {x : f(x) > t}. Then by definition, t1Et ≤ f , so tµ(Et) =
∫
t1Et ≤∫

f . �
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We conclude this section with a few frequently-used corollaries of the monotone
convergence theorem, and a converse to it.

Theorem 10.10 (Change of variables). Let (X,M , µ) be a measure space, (Y,N ) a
measurable space, and φ : X → Y a measurable function. The function φ∗µ : N →
[0,+∞] defined by

φ∗µ(E) = µ(φ−1(E)). (25)

is a measure on (Y,N ), and for every unsigned measurable function f : Y → [0,+∞],∫
Y

f d(φ∗µ) =

∫
X

(f ◦ φ) dµ. (26)

Proof. Problem 13.16. The measure φ∗µ is called the push-forward of µ under φ. �

Lemma 10.11 (Borel-Cantelli Lemma). Let (X,M , µ) be a measure space and suppose
(En)∞n=1 is a sequence of measurable sets. If

∞∑
n=1

µ(En) <∞,

then for almost every x ∈ X is contained in at most finitely many of the En (that is,
letting Nx := {n : x ∈ En} ⊂ N, the set {x : |Nx| =∞} has measure 0). †

Sketch of proof. Consider the series S =
∑∞

n=1 1En . By Corollary 10.6,
∫
S is finite.

Hence S is finite a.e. by Theorem 10.2(d). On the other hand, {x : |Nx| = ∞} =
S−1({∞}. �

There is a sense in which the monotone convergence theorem has a converse, namely
that any map from unsigned measurable functions on a measurable space (X,M ) to
[0,+∞], satisfying some reasonable axioms (including MCT) must come from integration
against a measure. The precise statement is the following:

Theorem 10.12. Let (X,M ) be a measurable space and let U(X,M ) denote the set of
all unsigned measurable functions f : X → [0,+∞]. Suppose L : U(X,M ) → [0,+∞]
is a function obeying the following axioms:

(a) (Homogeneity) For every f ∈ U(X,M ) and every real number c ≥ 0, L(cf) = cL(f).
(b) (Additivity) For every pair f, g ∈ U(X,M ), L(f + g) = L(f) + L(g).
(c) (Monotone convergence) If fn is a sequence in U(X,M ) increasing pointwise to f ,

then limn→∞ L(fn) = L(f).

Then there is a unique measure µ : M → [0,+∞] such that L(f) =
∫
X
f dµ for all

f ∈ U(X,M ). In fact, µ(E) = L(1E).

Proof. Problem 13.17. �
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11. Integration of signed and complex functions

Again we work on a fixed measure space (X,M , µ). Suppose f : X → R is mea-
surable. Split f into its positive and negative parts f = f+ − f−. If at least one of∫
f+,

∫
f− is finite f is semi-integrable and the integral of f is defined as∫

f =

∫
f+ −

∫
f−.

If both are finite, we say f is integrable (or sometimes absolutely integrable). Note that
f is integrable if and only if

∫
|f | < +∞; this is immediate since |f | = f+ + f− and the

integral is additive on unsigned functions. We write

‖f‖1 :=

∫
X

|f | dµ

when f is integrable. In the complex case, a measurable f : X → C is integrable (or
absolutely integrable) if |f | is integrable. From the inequalities

max(|Ref |, |Imf |) ≤ |f | ≤ |Ref |+ |Imf |

it is clear that f : X → C is (absolutely) integrable if and only if Ref and Imf are.
If f is complex-valued and absolutely integrable (that is, f is measurable and |f | is
integrable), we define ∫

f =

∫
Ref + i

∫
Imf.

We also write ‖f‖1 :=
∫
X
|f | dµ in the complex case.

If f : X → R is absolutely integrable, then necessarily the set {x : |f(x)| = +∞}
has measure 0 by Theorem 10.2(d). We may therefore redefine f to be 0, say, on this
set, without affecting the integral of f (by Theorem 10.2(c)). Thus when working with
absolutely integrable functions, we can (and often will) always assume that f is finite-
valued everywhere.

11.1. Basic properties of the absolutely convergent integral. The next few propo-
sitions collect some basic properties of the absolutely convergent integral. Let L1(X,M , µ)
denote the set of all absolutely integrable C-valued functions on X. (If the measure space
is understood, as it is in this section, we just write L1.)

Theorem 11.1 (Basic properties of L1 functions). Let f, g ∈ L1 and c ∈ C. Then:

(a) L1 is a vector space over C;
(b) the mapping Λ : L1 → C defined by Λ(f) =

∫
f is linear;

(c)
∣∣∫ f ∣∣ ≤ ∫ |f |.

(d) ‖cf‖1 = |c|‖f‖1.
(e) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1.

Proof. To prove L1 is a vector space, suppose f, g ∈ L1 and c ∈ C. Since f, g are
measurable, so is f + g, thus |f + g| has an integral and, since |f + g| ≤ |f | + |g|,
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monotonicity and additivity of the unsigned integral, Theorems 10.2 and 10.5, show
that f + g is integrable and hence in L1. Further,

‖f + g‖1 ≤ ‖f‖1 + ‖g‖1

and item (e) is proved. Next,
∫
|cf | = |c|

∫
|f | <∞ (using homogeneity of the unsigned

integral in Theorem 10.2). Hence item (d) holds. Moreover, it follows that cf ∈ L1.
Thus L1 is a vector space.

To prove that f 7→
∫
f is linear, first assume f and g are real-valued and c ∈

R; the complex case then follows essentially by definition. Checking c
∫
f =

∫
cf is

straightforward. For additivity, let h = f + g and observe

h+ − h− = f+ + g+ − f− − g−.

Therefore

h+ + f− + g− = h− + f+ + g+.

Thus, ∫
h+ + f− + g− =

∫
h− + f+ + g+

and rearranging, using additivity of the unsigned integral and finiteness of all the inte-
grals involved, gives

∫
h =

∫
f +

∫
g. Hence Λ is linear proving item (b).

If f is real, then, using additivity of the unsigned integral,∣∣∣∣∫ f

∣∣∣∣ =

∣∣∣∣∫ f+ −
∫
f−
∣∣∣∣ ≤ ∫ f+ +

∫
f− =

∫
(f+ + f−) =

∫
|f |.

Hence (c) holds for real-valued functions. When f is complex, assume
∫
f 6= 0 and let

t = sgn
∫
f . Then |t| = 1 and |

∫
f | =

∫
tf . It follows that, using in part (c) for the

real-valued function Retf ,∣∣∣∣∫ f

∣∣∣∣ = t

∫
f =

∫
tf = Re

∫
tf =

∫
Retf ≤

∫
|Retf | ≤

∫
|tf | =

∫
|f |.

�

Because of cancellation, it is clear that
∫
f = 0 does not imply f = 0 a.e. when f

is a signed or complex function. However the conclusion f = 0 a.e. can be recovered if
we assume the vanishing of all the integrals

∫
E
f , over all measurable sets E.

Proposition 11.2. Let f ∈ L1. The following are equivalent:

(a) f = 0 almost everywhere,
(b)

∫
|f | = 0,

(c) For every measurable set E,
∫
E
f = 0.

†
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Proof. Since f = 0 a.e. if and only if |f | = 0 a.e., (a) and (b) are equivalent by
Theorem 10.2(e). Now assuming (b), if E is measurable then by monotonicity and
Theorem 11.1(b) ∣∣∣∣∫

E

f

∣∣∣∣ ≤ ∫
E

|f | ≤
∫
|f | = 0,

so item (c) holds.

Now suppose (c) holds and f is real-valued. Let E = {f > 0} and note f+ = f1E.
Hence f+ is unsigned and, by assumption

∫
f+ =

∫
E
f = 0. Thus, by Theorem 10.2,

f+ = 0 a.e. Similarly f− = 0 a.e. and thus f is the difference of two functions which are
zero a.e. To complete the proof, write f in terms of its real and imaginary parts. �

Corollary 11.3. If f, g ∈ L1 and f = g µ-a.e., then
∫
f =

∫
g. †

Proof. Apply Proposition 11.2 to f − g. �

A consequence is that we can introduces an equivalence relation on L1(X,M , µ)
by declaring f ∼ g if and only if f = g a.e. If [f ] denotes the equivalence class of
f under this relation, we may define the integral on equivalence classes by declaring∫

[f ] :=
∫
f . Corollary 11.3 shows that this is well-defined. It is straightforward to check

that [cf + g] = [cf ] + [g] for all f, g ∈ L1 and scalars c (so that L1/ ∼ is a vector space),
and that the properties of the integral given in Theorem 11.1 all persist if we work
with equivalence classes. The advantage is that now

∫
[|f |] = 0 if and only if [|f |] = 0.

This means that the quantity ‖[f ]‖1 is a norm on L1/ ∼. Henceforth will we agree to
impose this relation whenever we talk about L1, but for simplicity we will drop the [·]
notation, and also write just L1 for L1/ ∼. So, when we refer to an L1 function, it is
now understood that we refer to the equivalence class of functions equal to f a.e., but
in practice this abuse of terminology should cause no confusion.

Just as the Monotone Convergence Theorem is associated to the unsigned integral,
there is a convergence theorem for the absolutely convergent integral.

Theorem 11.4 (Dominated Convergence Theorem). Suppose (fn)∞n=1 is a sequence from
L1 which converges pointwise a.e. to a measurable function f . If there exists a function
g ∈ L1 such that for every n, we have |fn| ≤ g a.e., then f ∈ L1, and

lim
n→∞

∫
fn =

∫
f.

Proof. By considering the real and imaginary parts separately, we may assume f and
all the fn are real valued. By hypothesis, g± fn ≥ 0 a.e. Applying Fatou’s theorem and
linearity of the integral to these sequences gives∫

g +

∫
f =

∫
(g + f) ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn

and ∫
g −

∫
f =

∫
(g − f) ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn.
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It follows that lim inf
∫
f ≥

∫
f ≥ lim sup

∫
f . �

The conclusion
∫
fn →

∫
f (equivalently,

∣∣∫ fn − ∫ f ∣∣ → 0) can be strengthened
somewhat:

Corollary 11.5. If fn, f, g satisfy the hypotheses of the Dominated Convergence theo-
rem, then limn→∞ ‖fn − f‖1 = 0 (that is, lim

∫
|fn − f | = 0). †

Proof. Problem 13.20. �

Theorem 11.6 (Density of simple functions in L1). If f ∈ L1, then there is a sequence
(fn) of simple functions from L1 such that,

(a) |fn| ≤ |f | for all n,
(b) fn → f pointwise, and
(c) limn→∞ ‖fn − f‖1 = 0.

Item (c) says (fn) converges to f in L1.

Proof. Write f = u + iv with u, v real, and u = u+ − u−, v = v+ − v−. Each of the
four functions u±, v± is unsigned and measurable and each is in L1 since f ∈ L1. By
the ziggurat approximation we can choose four sequences of measurable simple functions
u±n , v

±
n increasing pointwise to u±, v± respectively. Now put un = u+

n −u−n , vn = v+
n −v−n ,

and fn = un + ivn. By construction, each fn is simple (and measurable). Moreover

|un| = u+
n + u−n ≤ u+ + u− = |u|,

and similarly |vn| ≤ |v|, so |fn| ≤ 2|f |. Since f ∈ L1 each fn is in L1, and fn → f point-
wise by construction. Thus the sequence (fn) satisfies the hypothesis of the dominated
convergence theorem (with g = 2|f |) and hence item (c) follows from Corollary 11.5. �

12. Modes of convergence

In this section we consider five different ways in which a sequence of functions
on a measure space (X,M , µ) can be said to converge. There is no simple or easily
summarized description of the relation between the five modes. At the end of the
section the reader is encouraged to draw a diagram showing the implications.

12.1. The five modes of convergence.

Definition 12.1. Let (X,M , µ) be a measure space and (fn)∞n=1, f be measurable
functions from X to C.

(a) The sequence (fn) converges to f pointwise almost everywhere if µ({lim fn 6= f}) = 0.
(b) The sequence (fn) converges to f essentially uniformly or in the L∞ norm if for

every ε > 0, there exists N ∈ N such that µ({|fn − f | ≥ ε}) = 0 for all n ≥ N.
(c) The sequence (fn) converges to f almost uniformly if for every ε > 0, there exists

an (exceptional set) E ∈M such that µ(E) < ε and (fn) converges to f uniformly
on the complement of E.
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(d) The sequence (fn) converges to f in the L1 norm if (‖fn − f‖1 :=
∫
X
|fn − f | dµ)

converges to 0.
(e) The sequence (fn) converges to f in measure if for every ε > 0, the sequence

(
µ({x :

|fn − f | > ε})
)

converges to 0.

/

The first thing to notice is that each of these modes of convergence is unaffected
if f or the fn are modified on sets of measure 0 (this is not true of ordinary pointwise
or uniform convergence). Thus these are modes of convergence appropriate to measure
theory. The L1 and L∞ modes are special cases of Lp convergence, which will be studied
later in the course.

We first treat a few basic properties common to all five modes of convergence.

Proposition 12.2 (Linearity of convergence). Let (fn), (gn), f, g be measurable functions
and c a complex number.

(a) For each of the five modes, (fn) converges to f in the given mode if and only if
(|fn − f |) converges to 0 in the given mode.

(b) If (fn) converges to f and gn converges to g, then (cfn + gn) converges to cf + g in
the given mode.

†

Proof. The proof is left as an exercise. (Problem 13.24) �

Proposition 12.3. Let (fn) be a sequence of measurable functions and suppose f is
measurable.

(a) If (fn) converges to f essentially uniformly, then (fn) converges to f almost uni-
formly.

(b) If (fn) converges to f almost uniformly, then (fn) converges to f pointwise a.e. and
in measure.

(c) If (fn) converges to f in the L1 norm, then (fn) converges to f in measure.

†

Proof. (a) is immediate from definitions. For (b), given k ≥ 1 we can find a measurable
set Ek with µ(Ek) <

1
k

such that fn → f uniformly (hence pointwise) on Ec
k. It follows

that fn → f pointwise on the set
⋃∞
k=1E

c
k. The complement of this set,

⋂∞
k=1 Ek has

measure zero, since µ(
⋂∞
k=1Ek) ≤ µ(Em) ≤ 1

m
for all m ∈ N+. The second part of (b) is

left as an exercise.

Finally, (c) follows from Markov’s inequality (Proposition 10.9). For ε > 0 fixed,

µ({x : |fn(x)− f(x)| > ε}) ≤ 1

ε

∫
X

|fn − f | dµ =
1

ε
‖fn − f‖1

and the sequence (‖fn − f‖1) converges to 0 by hypothesis. �
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Of the twenty possible implications that can hold between the five modes of con-
vergence, only the four implications ((b) is really two implications) given in the last
proposition (and the ones that follow by combining these) are true without further hy-
potheses.

To understand the differing modes of convergence, and the failure of the remaining
possible implications in Proposition 12.3, it is helpful to work out what they say in the
simplest possible case, namely that of step functions. A step function is a function of the
form c1E for a positive constant c and measurable set E. Convergence of a sequence of
step functions to 0 in each of the five modes, turns out to be largely determined by three
objects associated to the sequence (cn1En)∞n=1: the heights cn, the widths µ(En), and the
tail supports Tn :=

⋃
j≥nEj. The proof of the following theorem involves nothing more

than the definitions, but is an instructive exercise.

Theorem 12.4. Let fn = cn1En be a sequence of step functions.

(a) Assuming µ(En) > 0 for each n, the sequence (fn) converges to 0 in L∞ if and only
if (cn) converges to 0.

(b) The sequence (fn) converges to 0 almost uniformly if either (cn) or (µ(Tn)) converges
to 0.

(c) If (|cn|) is (eventually) bounded away from 0 and (fn) converges almost uniformly to
0, then (µ(Tn)) converges to 0.

(d) The sequence (fn) converges to 0 in measure if and only if the sequence (min{cn, µ(En)})
converges to 0.

Proof. To prove item (c), suppose, without loss of generality, that there is a C > 0 such
that |cn| ≥ C for all n and (fn) converges almost uniformly to 0. Given ε > 0 there is
a set F such that µ(F c) < ε and (fn) converges uniformly on F . In particular, for each
k ∈ N+ there is an Nk such that

F ⊂ ∩n≥Nk{|fn| <
1

k
}.

Equivalently,

F c ⊃ ∪n≥Nk{|fn| ≥
1

k
}.

Choose k such that 1
k
< C. Since |cn| > C > 1

k
, we see {|fn| ≥ 1

k
} = En for each n.

Hence,
F c ⊃ TNk .

Thus, ε > µ(F c) ≥ µ(Tn) for all n ≥ Nk. It follows that (µ(Tn)) converges to 0.

The remaining parts of the Theorem are similar (and easier) and are left as Prob-
lem 13.29. �

The moving bump examples

(a) (Escape to height infinity) fn = n1(0, 1
n

)

(b) (Escape to width infinity) fn = 1
2n

1(−n,n)

(c) (Escape to horizontal infinity) fn = 1(n,n+1)
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(d) (Escape to horizontal infinity alternate) fn = 1(n,n+ 1
n

),

together with the typewriter example below suffice to produce counterexamples to all of
the implications not covered in Proposition 12.3.

Example 12.5. [The Typewriter Sequence] Consider Lebesgue measure on (0, 1]. Let
Ink ⊂ (0, 1] denote the dyadic interval ( k

2n
, k+1

2n
] for n ≥ 1, 0 ≤ k < 2n. List these intervals

in dictionary order (first by increasing n, then by increasing k). So the first few intervals
are I10 = (0, 1

2
], I11 = (1

2
, 1], I20 = (0, 1

4
], I21 = (1

4
, 1

2
], etc. (Draw a picture to see what is

going on.) The sequence of indicator functions of these intervals (in this order) converges
in measure to 0, since for any 0 < ε < 1 we have m({x : 1Ink > ε} = m(Ink) = 2−n.
However since each point in (0, 1] lies in infinitely many Ink and also lies outside infinitely
many Ink, the sequence 1Ink(x) does not converge at any point of (0, 1]. 4

To go further we begin with a closer investigation of convergence in measure.

Definition 12.6. A sequence (fn)∞n=1 of C-valued measurable functions is Cauchy in
measure if for every ε, η > 0, there is an N such that for n,m ≥ N ,

µ({x : |fn(x)− fm(x)| > ε}) < η.

/

It is readily seen that if (fn) converges to f in measure, then the sequence (fn) is
Cauchy in measure. Indeed, by the triangle inequality,

{x : |fn(x)−fm(x)| > ε} ⊂ {x : |fn(x)−f(x)| > ε/2}∪{x : |fm(x)−f(x)| > ε/2}, (27)

and thus the result follows by subadditivity of µ. That the converse also holds will be
proved shortly.

Proposition 12.7. A sequence (fn)∞n=1 of measurable functions fn : X → C is Cauchy
in measure if and only if for every ε > 0 there exists an integer N ≥ 1 such that

µ({x : |fn(x)− fm(x)| > ε}) < ε

for all n,m ≥ N . Similarly (fn) converges to f in measure if and only if for every ε > 0
there exists N such that

µ({x : |fn(x)− f(x)| > ε}) < ε

for all n ≥ N . †

Proof. Problem 13.27. �

We have already seen that convergence in measure does not imply pointwise a.e.
convergence (the typewriter sequence). Note, however, that in that example there is at
least a subsequence converging pointwise a.e. to 0 (give an example).

Proposition 12.8. If (fn)∞n=1 be a sequence of measurable functions which is Cauchy in
measure, then
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a) there is a measurable function f and a subsequence (fnk)
∞
k=1 such that (fnk)k

converges to f almost uniformly; and
b) with f as in part (a), (fn) converges to f in measure, and if also (fn) converges

to g in measure, then f = g a.e.

†

In other words, if the sequence (fn) is Cauchy in measure, then it converges in
measure to a unique (a.e.) f , and a subsequence of (fn) converges to f a.e.

Proof. With ε = 2−1, there is an n1 such that if m ≥ n1, then µ{|fm − fn1| > 2−1} <
2−1. Now with ε = 2−2, there is an n2 such that n2 > n1 and if m ≥ m2, then
µ{|fm−fn2 | > 2−2} < 2−2. In particular, µ{|fn2−fn1| > 2−1} < 2−1. Taking ε = 2−k = η
in the definition of convergence in measure,choose inductively a sequence of integers
n1 < n2 < . . . nk < . . . such that

µ({x : |fnk(x)− fnk+1
(x)| > 2−k}) < 2−k. (28)

Put gk = fnk . Let

Ek = {x : |gk(x)− gk+1(x)| > 2−k};
by (28) µ(Ek) < 2−k. Let FN =

⋃∞
k=N Ek and F =

⋂∞
N=1 FN = lim supEk and observe

µ(FN) ≤
∑∞

k=N 2−k = 2−N−1. For x 6∈ FN and m ≥ n ≥ N , the estimate

|gn(x)− gm(x)| ≤
m−1∑
k=n

|gk+1(x)− gk(x)| ≤
m−1∑
k=n

2−k ≤ 2−n−1 (29)

shows that (gn) is uniformly Cauchy on F c
N . Hence (gn) is pointwise Cauchy on F c and

thus converges pointwise a.e. to a measurable function f by Proposition 8.16. Finally
(gn) converges almost uniformly to f .

Part (b) is a version of the fact that if a Cauchy sequence has a convergent subse-
quence, then the sequence converges; and, if a sequence has a limit, then the limit is
unique. Thus, to prove part (b), let (gk) and f be as in the proof of part (a). Since
(gk) converges to f almost uniformly, it converges to f in measure by Proposition 12.3.
Using the triangle inequality,

{x : |fn(x)− f(x)| > ε} ⊂ {x : |fn(x)− gk(x)| > ε/2} ∪ {x : |gk(x)− f(x)| > ε/2},
and, using the Cauchy in measure assumption on (fn) and that (gk) converges to f in
measure, the measures of the sets on the right can be made less than ε by choosing n, k
sufficiently large. The details are left to the gentle reader.

Finally, suppose also (fn) converges to g in measure. By one more application of
the triangle inequality trick, for a fixed ε > 0,

{x : |f(x)− g(x)| > ε} ⊂ {x : |f(x)− fn(x)| > ε/2} ∪ {x : |fn(x)− g(x)| > ε/2},
and the measures of the sets on the right-hand side go to 0 by hypothesis. So µ({x :
|f(x) − g(x)| > 1

n
}) = 0 for all n ∈ N+. By the pigeon hole principle, Proposition 2.6,

µ({|f − g| 6= 0}) = 0. �
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Corollary 12.9. If (fn) converges to f in L1, then (fn) has a subsequence converging
to f a.e. †

Proof. Combine Proposition 12.3(c) and Proposition 12.8. �

Proposition 12.10. Let (X,M , µ) be a measure space. The normed vector space L1 =
L1(µ) is complete. In particular, if (fn) is an L1 Cauchy sequence, then there is an
f ∈ L1 and a subsequence (gk) of (fn) such that (gk) converges pointwise a.e. to f and
(fn) converges in L1 to f . †

Proof. Suppose (fn) is L1-Cauchy. In this case (fn) is Cauchy in measure and hence has
a subsequence (hm) which converges pointwise a.e. to some measurable function f, by
Corollary 12.9. Choose a subsequence (gk = hmk) such that

‖gk+1 − gk‖ <
1

2k
.

(Such a subsequence is super Cauchy.) Let

Gm =
m∑
k=1

|gk+1 − gk|.

The sequenceGm is an increasing sequence of non-negative functions and hence converges
to some G. By the Monotone Convergence Theorem,

1 =
∞∑
k=1

1

2k
≥ lim

∫
X

Gm dµ =

∫
X

Gdµ.

In particular G is in L1. Further,

gm+1 =
m∑
k=1

[gk+1 − gk] + g1

is dominated by |g1| + G and converges pointwise a.e. to f . Hence by Corollary 11.5,
f ∈ L1 and (gm) converges to f in L1. Finally, since (fn) is L1 Cauchy and a subsequence
converges (in L1) to f , the full sequence converges in L1 to f . �

12.2. Finite measure spaces. Observe that two of the “moving bump” examples (es-
cape to width infinity and escape to horizontal infinity) exploit the fact that Lebesgue
measure on R is infinite. Moreover, in some cases these are the only counterexamples
(of the four) to particular implications–for example, escape to width infinity is the only
example of convergence in L∞ but not convergence in L1, and escape to horizontal in-
finity is the only one of pointwise a.e. convergence but not convergence in measure. It
is then plausible that if we work on a finite measure space (µ(X) < ∞), where these
examples are “turned off,” we might recover further convergence results. This is indeed
the case.

Proposition 12.11. Suppose (X,M , µ) is a finite measure space, (fn) is an L1 sequence
and f : X → C is measurable. If (fn) converges to f essentially uniformly, then f ∈ L1

and (fn) converges to f in L1. †
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Proof. Problem 13.28. �

Theorem 12.12 (Egorov’s Theorem). Let (X,M , µ) be a measure space with µ(X) <
∞. If fn : X → C is a sequence of measurable functions, f : X → C is measurable and
(fn) converges to f a.e., then (fn) converges to f almost uniformly.

Proof. There is no loss of generality in assuming (fn) converges to f everywhere. For
N, k ≥ 1, let

EN,k =
∞⋃
n=N

{x : |fn(x)− f(x)| ≥ 1

k
}.

Fix k. For each x, there is an N such that |fn(x) − f(x)| < 1
k

for all n ≥ N . Hence⋂
N≥1EN,k = ∅. Since the EN,k are decreasing with N and µ(X) < ∞, by dominated

convergence for sets the sequence (µ(EN,k))N converges to 0 for each k.

Now let ε > 0 be given. Choose, for each k, an Nk such that µ(ENk,k) < ε2−k. Let
E =

⋃∞
k=1ENk,k and observe µ(E) < ε. To prove (fn) converges to f uniformly on Ec,

given η > 0 choose k such that 1
k
< η. Suppose now that x ∈ Ec and n ≥ Nk. Since

Ec ⊂ Ec
Nk,k

, the inequality |fn(x) − f(x)| < 1
k
< η holds and we conclude that (fn)

converges uniformly to f on Ec. �

Remark 12.13. Note that in Egorov’s theorem, almost uniform convergence cannot be
improved to essential uniform convergence, as the moving bump example 1[0, 1

n
] shows. �

12.3. Uniform integrability. In the last section we saw that some convergence im-
plications could be recovered by making an assumption (µ(X) < ∞) that “turns off”
some of the failure modes. In this section we do something similar. In particular note
that the moving bump examples show that of the five modes, L1 convergence is the
only one which implies

∫
fn →

∫
f (assuming the fn and f are integrable). The main

result of this section, a version of the Vitali convergence theorem, says that if we make
certain assumptions on fn (namely “uniform integrability”) that turn off the moving
bump examples, then we can conclude that L1 convergence is equivalent to convergence
in measure. This result is similar in spirit to the classical Vitali Convergence Theorem
(which we will cover later in the context of Lp spaces), though the approach used here
(borrowed from T. Tao, An Introduction to Measure Theory, Section 1.5) is slightly
different.

Definition 12.14. [Uniform integrability] A subset F of L1 is uniformly integrable
provided

(i) [Uniform bound on L1 norm] The set {‖f‖1 : f ∈ F} is bounded;
(ii) [No escape to vertical infinity] sup({

∫
{|f |≥M} |f | dµ : f ∈ F})→ 0 as M → +∞

(iii) [No escape to width infinity] sup({
∫
{|f |≤δ} |f | dµ : f ∈ F})→ 0 as δ → 0.

A sequence fn : X → C of L1 functions is uniformly integrable if the set {fn : n} is
uniformly integrable. /
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(To visualize the conditions in items (ii) and (iii), work out what they say for
sequences of step functions.) We warm up by observing that, for a single L1 function f ,
by the Dominated Convergence theorem,

lim
M→+∞

∫
|f |>M

|f | dµ = 0

and

lim
δ→0

∫
|f |≤δ
|f | dµ = 0.

Thus F = {f} is uniformly integrable. Uniform integrability for a sequence (fn) says
the quantities

∫
|fn|>M |fn| dµ and

∫
|fn|≤δ |fn| dµ can be made arbitrarily small by choice

of large M and small δ, independently of n. Proposition 12.17 below says if (fn) is an L1

Cauchy sequence, then (fn) is uniformly integrable. Note too a finite union of uniformly
integrable sets is uniformly integrable. In particular, if (fn) converges to f ∈ L1, then
F = {fn : n} ∪ {f} is uniformly integrable.

Before going further we give an equivalent formulation of item (ii) (assuming item
(i)):

Lemma 12.15. If (fn) is a sequence of L1 functions such that supn ‖fn‖1 < ∞, then
the condition of item (ii) in Definition 12.14 is equivalent to,

(ii)′ for every ε > 0, there exists a δ > 0 such that if µ(E) < δ, then
∫
E
|fn| < ε for

all n.

†

Proof. Suppose (ii) holds and let ε > 0 be give. Choose M such that supn
∫
|fn|≥M |fn| <

ε
2
, and let δ < ε

2M
. If E is a measurable set with µ(E) < δ, then for all n,∫
E

|fn| dµ =

∫
E∩{|fn|≥M}

|fn| dµ+

∫
E∩{|fn|<M}

|fn| dµ

≤
∫
{|fn|≥M}

|fn| dµ+

∫
E

M dµ

<
ε

2
+Mµ(E)

< ε.

Conversely, suppose (ii)′ holds. Fix ε > 0, and for δ > 0 satisfying (ii)′ choose M
large enough that 1

M
supn ‖fn‖1 < δ. Then by Markov’s inequality (Proposition 10.9),

for all n we have µ({|fn| ≥M} ≤ ‖fn‖1
M

< δ. Thus by (ii)′∫
|fn|≥M

|fn| < ε

for all n. Hence (i) and (ii) implies (ii)′.
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Remark 12.16. On a finite measure space, escape to width infinity is impossible, and
a sequence is uniformly integrable if and only if supn ‖f‖1 < ∞ and (ii) (equivalently,
(ii)′) is satisfied. �

�

Proposition 12.17. If (fn) is a sequence of L1 functions and (fn) converges to f in
L1, then (fn) is uniformly integrable. †

Proof. Problem 13.35. �

Theorem 12.18. Suppose fn : X → C is a sequence of L1 functions and f : X → C
is measurable. The sequence (fn) converges to f in L1 if and only if (fn) is uniformly
integrable and converges to f in measure.

Proof. The forward implication follows from Propositions 12.10, 12.3 and 12.17.

For the converse, suppose (fn) is uniformly integrable and converges to f in measure.
To show that f ∈ L1, first note, by uniform integrability, there is a constant C such
that

∫
X
|fn| ≤ C for all n, and by Proposition 12.8 there is a subsequence (fnk) of (fn)

converging to f a.e. Applying Fatou’s theorem to this subsequence, we conclude∫
X

|f | ≤ lim inf

∫
X

|fnk | ≤ C, (30)

so f ∈ L1.

Since f ∈ L1 and (fn) is uniformly integrable, the set {fn : n}∪{f} is also uniformly
integrable. Thus, by condition (iii) in the definition of uniformly integrable, given ε > 0,
there is a δ > 0 such that for all n ∫

|fn|≤δ
|fn| dµ ≤ ε (31)

and at the same time ∫
|f |≤δ
|f | dµ ≤ ε. (32)

From conditions (i) and (ii) and Lemma 12.15, there exists a γ > 0 such that µ(E) ≤ γ
implies ∫

E

|fn| dµ < ε∫
E

|f | dµ < ε

for all n. Now choose 0 < η = min{ δ
2
, εδ

2C
, γ}.

From (31) and (32) ∫
|fn−f |<η, |f |≤δ/2

|fn| dµ ≤ ε
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and ∫
|fn−f |<η, |f |≤δ/2

|f | dµ ≤ ε.

So by the triangle inequality∫
|fn−f |<η, |f |≤δ/2

|fn − f | dµ ≤ 2ε. (33)

We now estimate the integral of |fn − f | over the region |fn − f | < η, |f | > δ/2 via
Markov’s inequality. Indeed,

µ({x : |f(x)| > δ/2}) ≤ C

δ/2
.

Thus ∫
|fn−f |<η, |f |>δ/2

|fn − f | dµ ≤
C

δ/2
η ≤ ε. (34)

Combining Equations (34) and (33) gives∫
|fn−f |<η

|fn − f | dµ ≤ 3ε. (35)

Finally the convergence in measure hypothesis is used to estimate the integral of
|fn−f | over the set |fn−f | ≥ η. With ε = η in the definition of convergence in measure,
there is an N such that for all n ≥ N ,

µ({x : |fn(x)− f(x)| ≥ η} ≤ η.

Hence, by the choice of γ, ∫
|fn−f |≥η

|fn| dµ ≤ ε

and ∫
|fn−f |≥η

|f | dµ ≤ ε.

Thus again by the triangle inequality∫
|fn−f |≥η

|fn − f | dµ ≤ 2ε

for all n ≥ N. Putting this last inequality together with (35),∫
X

|fn − f | dµ < 5ε

for all n ≥ N and the proof is complete. �

Remark 12.19. Say that a sequence of measurable functions fn : X → C is dominated
if there is an L1 function g such that |fn| ≤ |g| for all n. It is not hard to show
(Problem 13.34) that if a sequence (fn) is dominated, then it is uniformly integrable.
On the other hand, a sequence (fn) can converge in L1 yet not be dominated. The main
utility of Theorem 12.18 is a criteria for proving L1 convergence for sequences that are
not dominated. �
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13. Problems

13.1. Measurable functions.

Problem 13.1. Suppose f : X → C is a measurable function. Prove that the functions
|f | and sgnf are measurable. (Recall that for a complex number z, sgn(z) = z/|z| if
z 6= 0, and sgn(0) = 0.)

Problem 13.2. Let f : R → R be a function. For each of the following, prove or give
a counterexample.

a) Suppose f 2 is Lebesgue measurable. Does it follow that f is Lebesgue measur-
able?

b) Suppose f 3 is Lebesgue measurable. Does it follow that f is Lebesgue measur-
able?

Problem 13.3. Recall the definition of an atomic σ-algebra (Problem 7.3). Prove that if
(X,M ) is a measurable space and M is an atomic σ-algebra, then a function f : X → R
is measurable if and only if it is constant on each atom An.

Problem 13.4. Prove that every monotone function f : R→ R is Borel measurable.

Problem 13.5. Let fn : X → R be a sequence of measurable functions. Prove that the
set {x ∈ X : limn→∞ fn(x) exists} is measurable.

Problem 13.6. Give an example of an uncountable collection F of Lebesgue measurable
functions f : R → [0,+∞] such that the function f(x) = supf∈F f(x) is not Lebesgue
measurable.

Problem 13.7. Let f : [0, 1] → [0, 1] denote the Cantor-Lebesgue function of Exam-
ple 6.2(c) and define g(x) = f(x) + x.

(i) Prove that g is a homeomorphism of [0, 1] onto [0, 2]. (Hint: it suffices to show
g is a continuous bijection.)

(ii) Let C ⊂ [0, 1] denote the Cantor set. Prove that m(g(C)) = 1.
(iii) By Problem 7.29, g(C) contains a nonmeasurable set S. Show that g−1(S) is

Lebesgue measurable, but not Borel.
(iv) Prove that there exists functions F,G on R such that F is Lebesgue measurable,

G is continuous, but F ◦G is not Lebesgue measurable.

Problem 13.8. Prove that if f, g : X → [0,∞] are measurable functions, then fg is
measurable.

Problem 13.9. Prove Propositions 8.15 and 8.16. For 8.16, you may wish to use the
observation that f : X → R is measurable if and only if {x : f(x) > q} is measurable
for every q ∈ Q. (The following example shows that µ can not be replaced by µ in the
conclusion. Let X = R and M = {∅, X}. Let µ denote the zero measure on M . In this
case the completion of M is 2X and µ is the zero measure on 2X . Let f : X → X denote
the identity function. It is 2X measurable. A function g is M measurable if and only if
it is constant, say with value c. Hence {f 6= g} = X \ {c} and this set is not in M .)
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13.2. The unsigned integral.

Problem 13.10. Prove the claim made immediately before Definition 9.1.

Problem 13.11. Complete the proof of Theorem 9.2.

Problem 13.12. Prove that if f is an unsigned measurable function and
∫
f < +∞,

then the set E := {x : f(x) > 0} is σ-finite. (That is, E can be written as a disjoint
union of measurable sets E =

⋃∞
n=1En with each µ(En) < +∞.)

Problem 13.13. Suppose that f is an unsigned measurable function and
∫
f < +∞.

a) Prove that for every ε > 0 there is a measurable set E with µ(E) < +∞, such
that

∫
f −

∫
E
f < ε.

b) Prove that for every ε > 0 there is a positive integer n such that
∫
f−
∫

min(f, n) <
ε.

Problem 13.14. Prove Fatou’s Theorem (Theorem 10.7) without using the Monotone
Convergence Theorem. Then use Fatou’s theorem to prove the Monotone Convergence
Theorem.

Problem 13.15. Let X be any set and let µ be counting measure on X. Prove that for
every unsigned function f : X → [0,+∞], we have

∫
X
f dµ =

∑
x∈X f(x).

Problem 13.16. Prove Theorem 10.10. (Hint: to verify the integral formula, use the
Monotone Convergence Theorem.)

Problem 13.17. Prove Theorem 10.12. (Hint: show first that µ(E) := L(1E) is a
measure, then that L(f) =

∫
f dµ. Problem 7.8 may be helpful.)

Problem 13.18. Let f be an unsigned measurable function on (X,M , µ). Prove that
the function ν(E) :=

∫
E
f dµ is a measure on M , and that for all unsigned measurable

g, we have
∫
g dν =

∫
gf dµ.

Problem 13.19. Prove (using monotone convergence and without using the dominated
convergence theorem) that if fn is a sequence of unsigned measurable functions that
decreases pointwise to f , and

∫
fN < ∞ for some N , then

∫
f = lim

∫
fn. Give an

example to show that the finiteness hypothesis is necessary.

13.3. The signed integral.

Problem 13.20. Prove Corollary 11.5.

Problem 13.21. Prove the following generalization of the dominated convergence the-
orem: suppose (fn) converges to f a.e. If gn is a sequence of L1 functions converging
a.e. to an L1 function g, if |fn| ≤ gn for all n, and

∫
gn →

∫
g, then

∫
fn →

∫
f .

Problem 13.22. Suppose fn, f ∈ L1 and (fn) converges to f a.e. Prove that
∫
|fn−f | →

0 if and only if
∫
|fn| →

∫
|f |. (Use the previous problem.)

Problem 13.23. Evaluate each of the following limits, and carefully justify your claims.
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a) lim
n→∞

∫ ∞
0

sin(x/n)

(1 + (x/n))n
dx

b) lim
n→∞

∫ ∞
0

1 + nx2

(1 + x2)n
dx

c) lim
n→∞

∫ ∞
0

n sin(x/n)

x(1 + x2)
dx

d) lim
n→∞

∫ ∞
0

n

1 + n2x2
dx

13.4. Modes of convergence.

Problem 13.24. Prove Proposition 12.2

Problem 13.25. Prove that if (fn) converges to f almost uniformly, then (fn) converges
to f in measure.

Problem 13.26. Show that the implications between modes of convergence not given
in Proposition 12.3 are false.

Problem 13.27. Prove Proposition 12.7.

Problem 13.28. . Prove Proposition 12.11.

Problem 13.29. Prove Theorem 12.4.

Problem 13.30. Let fn = 1(n,n+ 1
n

). Show that (fn) converges pointwise and in measure,

but not almost uniformly, to 0.

Let f2n = 1(n,n+ 1
n2

) and f2n+1 = 1
2n

1(−1,1). Show (fn) converges almost uniformly to

0, but, writing fn = cn1En , neither (cn) nor (µ(En)) converges to 0.

Problem 13.31. Let (X,M , µ) be a finite measure space. For measurable functions
f, g : X → C, define

d(f, g) =

∫
X

|f − g|
1 + |f − g|

dµ.

Prove that d is a metric on the set of measurable functions (where we identify f and g
when f = g a.e.).

Problem 13.32. Let (X,M , µ) be a finite measure space. Prove that (fn) converges
to f in measure if and only if d(fn, f)→ 0, where d is the metric in Problem 13.31.

Problem 13.33. [Fast L1 convergence] Suppose (fn) converges to f in L1 in such a way
that

∑∞
n=1 ‖fn− f‖1 <∞. Prove that (fn) converges to f almost uniformly. (Note that

this hypothesis “turns off” the typewriter sequence.) (Hint: first show that, given ε > 0
and m ≥ 1, there exists an integer N such that

µ

(
∞⋃
k=N

{x : |fk(x)− f(x)| ≥ 2−m}

)
< ε.

To construct your exceptional set E, use the ε/2n trick.)
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Problem 13.34. Prove that if fn is a dominated sequence, then it is uniformly inte-
grable. Give an example of a sequence (fn) which converges in L1 (and is thus uniformly
integrable), but is not dominated.

Problem 13.35. Prove that if (fn) converges to f in L1, then (fn) is uniformly integrable
(Proposition 12.17).

Problem 13.36. Suppose (fn) converges to f in measure and fn is dominated. Give a
direct proof that (fn) converges to f in L1 (without using Theorem 12.18).

Problem 13.37. Prove that if (fn) is a dominated sequence, and (fn) converges to f
a.e., then (fn) converges to f almost uniformly. (Hint: imitate the proof of Egorov’s
theorem.) (Thus for dominated sequences, a.e. and a.u. convergence are equivalent.)

Problem 13.38. [Defect version of Fatou’s theorem] Let (fn) be a sequence of unsigned
L1 functions with supn ‖fn‖1 < ∞. Suppose (fn) converges to f a.e. Prove that (fn)
converges to f in L1 if and only if

∫
fn →

∫
f . [Suggestion: Consider the sequence

|f − fn|+ (f − fn).]
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14. The Riesz-Markov Representation Theorem

Let X be a compact Hausdorff space. Recall the space C(X) is the vector space
{f : X → C : f is continuous} with the norm

‖f‖∞ = ‖f‖ = max{|f(x)| : x ∈ X} (36)

and that, as a metric space (the distance from f to g is ‖f − g‖), C(X) is a complete.
Generally, a complete normed vector space is called a Banach space.

For a locally compact Hausdorff space X, a function f : X → C has compact
support if there exists a compact set K such that f(x) = 0 for x /∈ K; i.e., the closure of
{x ∈ X : f(x) 6= 0} is compact. Assuming X is a locally compact Hausdorff space, let
Cc(X) denote those f ∈ C(X) with compact support.; The space Cc(X) is also given
the supremum norm as in Equation (36).

Given a vector space V , a linear mapping λ : V → C is called a linear functional.
A linear functional λ : Cc(X) → C is positive, if λ(f) ≥ 0 whenever f ≥ 0 (meaning
f(x) ≥ 0 is pointwise positive).

Example 14.1. Suppose µ is a regular Borel measure on the locally compact set X and
µ(K) <∞ for compact subsets of X. (This last condition is automatic if X is compact
and µ(X) < ∞). Thus, by Theorem 10.2(f), µ determines a positive linear functional,
λ, on Cc(X) by

λ(f) =

∫
X

f dµ.

As a second example, let X = [0, 1] and note that the mapping I : C([0, 1]) → C
defined by

I(f) =

∫ 1

0

f dx,

where the integral is in the Riemann sense, is a positive linear functional on C([0, 1]). 4

Theorem 14.2 (Riesz-Markov Representation Theorem). Let X = (X, τ) be a locally
compact Hausdorff space. If λ : Cc(X) → C is a positive linear functional, then there
exists a unique Borel measure µ on the Borel σ-algebra BX , such that

λ(f) =

∫
f dµ

for f ∈ Cc(X) and such that µ is regular in the sense that

(i) if K is compact, then µ(K) <∞;
(ii) if E ∈ BX , then µ(E) = inf{µ(U) : E ⊂ U, U open}; and

(iii) if E ∈ BX and µ(E) <∞, then µ(E) = sup{µ(K) : K ⊂ E, K compact}.

We will prove the result for the case X is compact. In this case, item (i) implies µ
is a a finite measure, and hence item (iii) applies to all E ∈ BX . In the next subsection,
topological preliminaries are gathered. The proof itself is in Subsection 14.2
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14.1. Urysohn’s Lemma and partitions of unity. A topological space X is normal
if for each pair C1, C2 of disjoint closed subsets of X, there exists disjoint open sets
U1, U2 such that Cj ⊂ Uj.

Theorem 14.3. A compact Hausdorff space X is normal.

Theorem 14.4 (Urysohn’s lemma). If X is a compact Hausdorff space and A,B are
disjoint closed subsets of X, then there exists a function f : X → [0, 1] such that f is
zero on A and f is 1 on B. In particular, if K is compact, V is open and K ⊂ V , then
there is a continuous f : X → R such that 1K ≤ f ≤ 1V and supp(f) ⊂ V .

Remark 14.5. Urysohn’s Lemma implies thatX is normal by choosing U = f−1((−1, 1
2
))

and V = f−1((1
2
, 2)).

Note that the lemma does not say A = f−1({0}) or B = f−1({1}), though this can
be arranged in the case that X is a metric space. �

Theorem 14.6 (Partition of Unity). Suppose V1, . . . , Vn are open subsets of a compact
Hausdorff space X. If C is closed and C ⊂ ∪Vj, then there exists continuous functions
hj : X → [0, 1] such that

(i) hj ≤ 1Vj ;
(ii) supp(hj) ⊂ Vj; and

(iii) for x ∈ C,
n∑
j=1

hj(x) = 1.

14.2. Proof of Theorem 14.2. Suppose X is a compact metric space and λ : C(X)→
C is a positive linear functional. To get an idea how to define µ(V ) for an open set
V ∈ τ , note that K = X \ V is compact and the function g : X → R

g(x) = d(x,K) = min{d(x, k) : k ∈ K}
is continuous. The sequence

fn = (
g

1 + g
)

1
n

is pointwise increasing to the characteristic function (or indicator function) of V , denoted
1V . Thus 1V : X → R is defined by 1V (x) = 0 for x /∈ V and 1V (x) = 1 for x ∈ V . If µ
exists, then, by the MCT,

µ(V ) =

∫
1V dµ = lim

n→∞

∫
X

fn dµ.

We are led to make the following definitions. For V open, define

µ0(V ) = sup{λ(f) : f ∈ C(X), 0 ≤ f ≤ 1V , supp(f) ⊂ V }.
Thus, letting τ denote the topology on X, µ0 : τ → [0,∞).

Define µ∗ : 2X → R by

µ∗(E) = inf{µ0(V ) : V is open and E ⊂ V }.
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(Note that this definition is forced upon us to achieve outer regularity.)

The proof is now broken down into a series of Lemmas. The functions, unless
otherwise noted, are continuous.

Lemma 14.7. The mapping µ0 is monotone and countably subadditive (on τ). †

Proof. That µ0 is monotone is evident. To prove that it is countably subadditive, suppose
(Vj) is a sequence of open sets and let V = ∪Vj. Suppose f is continuous, nonnegative
valued, f ≤ 1V and K = supp(f) ⊂ V . Since K is compact and K ⊂ ∪Vj, there exists
an N such that K ⊂ ∪Nj=1Vj. By Theorem 14.6, there exists functions hj ∈ C(X) such

that 0 ≤ hj ≤ 1Vj the support of hj lies in Vj and
∑N

j=1 hj = 1 on K. It follows that

f =
∑
fhj and fhj ≤ 1Vj as well as supp(fhj) ⊂ Vj. Hence,

λ(f) =
∑

λ(fhj) ≤
N∑
j=1

µ0(Vj) ≤
∞∑
j=1

µ0(Vj)

and inequality which completes the proof. �

Lemma 14.8. If V1 and V2 are disjoint open sets, then µ0(V1∪V2) = µ0(V1)+µ0(V2). †

Proof. Let W = V1 ∪ V2. By Lemma 14.7, it suffices to show that µ0(W ) ≥ µ0(V1) +
µ0(V2). To this end, let ε > 0 be given and suppose fj ≤ 1Vj are such that supp(fj) ⊂ Vj
and µ0(Vj) ≤ λ(fj) + ε. By disjointness, f1 + f2 ≤ 1W and supp(f1 + f2) ⊂ W too.
Hence,

2ε+ µ0(W ) ≥ 2ε+ λ(f) = 2ε+
∑

λ(fj) ≥
∑

µ0(Vj).

Since ε > 0 is arbitrary, the conclusion follows. �

Lemma 14.9. The mapping µ∗ is an outer measure. Further, if W is open, then
µ∗(W ) = µ0(W ). †

Proof. Since µ0(∅) = 0, to prove µ∗ is an outer measure, it suffices to prove that, for
E ⊂ X,

µ∗(E) = inf{
∞∑
j=1

µ0(Vj) : (Vj) is a sequence of open sets and E ⊂ ∪Vj}.

Hence, it is enough to show that if (Vj) is a sequence of open sets such that E ⊂ ∪Vj,
then µ0(V ) ≤

∑∞
j=1 µ0(Vj) for some open set E ⊂ V . Choose V = ∪Vj and apply

Lemma 14.7. �

Lemma 14.10. If K is compact and 1K ≤ f , then µ∗(K) ≤ λ(f). †

Proof. Given 0 < δ < 1, let Vδ = {f > δ}. Note that Vδ contains K and is open.
Moreover, if g ≤ 1Vδ and supp(g) ⊂ Vδ, then δg ≤ f and hence λ(g) ≤ 1

δ
λ(f). It follows

that,

µ0(Vδ) ≤
1

δ
λ(f).
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Thus, by monotonicity of outer measure, µ∗(K) ≤ µ0(Vδ) ≤ 1
δ
λ(f). Letting δ < 1 tend

to 1 gives the result. �

Lemma 14.11. If W is open, K is compact and K ⊂ W , then

µ0(W ) = µ0(W \K) + µ∗(K).

†

Proof. One inequality follows from subadditivity of outer measure. To prove the other
inequality note that W \K is open and let ε > 0 be given. Choose 0 ≤ g ≤ 1W\K with
supp(g) ⊂ W \K and λ(g) + ε ≥ µ0(W \K). Let C = supp(g). Choose, by Theorem
14.4, 1K ≤ f ≤ 1Cc∩W such that supp(f) ⊂ Cc ∩W . In particular, 0 ≤ f + g ≤ 1W and
the support of f + g lies in W and, by Lemma 14.10, λ(f) ≥ µ∗(K). Thus,

ε+ µ0(W ) ≥ ε+ λ(f + g) = λ(f) + (ε+ λ(g)) ≥ µ∗(K) + µ0(W \K).

�

Lemma 14.12. If W is open, K is compact, K ⊂ W and ε > 0, then there exists
1K ≤ f ≤ 1W such that supp(f) ⊂ W and λ(f) ≤ µ∗(K) + ε. †

Proof. Choose V an open set such that K ⊂ V and µ0(V ) ≤ µ∗(K) + ε. Replacing W
by V ∩W if needed, it may be assumed that V ⊂ W . By Theorem 14.4, there exists
1K ≤ f ≤ 1V and supp(f) ⊂ V . It follows that

λ(f) ≤ µ0(V ) ≤ µ∗(K) + ε.

�

Lemma 14.13. If W is open and ε > 0, then there is a compact set K such that K ⊂ W
and µ0(W ) ≤ µ∗(K) + ε. †

Proof. There is a 0 ≤ g ≤ 1W such that supp(g) ⊂ W and λ(g) + ε > µ0(W ). Let K
denote the support of g. Hence, K ⊂ W and K is compact. By Lemma 14.12, there
exists an f such that 1K ≤ f ≤ 1W , the support of f lies in W and λ(f) ≤ µ∗(K) + ε.
In particular g ≤ f and hence λ(g) ≤ λ(f). It follows that

µ0(W ) ≤ λ(g) + ε ≤ λ(f) + ε ≤ µ∗(K) + 2ε.

�

Lemma 14.14. If W is open, then W is outer measurable. †

Proof. Let A ⊂ X be given. Given ε > 0, choose an open set A ⊂ V such that µ0(V ) ≤
µ∗(A)+ε. Choose, by Lemma 14.13, a compact set K ⊂ W such that µ0(W ) ≤ µ∗(K)+ε.
Now, by monotonicity and Lemma 14.11,

µ∗(A ∩W ) ≤ µ0(V ∩W )

≤ µ∗(V ∩K) + µ0(V ∩ (W \K))

≤ µ∗(V ∩K) + µ0(W \K)

≤ µ∗(V ∩K) + ε.
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Further, by monotonicity,

µ∗(A ∩W c) ≤ µ∗(V ∩W c).

Now K and W c are disjoint compact sets. Hence, by Theorem 14.3, there exist disjoint
open sets S, T such that K ⊂ S and W c ⊂ T . Consequently, using Lemma 14.8 and
monotonicity,

µ∗(A ∩W ) + µ∗(A ∩W c) ≤µ∗(V ∩K) + ε+ µ∗(V ∩W c)

≤µ0(V ∩ S) + µ0(V ∩ T ) + ε

=µ0(V ∩ (S ∪ T )) + ε

≤µ0(V ) ≤ µ∗(A) + 2ε.

It follows that µ∗(A) ≥ µ∗(A ∩W ) + µ∗(A ∩W c) and thus W is outer measurable. �

Let M denote the collection of outer measurable sets. Thus, µ, the restriction of µ∗

to M is a complete measure. Further, M contains all open sets by Lemma 14.14 and
by Lemma 14.9 if W is open then µ(W ) = µ0(W ). In particular, BX ⊂M .

Lemma 14.15. The measure µ satisfies the regularity conditions of the theorem. †

Proof. Outer regularity follows immediately from the definition of µ∗. As for inner
regularity, suppose E is measurable. Thus Ec is measurable. By outer regularity, there
is an open set V such that Ec ⊂ V and µ(V \ Ec) < ε. Thus K = V c ⊂ E is compact
and µ(E \K) < ε. �

Lemma 14.16. If f ∈ C(X), then

λ(f) =

∫
X

f dµ.

†

Proof. Suppose f ∈ C(X) is real-valued and that [a, b] contains the range of f . Given
ε > 0, choose t0 < a < t1 < . . . tn = b such that tj − tj−1 < ε. Let Ej = f−1((tj−1, tj])
for j = 1, n. The Ej are Borel sets, hence, by outer regularity, there exists open sets
Vj ⊃ Ej such that µ(Vj) ≤ µ(Ej) + ε

n
. By Theorem 14.6, there exists hj ∈ C(X) such

that 0 ≤ hj ≤ 1Vj , the support of hj lies in Vj and
∑
hj = 1. Now,

λ(f) =
∑

λ(fhj)

≤
∑

λ(tjhj)

≤
∑

tjµ(Vj)

≤(
∑

tj−1 + ε)(µ(Ej) +
ε

n
)

≤
∫
X

f dµ+ ε(µ(X) + ε).



D
RA
FT

68 MAA6616 COURSE NOTES FALL 2016

Consequently,

λ(f) ≤
∫
X

f dµ. (37)

The reverse inequality follows by replacing f by −f in Equation (37).

Finally, the case of general continuous f : X → C is reduced to the case f is real
by considering the real and imaginary parts of f separately. �

Lemma 14.17. If µ1, µ2 are regular Borel measures such that

λ(f) =

∫
X

f dµj

for j = 1, 2 and f ∈ C(X), then µ1 = µ2. †

Proof. Let K be a given compact set. By outer regularity, given ε > 0 there exists an
open set V such that K ⊂ V and µj(V ) ≤ µj(K) + ε. By Theorem 14.4, there is an
f ∈ C(X) such that 1K ≤ f ≤ 1V . Hence,

µj(V )− ε ≤ µj(K) =

∫
X

1K dµj ≤
∫
X

f dµj = λ(f) ≤
∫
X

1V dµj = µj(V ).

Hence |µ1(K)− µ2(K)| ≤ 2ε and therefore µ1(K) = µ2(K). By inner regularity, it now
follows that µ1 = µ2. �

15. Product measures

We now revisit measures and σ-algebras. Recall, given measure spaces (X,M ) and
(Y,N ), the product σ-algebra M ⊗ N ⊂ 2X×Y is the σ-algebra generated by the
measurable rectangles {E × F : E ∈M , F ∈ N }.

Example 15.1. (a) If X, Y are finite sets and X, Y are given the discrete σ-algebras
2X , 2Y , then 2X ⊗ 2Y = 2X×Y .

(b) If we take two copies of R with the Borel σ-algebra BR, then BR⊗BR = BR2 . (See
Proposition 1.17.)

4

Given a pair of measure spaces (X,M , µ), (Y,N , ν), we would like to construct a
“product” measure µ× ν on the Cartesian product measurable space (X ×Y,M ×N ).
It is natural to insist, if E ∈M and F ∈ N have finite measure, then µ× ν(E × F ) =
µ(E) ν(F ); i.e., the measure of a measurable rectangle is the product of the measures.
We would also like conditions guaranteeing uniqueness. We will state and prove theorems
for only for two factors, but there is no difficulty in extending to finitely many factors
(Xj,Mj, µj), j = 1, . . . n. It turns out that the product is associative too. There is also
a construction valid for infinitely many factors when each factor is a probability space
(that is, µ(X) = 1) but this requires more care. In these notes we consider only the
finite case.
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To express, in what follows, integrals of unsigned functions f : X × Y → [0,+∞]
against product measures as iterated integrals, we introduce the slice functions fx : Y →
[0,+∞] and f y : X → [0,+∞], defined for each x ∈ X (respectively, each y ∈ Y ) by

fx(y) := f(x, y), f y(x) = f(x, y).

In other words, starting with f(x, y) we get functions defined on Y by holding x fixed,
and functions defined on X by holding y fixed.

In addition to these, given a set E ⊂ X × Y , we can define for all x ∈ X, y ∈ Y the
slice sets Ex ⊂ Y , Ey ⊂ X by

Ex := {y ∈ Y : (x, y) ∈ E}, Ey := {x ∈ X : (x, y) ∈ E}

We first show that these constructions preserve measurability.

Lemma 15.2. Let (X,M ), (Y,N ) be measurable spaces.

(i) If E belongs to the product σ-algebra M ⊗N , then for all x ∈ X and y ∈ Y the
slice sets Ex and Ey belong to N and M respectively.

(ii) If (Z,O) is another measurable space and f : X×Y → Z is a measurable function,
then for all x ∈ X and y ∈ Y , the functions fx and f y are measurable on Y and
X respectively.

†

Proof. Let S denote the set of all E ∈ 2X×Y with the property that Ey ∈ M and
Ex ∈ N for all x ∈ X, y ∈ Y . It suffices to prove that S is a σ-algebra containing all
measurable rectangles. First observe that S contains all rectangles in M ⊗N , since if
E = F×G then Ex is equal to eitherG or ∅, if x ∈ F or x 6∈ F respectively. In either case
Ex ∈ N . The same proof works for Ey. Next, suppose (En) is a sequence of disjoint sets
in S and E =

⋃∞
n=1En. Then Ex =

⋃∞
n=1(En)x ∈ N ; similarly Ey =

⋃∞
n=1E

y
n ∈ M .

Likewise (E∩F )x = Ex∩Fx. Thus if E,F ∈ S , then so is E∩F . Finally, (Ec)x = (Ex)
c

for all x ∈ X; similarly for Ey. Thus, by Proposition 1.7, S is a σ-algebra.

Item (ii) follows from item (i) by observing that for any O ⊂ O and x ∈ X,

(fx)
−1(O) = (f−1(O))x

and similarly for y. �

Remark 15.3. Even if both (X,M , µ) and (Y,N , ν) are complete measure spaces and
if τ is a measure on M ⊗ N such that τ(E × F ) = µ(E) ν(F ) for all measurable
rectangles E × F with µ(E), ν(F ) < ∞, it need not be the case that the product
measure (X × Y,M ⊗N , τ) is complete. Indeed, if there is an set E ⊂ X such that
E /∈ M that is contained in a set G of finite measure and a nonempty F ∈ N of
measure zero, then E × F ⊂ G× F and τ(G× F ) = 0, but, for any p ∈ F , the slice set
(E × F )p = {x ∈ X : (x, p) ∈ F} = E is not in M , and hence E × F is not in M ⊗N
by Lemma 15.2 below. �

The following Lemma is of independent interest.
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Definition 15.4. Let X be a set. A monotone class is a collection C ⊂ 2X of subsets
of X such that

(i) if E1 ⊂ E2 ⊂ · · · belong to C , so does
⋃∞
n=1En; and

(ii) if E1 ⊃ E2 ⊃ · · · belong to C , so does
⋂∞
n=1En.

/

Remark 15.5. It is immediate that intersections of monotone classes are monotone
classes. Hence, given a collection A ⊂ 2X , there is a smallest monotone class containing
A. If C is a monotone class, then so is C ′ = {Ec : E ∈ C }. Trivially, every σ-algebra is
a monotone class. The next lemma is a partial converse to this statement. �

Lemma 15.6 (Monotone class lemma). If A ⊂ 2X is a Boolean algebra, then the
smallest monotone class containing A is equal to the σ-algebra generated by A . †

Proof. Let M denote the σ-algebra generated by A and C the smallest monotone class
containing A . Since M is a monotone class containing A , it suffices to prove that
M ⊂ C .

Since E ∈ A implies Ec ∈ A , it follows that C ′ is a monotone class containing
A . Hence C ⊂ C ′. Thus, if E ∈ C , then there is an F ∈ C such that E = F c and
Ec = F ∈ C . Thus C is closed under complements.

Given E ⊂ X, let CE denote the set of all F ∈ C such that the sets

F \ E, E \ F, F ∩ E, X \ (E ∪ F )

belong to C . A quick check of the definitions shows that CE is a monotone class.
Moreover, if E ∈ A it is immediate that CE contains A and hence CE = E . Let

D = {E ∈ C : CE = C }.

In particular, A ⊂ D . Another definition check shows D is a monotone class. Thus,
C ⊂ D and hence C = D .

Now suppose that E,F ∈ C . Since E ∈ D and F ∈ C , it follows that E ∩ F ∈ C .
Hence C is closed under finite intersections. Since C is closed under finite unions,
complements and countable increasing unions, it is a σ-algebra by Proposition 1.7. �

The proof strategy in which the monotone class lemma is applied should be clear.
To prove that a statement P holds for a σ-algebra M generated by a Boolean algebra
A , it suffices to prove 1) P is true for all E ∈ A , and 2) the collection of all E ∈ M
for which P is true is a monotone class.

We can now construct the product measure.

Theorem 15.7 (Existence and uniqueness of product measure). Let (X,M , µ), (Y,N , ν)
be σ-finite measure spaces. If P ∈M ⊗N , then

(i) f : X → [0,∞] defined by f(x) = ν(Px) =
∫
Y

1Px dν is measurable;
(ii) g : Y → [0,∞] defined by g(y) = µ(P y) =

∫
X

1P y dµ is measurable; and
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(iii) ∫
X

f dµ =

∫
Y

g dν.

The function µ× ν : M ⊗N → [0,∞] defined

µ× ν(P ) =

∫
X

f dµ =

∫
Y

g dν

is a σ-finite measure on the product σ-algebra and is uniquely determined by µ× ν(E ×
F ) = µ(E) ν(F ) for E ∈M and F ∈ N .

The measure µ× ν is the product measure.

Proof. We will give the proof assuming at one point both measures are finite, and then
sketch out how this assumption can be relaxed to σ-finiteness. Given sets E ∈M and
F ∈ N , the set E×F is (measurable) rectangle. The collection of finite disjoint unions
of measurable rectangles, denoted E is a Boolean algebra. Let P denote the collection
of sets P ∈M ⊗N satisfying (i), (ii) and (iii).

That each rectangle belongs to P is evident. In fact, if P = ∪Ej × Fj is a finite
disjoint union of rectangles, then

ν(Px) =
∑

1Ej(x) ν(Fj).

Hence, ν(Px) is measurable and similarly for P y. Thus,∫
Y

ν(Px) dν =
∑

µ(Ej)ν(Fj) =

∫
X

µ(P y) dµ.

Now suppose P1 ⊂ P2 ⊂ . . . is an increasing sequence from P and let P = ∪Pj.
Let

fj = ν((Pj)x)

and define gj similarly. Since Px = (∪Pj)x = ∪(Pj)x, it follows from monotone conver-
gence for sets (Theorem 2.3 (iii)) that (fj) monotone increases to

f(x) = ν(Px).

Hence f and likewise g are measurable and moreover, by MCT twice,∫
X

f dµ = lim

∫
X

fj dµ = lim

∫
Y

gj dν =

∫
Y

g dν.

Hence P ∈P and µ× ν(P ) = limµ× ν(Pj).

At this point we add the assumption that µ and ν are both finite. Suppose P1 ⊃
P2 ⊃ . . . is a decreasing sequence from P and let P = ∪Pj. Proceeding as above, but
using the DCT instead of the MCT by invoking the finiteness assumptions on µ and ν it
follow that P ∈P and the proof that P = M ⊗N is complete under the assumption
that the measures µ and ν are finite. For disjoint sets P1, . . . , Pn ∈M ⊗N , the identity
∪nj=1(Pj)x = (∪nj=1Pj)x implies µ×ν as defined in the statement of the theorem is finitely
additive. The argument above shows µ× ν satisfies monotone convergence for sets and
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hence, by Problem 7.8, µ×ν is indeed a measure on M ⊗N under the added finiteness
assumption.

In the case the measures are σ-finite, express X = ∪Xn and Y = ∪Yn as increasing
unions of sets of finite measure. Let Zn = Xn × Yn and note that each Zn ∈ P, each
µ × ν(Zn) is finite and X × Y = ∪Zn. In particular, once it is shown that µ × ν is
additive on E , it is automatically σ-finite. For positive integers n, let Qn denote those
sets P such that

Pn = P ∩ [Xn × Yn] ∈P.

In particular, Pn ⊂ Zn and the measures µn(E) = µ(E∩Xn) and νn(F ) = ν(F ∩Yn) are
finite. Hence, by what has already been proved, Qn = M ⊗N and hence Q = ∩Q =
M ⊗N . Given P ∈ Q let fn(x) = µ((Pn)x) and f(x) = µ(Px) and likewise for gn. The
monotone convergence argument above shows (

∫
fn dµ) converges to

∫
f dµ and likewise

for g. On the other hand
∫
fn dµ =

∫
gn dν since Pn ∈ Q. Thus P = M ⊗N . That

µ× ν is measure on M ⊗N is left as an exercise.

To prove uniqueness suppose ρ is any other measure on M⊗N such that ρ(E×F ) =
µ(E) ν(F ) for measurable rectangles. Thus ρ agrees with µ× ν on the Boolean algebra
E and µ× ν is σ-finite on E . Hence ρ agrees with µ× ν on all of M ⊗N by the Hahn
Uniqueness Theorem (Theorem 5.4). �

Corollary 15.8. Let (X,M , µ), (Y,N , ν) be σ-finite measure spaces. If E is a null set
for µ× ν, then ν(Ex) = 0 for µ-a.e. x ∈ X, and µ(Ey) = 0 for ν-a.e. y ∈ Y . †

Proof. Problem 19.5. �

Example 15.9. a) If X, Y are at most countable, and µX , µY denote counting mea-
sure on X×Y respectively, then 2X⊗2Y = 2X×Y and µX×µY is counting measure
on X × Y .

b) For two copies of R with the Borel σ-algebra and Lebesgue measure m (restricted
to BR), the product measure is a σ-finite measure on BR2 which has the value
m(E)m(F ) on measurable rectangles. The completion of this measure is Lebesgue
measure on R2. (By iterating this construction we of course obtain Lebesgue
measure on Rn.)

Let L denote the Lebesgue σ-algebra on R and LR2 denote Lebesgue measure
on R2. If E ∈ L , then E = B ∪ W , where B is Borel and W has Lebesgue
measure zero (and hence is a subset of a Borel set of measure zero) by the
regularity properties of Lebesgue measure. It follows that if E,F ∈ L , then
E × F is the union of a set in BR ⊗ BR with a set contained within a set of
measure zero in BR ⊗BR and hence E × F ∈ LR2 . Thus, L ⊗L ⊂ LR2 . On
the other hand, equality does not hold by Remark 15.3.

4

Theorem 15.10 (Tonelli’s theorem, first version). Suppose (X,M , µ) and (Y,N , ν)
are σ-finite measure spaces. If f : X × Y → [0,+∞] is a M ⊗N -measurable function,
then
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(a) the slice integrals g(x) :=
∫
Y
fx(y) dν(y) and h(y) :=

∫
X
f y(x) dµ(x) are measurable

on X and Y respectively;

(b)

∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

fx(y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f y(x) dµ(x)

)
dν(y); and

(c) if f ∈ L1(µ× ν), then fx and f y are in L1(ν) and L1(µ) for a.e. x and a.e y.

Proof. First suppose P ∈ M ⊗ N and let f = 1P . In this case, the result is the
conclusion of Theorem 15.7.

To move to general unsigned f , first note that by linearity we conclude immediately
that items (a) and (b) also hold for simple functions. For a general unsigned measurable
f : X×Y → [0,+∞], use the Ziggurat approximation to choose an increasing a sequence
(fn) of measurable simple functions converging to f pointwise. Let

gn(x) :=

∫
Y

(fn)x(y) dν(y) and hn(y) :=

∫
X

(fn)y(x) dµ(x).

The monotone convergence theorem implies that the sequences (gn) and (hn) increase
and converge pointwise to g and h respectively. Thus g and h are measurable. Two
more applications of monotone convergence gives∫

X

g dµ = lim

∫
X

gn dµ = lim

∫
X×Y

fn d(µ× ν) =

∫
X×Y

f d(µ× ν)

and similarly for h. Thus, finally, items (a) and (b) hold for all unsigned measurable
functions on X × Y .

Item (c) follows immediately from item (b) and Theorem 10.2 item (d). �

As noted above, the product of complete measures is almost never complete. Typ-
ically we pass to the completion µ× ν of a product measure. To prove the complete
version of Tonelli’s theorem recall a couple of facts about measurability on complete
measure spaces encountered earlier (see Propositions 8.15 and 8.16).

Proposition 15.11. Let (X,M , µ) be a measure space and (X,M , µ) its completion.

a) If f : X → C is M -measurable, then there exists a M -measurable function f̃

such that f = f̃ µ-a.e.
b) If f : X → C is M -measurable and g : X → C is a function with g(x) = f(x)

for µ-a.e. x, then g is M -measurable.

†

Proof. Problem 19.4. �

Theorem 15.12 (Tonelli’s theorem, complete version). Let (X,M , µ), (Y,N , ν) be
complete σ-finite measure spaces. If f : X × Y → [0,+∞] is an M ⊗N -measurable
function, then

(i) for µ-a.e. x and ν-a.e. y, the functions fx and f y are N and M measurable
respectively;
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(ii) there exists M and N measurable functions g and h such that

g(x) =

∫
Y

fx(y) dν(y), h(y) =

∫
X

f y(x) dµ(x)

µ-a.e. and ν-a.e. respectively;

(iii)

∫
X×Y

f(x, y) dµ× ν =

∫
X

(∫
Y

fx(y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f y(x) dµ(x)

)
dν(y); and

(iv) If f is L1, then fx and f y are in L1 for µ-a.e. x and ν-a.e. y respectively.

In item (ii), the integrals are defined only almost everywhere since the integrands
are defined only almost everywhere.

Proof. From Proposition 15.11 that there exists an M ⊗N -measurable function f̃ such

that f̃(x, y) = f(x, y) for µ× ν-a.e. (x, y). Let E be the exceptional set on which

f 6= f̃ . Since µ× ν(E) = 0, there is an M ⊗N -measurable set Ẽ containing E such

that (µ × ν)(Ẽ) = 0 by Theorem 2.8. By Corollary 15.8, ν(Ẽx) = 0 for µ-a.e. x, thus

since Ex ⊂ Ẽx (and since ν is complete!) Ex is in N and ν(Ex) = 0 as well for almost

every x. Since Ex = {y : f̃x 6= fx}, it follows that fx = f̃x ν-a.e. y for µ-a.e. x. Thus, by
Lemma 15.2 and completeness of ν, the function fx is N -measurable (Proposition 15.11
again) µ-a.e. x. Of course, the analogous proof holds for f y.

By Theorem 15.10 (Tonelli),

g̃(x) =

∫
Y

f̃xdν

is measurable. Hence, as f̃x = fx ν-a.e. y for µ-a.e. x,

g(x) =

∫
Y

f̃x dν =

∫
Y

fx dν µ-a.e. x.

Finally (iii) and (iv) follow from (i) and (ii) and Theorem 15.10 applied to f̃ . �

Theorem 15.13 (Fubini’s theorem). Let (X,M , µ), (Y,N , ν) be complete σ-finite mea-
sure spaces. If f : X × Y → C belongs to L1(µ× ν), then

a) for µ-a.e. x and ν-a.e. y, the functions fx and f y belong to L1(ν) and L1(µ)
respectively, and the functions

g(x) =

∫
Y

fx(y) dν(y), h(y) =

∫
X

f y(x) dµ(x)

belong to L1(µ) and L1(ν) respectively; and

b)

∫∫
X×Y

f(x, y) dµ× ν =

∫
X

(∫
Y

fx(y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f y(x) dµ(x)

)
dν(y)
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Proof. By taking real and imaginary parts, and then positive and negative parts, it
suffices to consider the case that f is unsigned, but then the theorem follows from
Theorem 15.12. Indeed, when f is unsigned and belongs to L1(µ× ν), by Tonelli∫

X

(∫
Y

fx(y) dν(y)

)
dµ(x) =

∫∫
X×Y

f(x, y) d(µ× ν) <∞,

but then
∫
Y
fx(y) dν(y) <∞ for µ-a.e. x; similarly for f y. �

Corollary 15.14 (Integral as the area under a graph). Let (X,M , µ) be a σ-finite
measure space, and give R the Borel σ-algebra BR and Lebesgue measure m (restricted
to BR). An unsigned function f : X → [0,+∞) is measurable if and only if the set

Gf := {(x, t) ∈ X × R : 0 ≤ t ≤ f(x)}
is measurable. In this case,

(µ×m)(Gf ) =

∫
X

f dµ.

†

Corollary 15.15 (Distribution formula). Let (X,M , µ) be a σ-finite measure space. If
f : X → [0,+∞] an unsigned measurable function, then∫

X

f(x) dµ(x) =

∫
[0,+∞]

µ({f ≥ t}) dt.

†

Proof. Let Gf be the region under the graph of f as in Corollary 15.14. Then for fixed
t ≥ 0, ∫

X

1Gf (x, t) dµ(x) = µ({f ≥ t})

so by Tonelli’s theorem and Corollary 15.14,∫
X

f(x) dµ(x) = (µ×m)(Gf ) =

∫
[0,+∞]

(∫
X

1Gf (x, t) dµ(x)

)
dt =

∫
[0,+∞]

µ({f ≥ t}) dt.

�

Corollary 15.16 (Compatibility of the Riemann and Lebesgue integrals). If f : [a, b]→
R is continuous, then if we extend f to be 0 off [a, b], the extended f is Lebesgue integrable

on R and
∫
R f dm =

∫ b
a
f(x) dx. †

Proof (sketch). We assume f ≥ 0. For a partition P , a = x0 < x1 < · · · < xn = b of
[a, b], define Cj = sup{f(x) : xj ≤ x ≤ xj+1} and cj = sup{f(x) : xj ≤ x ≤ xj+1}, and
consider the sums

U(P, f) :=
n∑
j=1

Cj(xj − xj−1) and L(P, f) :=
n∑
j=1

cj(xj − xj−1).
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Let Gf denote the region enclosed by the graph of f, Gf = {(x, y) : 0 ≤ y ≤ f(x)}.
Thus Gf is a closed set in R2 (hence Borel measurable), and by 15.14 m2(Gf ) =

∫
R f dm.

Let R+ and R− denote the finite unions of closed rectangles corresponding to the over-
and under-estimates for the Riemann integral given by U(P, f) and L(P, f). Then
R− ⊂ Gf ⊂ R+, and m2(R+) = U(P, f),m2(R−) = L(P, f). It then follows that
supP L(P, f) ≤ m2(Gf ) ≤ infP U(P, f). But by the definition of the Riemann integral,

the inf and sup are equal to each other, and their common value is
∫ b
a
f(x) dx. �

Remark 15.17. The above proof can be modified to drop the continuity hypothesis
(where was it used?), and conclude that every Riemann integrable function on [a, b] is
Lebesgue integrable, and the values of the two integrals agree. With more work it can
be shown that a function f : [a, b] → R is Riemann integrable if and only if the set of
points where f is discontinuous has Lebesgue measure 0. We will not prove this fact in
these notes.

We also note that it is not difficult to extend these facts about the Riemann integral
to “improper” Riemann integrals, defined over [0,+∞) or R. In particular, note that
the distribution function µ({|f | ≥ t}) is a decreasing function of t on [0,+∞), hence
Riemann integrable. Thus Corollary 15.15 says that, in principle, the calculation of any
Lebesgue integral can be reduced to the computation of a Riemann integral. �

16. Integration in Rn

In this section we briefly discuss Lebesgue measure and Lebesgue integration on Rn.

We begin with the observation that we can construct Lebesgue measure mn on Rn

in the same way as on R, namely by introducing boxes B = I1 × I2 × · · · × In, where
each Ij is an interval in R, and declaring |B| =

∏n
j=1 |Ij|. One can then define Lebesgue

outer measure mn∗ by defining, for all E ⊂ Rn,

mn∗(E) = inf{
∞∑
j=1

|Bj| : E ⊂
∞⋃
j=1

Bj};

the infimum taken over all coverings of E by boxes. By imitating the constructions of
Section 4, we are led to a σ-finite Borel measure on Rn such that the measure of a box B
is its volume |B|. Since the construction proceeds through outer measure, the σ-algebra
LRn of measurable sets is complete and is of course called the Lebesgue σ-algebra. In
particular, the following analog of Theorem 4.5 holds.

Theorem 16.1. Let E ⊂ Rn. The following are equivalent:

a) E is Lebesgue measurable.
b) For every ε > 0, there is an open set U ⊃ E such that mn∗(U \ E) < ε.
c) For every ε > 0, there is a closed set F ⊂ E such that mn∗(E \ F ) < ε.
d) There is a Gδ set G such that E ⊂ G and mn∗(G \ E) = 0.
e) There is an Fσ set F such that E ⊃ F and mn∗(E \ F ) = 0.
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We drop the superscript and just write m for Lebesgue measure on Rn when the
dimension is understood. It follows from Theorem 16.1, if E ⊂ Rn is Lebesgue measur-
able and µ(E) = 0, then there is a Borel set G ⊃ E such that m(G) = 0. Thus m is the
completion of m restricted to BRn as described in Theorem 2.8. Now, let m′ denote the
n-fold product of Lebesgue measure restricted to BR defined on BR ⊗ · · · ⊗BR = BRn .
The measures m and m′ agree on the Boolean algebra of disjoint union of boxes and
thus, by the Hahn Uniqueness theorem, agree on BRn . Finally, the completion of m′

agrees with m and the completion of BRn (with respect to m′) is LRn , the Lebesgue
σ-algebra.

Definition 16.2. Lebesgue measure mn on Rn is the completion of the n-fold product
of (R,BR,m) and the completion of BRn is the Lebesgue σ-algebra denoted LRn . /

Rn possesses a larger group of symmetries than R does. In particular we would
like to analyze the behavior of Lebesgue measure under invertible linear transformations
T : Rn → Rn. We have the following analog of Theorem 4.4:

Theorem 16.3. If T : Rn → Rn be an invertible linear transformation, then T is
LRn − LRn measurable; i.e., if E ⊂ Rn is a Lebesgue set, then T−1(E) ⊂ Rn is a
Lebesgue set too. Moreover,

(a) if f ∈ L1(Rn),

∫
Rn

(f ◦ T )(x) dx =
1

| detT |

∫
Rn
f(x) dx; and

(b) if E ∈ Rn is Lebesgue measurable, then m(T (E)) = | detT |m(E).

Problem 13.7 gives an example of a Lebesgue measurable F and continuous G such
that F ◦ G is not measurable. The difficulty is that it is possible E = F−1(B) is not
Borel for a Borel measurable B and in this case there is no guarantee the inverse image
of E under G will be a Lebesgue set. In the course of the proof it will be shown that
if E ⊂ Rn is a Lebesgue set and T : Rn → Rn is linear and invertible, then T−1(E) is
Lebesgue.

Proof. Let F denote those f ∈ L1(Rn) such that the composition f ◦ S is measurable
for all invertible linear transformations S : Rn → Rn.

Note that, if T1 and T2 are both invertible linear transformations and the result of
(a) holds for any f ∈ F and both T1 and T2, then the result of (a) holds for all f ∈ F
and T = T1T2 (and T2T1). From linear algebra, every invertible linear transformation of
Rn is a finite product of transformations of one of the following types (we write vectors
in Rn as x = (x1, . . . xn), in the standard basis).

i) (Scaling a row) T (x1, . . . xj, . . . xn) = (x1, . . . cxj, . . . xn), for some j = 1, . . . n
and some c ∈ R

ii) (adding a row to another) T (x1, . . . xj, . . . xk, . . . xn) = (x1, . . . xj, . . . xj+xk, . . . xn),
some j, k = 1, . . . n

iii) (interchanging rows) T (x1, . . . xj, . . . xk, . . . xn) = (x1, . . . xk, . . . xj, . . . xn), some
j, k = 1, . . . n.
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In the first case, detT = c, in the second, detT = 1, and in the third, detT = −1. By
the multiplicativity of the determinant, it suffices to prove the theorem for T of each
of these types. We may also assume f ≥ 0 (why?) But (a) now follows easily from
Tonelli’s theorem and the invariance properties of one-dimensional Lebesgue measure.
For example, for T of type (i) we integrate with respect to xj first and use the one-
dimensional fact ∫

R
g(ct) dt =

1

|c|

∫
g(t) dt

for all c 6= 0. In case (ii) we integrate with respect to xk first and use translation
invariance of one-dimensional Lebesgue measure: for fixed xj,∫

R
g(xj + xk) dxk =

∫
R
g(xk) dxk,

while for case (iii) we simply interchange the order of integration with respect to xj and
xk. Thus (a) holds in all three cases. By composition (a) holds for any invertible T and
f ∈ F .

If f ∈ L1(Rn) is Borel measurable, then f ∈ F and hence (a) holds. In particular,
if G is a Borel set, then (a) applied to 1T (G) (using T−1 is linear and continuous shows
T (G) is also a Borel set) shows (b) holds for G. In particular, if m(G) = 0, then
m(T (G)) = 0 too. Now suppose E is a Lebesgue set. In this case there exists a
Borel set G with m(G) = 0, a subset N ⊂ G and a Borel set F such that E =
F ∪ N . Hence, as T is one-one, T (E) = T (F ) ∪ T (N) and T (N) is a subset of the
Borel set T (G) of measure zero. It follows that T (E) is a Lebesgue measurable set and
det(T )m(T (E)) = det(T ) (m(T (F )) = m(F ) = m(E). We conclude, if T is an invertible
linear transformation, then T maps Lebesgue sets to Lebesgue sets (as does T−1.

Finally, since T−1 maps Lebesgue sets to Lebesgue sets, if f is measurable, then so
is f ◦ T and hence F = L1(Rn) completing the proof. �

Corollary 16.4. Lebesgue measure on Rn is rotation invariant. †

Proof. A rotation of Rn is just a linear transformation satisfying T t = T−1, which implies
that | detT | = 1, so the claim follows from Theorem 16.3. �

One result we will use frequently in the rest of the course is the following fundamental
approximation theorem. We already know that absolutely integrable functions can be
approximated in L1 by simple functions, we now show that in Rn we can approximate
in L1 with continuous functions.

Definition 16.5. We say a function f : X → C is supported on a set E ⊂ X if f = 0 on
the complement of E. When X is a topological space, the closed support of f is equal to
the smallest closed set E such that f is supported on E. Say f is compactly supported
if it is supported on a compact set E. /

Note that since every bounded set in Rn has compact closure, a function f : Rn → C
is compactly supported if and only if it is supported in a bounded set. Since bounded
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sets have finite Lebesgue measure, it follows that if f : Rn → C is continuous and
compactly supported, then it belongs to L1(Rn).

Theorem 16.6. If f ∈ L1(Rn) then there is a sequence of (fn) of continuous, compactly
supported functions such that (fn) converges to f in L1.

Proof. We work in R first, and reduce to the case where f is simple. Let ε > 0; since
simple functions are dense in L1, there is an L1 simple function ψ such ‖ψ − f‖1 <

ε
2
.

Since ψ is simple and in L1, it is supported on a set of finite measure. If we can find
a continuous g ∈ L1 such that ‖ψ − g‖1 < ε/2 we are done. For this, it suffices (by
linearity) to assume ψ = 1E for a set E with m(E) < ∞ and show, given δ > 0 there
is a continuous g of compact support such that ‖1E − g‖ < δ. By Littlewood’s first
principle Theorem 4.6, we can find a set A, a finite union of disjoint open intervals
A =

⋃n
j=1(aj, bj), such that m(A∆E) < δ

2
. It follows that ‖1A − 1E‖1 = ‖1A∆E‖1 <

δ
2
.

Let η = δ
2n

and let Jj = (aj − η
2
, bj + η

2
) and choose a continuous function gj : R→ [0, 1]

such that gj = 1 on Ij and gj = 0 on J cj . Thus, ‖gj − 1Ij‖ ≤ η. Thus, with g =
∑
gj, it

follows that ‖g − 1A‖ ≤
∑n

j=1 ‖gj − 1Ij‖ < δ
2
.

In higher dimensions, the same approximation scheme works; it suffices (using linear-
ity, Littlewood’s first principle, and the ε/2n trick as before) to approximate the indicator
function of a box B = I1× · · · × In (where each Ij has finite measure) again a piecewise
linear function which is 1 on the box and 0 outside a suitably small neighborhood of the
box suffices. The details are left as an exercise. �

Remark 16.7. There is a more sophisticated way to do continuous approximation in
L1, using convolutions. This will be covered in depth later in the course. Also note
that since every L1 convergent sequence has a pointwise a.e. convergent subsequence,
every L1 function f can be approximated by a sequence of continuous functions fn which
converge to f both in the L1 norm and pointwise a.e. �

As an application of the above approximation theorem, we prove a very useful fact
about integration in Rn, namely that translation is continuous in L1(Rn). The proof
strategy is to first prove the result from scratch for continuous, compactly supported
f , then use the density of these functions in L1 to get the general result. This density
argument is frequently used; we will see it again in the next section when we prove the
Lebesgue Differentiation Theorem.

Proposition 16.8. For h ∈ Rn, and f : Rn → C a function, define fh(x) := f(x − h)
(the translation of f by h). If f ∈ L1(Rn), then fh ∈ L1 and fh → f in the L1 norm as
h→ 0. †

Proof. First suppose f is continuous and compactly supported. In this case f is uni-
formly continuous, each fh is continuous, and fh → f uniformly on K as h → 0. It
follows from Proposition 12.11 that fh → f in L1.

Now let f ∈ L1(Rn) and ε > 0 be given. We can choose a continuous, compactly
supported g such that ‖g − f‖1 < ε/3. Note, by the translation invariance of Lebesgue
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measure, that ‖gh − fh‖1 = ‖g − f‖1 < ε/3 as well. (Here we have used the readily
verified fact that (|f − g|)h = |fh − gh|). Now, since the result holds for g, there is a
δ > 0 such that for all |h| < δ, ‖gh − g‖1 < ε/3. Thus

‖fh − f‖1 ≤ ‖fh − gh‖1 + ‖gh − g‖1 + ‖g − f‖1 < ε

which proves the theorem. �

The section concludes with some remarks on integration in polar coordinates. Write
‖x‖ = (x2

1 + · · · + x2
n)1/2 for the Euclidean length of a vector x. Let Sn−1 = {x ∈ Rn :

‖x‖ = 1} be the unit sphere in Rn. Each nonzero vector x can be expressed uniquely in
the form x = ‖x‖ x

‖x‖ (positive scalar times a unit vector), so we may identify Rn \ {0}
with (0,+∞) × Sn−1. Precisely, the map Φ(x) = (‖x‖, x

‖x‖) is a continuous bijection

of Rn \ {0} and (0,+∞) × Sn−1. Using the map Φ we can define the push-forward of
Lebesgue measure to (0,+∞)× Sn−1; namely m∗(E) = m(Φ−1(E)). Let ρ = ρn denote
the measure on (0,+∞) defined by ρ(E) =

∫
E
rn−1 dr.

Theorem 16.9 (Integration in polar coordinates). There is a unique finite Borel mea-
sure σ = σn−1 on Sn−1 such that m∗ = ρ×σ. If f is an unsigned or L1 Borel measurable
function on Rn then ∫

Rn
f(x) dx =

∫ ∞
0

∫
Sn−1

f(rξ)rn−1 dσ(ξ)dr.

Proof. �

17. Differentiation theorems

One version of the fundamental theorem of calculus says that if f is continuous on
a closed interval [a, b] ⊂ R, if we define the function

F (x) :=

∫ x

a

f(t) dt

then F is differentiable on (a, b) and F ′(x) = f(x) for all x ∈ (a, b). Using the definition
of derivative, this can be reformulated as

lim
h→0

1

h

∫ x+h

x

f(t) dt = f(x)

for all x ∈ (a, b). If we let I(x, h) denote the open interval (x, x+h), then, re-expressing
in terms of the Lebesgue integral, we have

lim
h→0

1

m(Ih)

∫
Ih

f dm = f(x).

It is not hard to show that we can replace Ih with the interval B(x, h) centered on x
with radius h; in this case m(B(x, h)) = 1/2h and we still have

lim
h→0

1

m(B(x, h))

∫
B(x,h)

f dm = f(x).
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This can be interpreted to say that the average values of f over small intervals centered
on x converge to f(x), as one might expect from continuity. Perhaps surprisingly, the
result remains true, at least for (Lebesgue) almost every x, when we drop the continuity
hypothesis.

The goal of this section is to prove the Lebesgue differentiation theorem. To state it
we introduce the notation B(x, r) for the open ball of radius r > 0 centered at a point
x ∈ Rn. We also write

∫
f(y) dy for integrals against Lebesgue measure. For the rest of

this section L1 refers to Lebesgue measure on Rn unless stated otherwise.

Definition 17.1. [Locally integrable functions] A Lebesgue measurable function f :
Rn → C is called locally integrable if

∫
K
|f(y)| dy < ∞ for every compact set K ⊂ Rn.

The collection of all locally integrable functions on Rn is denoted L1
loc(Rn). /

Since every compact set in Rn is contained in a closed ball, it suffices in the above
definition to require only

∫
B
|f(y)| dy <∞ for every ball B.

Theorem 17.2 (Lebesgue Differentiation Theorem). If f ∈ L1
loc(Rn), then, for almost

every x ∈ Rn,

a) lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0

and

b) lim
r→0

1

m(B(x, r))

∫
B(x,r)

f(y) dy = f(x).

Notice that the second statement follows from the first. One can interpret the
theorem as follows. Given f ∈ L1, define for each r > 0 the function

Af,r(x) :=
1

m(B(x, r))

∫
B(x,r)

f(y) dy,

the average value of f over the ball of radius r centered at x. The second statement
says that the functions Ar,f converge to f almost everywhere as r → 0. (It is not hard
to show, using density of continuous functions of compact support in L1 that if f ∈ L1,
then Ar,f → f in the L1 norm as r → 0. See Problem 19.15.)

To begin with, it is easy to prove Theorem 17.2 in the continuous case:

Lemma 17.3. If f : Rn → C is continuous and compactly supported, then for all
x ∈ Rn,

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0.

†

Proof of Lemma 17.3. Since f is continuous and compactly supported, it is absolutely
integrable. Fix x ∈ Rn and let ε > 0 be given. By uniform continuity there is a δ > 0



D
RA
FT

82 MAA6616 COURSE NOTES FALL 2016

such that |f(x)− f(y)| < ε for all |y − x| < δ. For 0 < r < δ,

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy < 1

m(B(x, r))

∫
B(x,r)

ε dy

= ε.

�

To move from continuous, compactly supported f to absolutely integrable f we need
the following estimate, which is quite important in its own right. It is an estimate on
the Hardy-Littlewood maximal function, which is defined for f ∈ L1(Rn) by

Mf (x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy (38)

Theorem 17.4 (Hardy Littlewood Maximal Theorem). If f : Rn → C is in L1 and
t > 0, then

m({x ∈ Rn : Mf (x) > t}) ≤ C
‖f‖1

t
.

for some absolute constant C > 0 that depends only on the dimension n.

Remark 17.5. It turns out that C can be chosen as 3n. If it were the case that
Mf were in L1(Rn), then a similar estimate would be an immediate consequence of
Markov’s inequality. However Mf is essentially never in L1, even in the simplest case of
the indicator function of an interval. �

Before proving Theorem 17.4, we will see how it is used to prove the Lebesgue
Differentiation Theorem.

Proof of Therem 17.2. First note that we may assume f ∈ L1(Rn) (not just L1
loc); to

see this just replace f by 1B(0,N)f for N ∈ N. So, let f ∈ L1(Rn) and fix ε, t > 0. We
first prove (b) and then use this to deduce (a). First, by Theorem 16.6 there exists a
continuous, compactly supported g such that∫

Rn
|f(x)− g(x)| dx < ε.

Applying the Hardy-Littlewood maximal inequality to |f − g|, we have

m
(
{x ∈ Rn : sup

r>0

1

m(B(x, r))

∫
Rn
|f(x)− g(x)| dx > t}

)
≤ Cε

t
.

In addition, by Markov’s inequality applied to |f − g| we have

m({x ∈ Rn : |f(x)− g(x)| > t}) ≤ ε

t
.

Thus there is a set E ⊂ Rn of measure less than (C+1)ε
t

such that, outside of E both

sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)− g(y)| dy ≤ t (39)
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and
|f(x)− g(x)| ≤ t. (40)

Now consider x ∈ Ec. By the result for continuous, compactly supported functions
(Lemma 17.3), we have for all sufficiently small r > 0∣∣∣∣ 1

m(B(x, r))

∫
B(x,r)

g(y) dy − g(x)

∣∣∣∣ ≤ t.

In the left-hand side of this inequality, we add and subtract f(x) and the average value
of f over B(x, r). Then by (39), (40), and the triangle inequality, we have∣∣∣∣ 1

m(B(x, r))

∫
B(x,r)

f(y) dy − f(x)

∣∣∣∣ ≤ 3t

for all sufficiently small r > 0. Keeping t fixed, for each n there is a set En with
m(En) < 1

n
such that for each x ∈ Ec

n there exists an η > 0 such that for 0 < r < η,

|Ar,f (x)− f(x)| ≤ 3t.

Let E = ∩En. Thus m(E) = 0 and for each x ∈ Ec there exists an η > 0 such that the
inequality above holds for 0 < r < η. For each m ∈ N+ there exists a set Fm of measure
zero such that for each x ∈ F c there is an η > 0 such that for 0 < r < η

|Ar,f (x)− f(x)| ≤ 1

m
.

Finally, let F = ∪Fn and note that m(F ) = 0 and if x ∈ F c then, for every m ∈ N+

there exists an η > 0 such that for all 0 < r < η the inequality above holds completing
the second part of the Lebesgue Differentiation Theorem.

For part (a), note that if f is locally integrable and c ∈ C, then |f(x)− c| is locally
integrable. Thus for each c ∈ C we can apply part (b) to conclude that

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− c| dy = |f(x)− c|

for all x outside an exceptional set Ec with m(Ec) = 0. Fix a countable dense subset
Q ⊂ C and let E =

⋃
c∈QEc; then m(E) = 0 and for fixed x /∈ E there exists c ∈ Q

with |f(x)− c| < ε, so |f(y)− f(x)| < |f(y)− c|+ ε, and

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy ≤ |f(x)− c|+ ε < 2ε.

Since ε > 0 was arbitrary, this proves (a). �

It remains to prove the Hardy-Littlewood maximal inequality, Theorem 17.4. The
proof we give is based on the following lemma, known as the Wiener covering lemma.
Let B denote an open ball in Rn and for a > 0 let aB denote the open ball with the
same center as B, whose radius is a times the radius of B.

Lemma 17.6 (Wiener’s covering lemma). Let B be a collection of open balls in Rn, and
let U =

⋃
B∈B B. If c < m(U), then there exists finitely many disjoint balls B1, . . . Bk ∈ B

such that m(
⋃k
j=1 Bj) > 3−nc. †
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Proof. There exists a compact set K ⊂ U such that m(K) > c. The collection of open
balls B covers K, so there are finitely many balls A1, . . . Am whose union covers K. From
these we select a disjoint subcollection by a greedy algorithm: from A1, . . . Am choose a
ball with maximal radius. Call this B1. Now discard all the balls that intersect B1. From
the balls that remain, choose one of maximal radius, necessarily disjoint from B1, call
this B2. Continue inductively, at each stage choosing a ball of maximal radius disjoint
from the balls that have already been picked. The process halts after a finite number of
steps. We claim that the balls B1, . . . Bk have the desired property. By construction the
Bj are pairwise disjoint. The claimed lower bound on the measure of the union follows
from a geometric observation. If A,A′ are open balls with radii r ≥ r′ respectively and
if A ∩ A′ 6= ∅, then A′ ⊂ 3 · A (draw a picture and note the diameter of A′ is at most
twice the radius of A). From this observation, it follows that each ball Aj that was not
picked during the construction is contained in 3 · Bi for some i. In particular, the balls
3 ·B1, . . . 3 ·Bk cover K. From the scaling property of Lebesgue measure (Theorem 16.3),
m(3 ·B) = 3nm(B). Thus

c < m(K) ≤
∑

m(3 ·Bj) = 3n
∑

m(Bj) = 3nm(
k⋃
j=1

Bj).

�

Proof of Theorem 17.4. Let f ∈ L1(Rn) and fix λ > 0. Let Eλ = {x ∈ Rn : Mf (x) > λ}.
If x ∈ Eλ, then by definition of Mf there is an rx > 0 such that Arx,|f |(x) > λ. The open
balls B(x, rx) then cover Eλ. Fix c with m(Eλ) > c. Then m(

⋃
x∈Eλ B(x, rx)) > c, so

by the Wiener covering lemma there are finitely many x1, . . . xk ∈ Eλ so that the balls
Bk := B(xk, rxk) are disjoint and m(

⋃k
j=1Bj) > 3−nc. From the way the radii rx were

chosen, for each 1 ≤ j ≤ k,

λ < Arxj ,|f |(xj) =
1

m(B(xj, rxj))

∫
B(xj ,rxj )

|f(y)| dy

so

m(Bj) <
1

λ

∫
Bj

|f(y)| dy.

It follows that

c < 3nm(
k⋃
j=1

Bj) = 3n
∑
j

m(Bj) <
3n

λ

∑
j

∫
Bj

|f(y)| dy ≤ 3n

λ

∫
Rn
|f(y)| dy =

3n

λ
‖f‖1.

This holds for all c < m(Eλ), so taking the supremum over such c we get finally

m(Eλ) ≤ 3n
‖f‖1

λ
.

�
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18. Signed measures and the Lebesgue-Radon-Nikodym Theorem

A second form of the fundamental theorem of calculus says that if f : [a, b]→ R is
differentiable at each point in [a, b] and if f is in L1([a, b]), then

f(x)− f(a) =

∫ x

a

f ′(t) dt, (41)

for all a ≤ x ≤ b. Suppose f is increasing on [a, b]. From our construction of Lebesgue-
Stieltjes measures, the formula µ([c, d]) := f(d)−f(c), defined for all subintervals [c, d] ⊂
[a, b], determines a unique Borel measure on [a, b]. On the other hand, from (41), this
measure can equivalently be defined by the formula

µ(E) =

∫
E

f ′(x) dx. (42)

From Problem 13.18, for an unsigned measurable g : [a, b]→ R,∫ b

a

g dµ =

∫ b

a

gf ′dm,

where m is Lebesgue measure on [a, b]. It is tempting to write dµ = f ′dt or even more
suggestively, dµ

dm
= f ′. As will be seen in this section, f ′ is the Radon-Nikodym derivative

of µ with respect to m.

18.1. Signed measures; the Hahn and Jordan decomposition theorems. If µ, ν
are measures on a common measurable space (X,M ), then we have already seen that
we can form new measures cµ (for c ≥ 0) and µ + ν. We would like to extend these
operations to allow negative constants and subtraction. The obvious thing to do is to
define the difference of two measures to be

(µ− ν)(E) = µ(E)− ν(E). (43)

The only difficulty is that the right-hand side may take the form∞−∞ and is therefore
undefined. We deal with this problem by avoiding it: the measure µ− ν will be defined
only when at least one of µ, ν is a finite measure, in which case the formula (43) always
makes sense. It is straightforward to check that, under this assumption, the set function
µ − ν is countably additive, and (µ − ν)(∅) = 0. It is of course not monotone. From
these observations we extract the definition of a signed measure:

Definition 18.1. Let (X,M ) be a measurable space. A signed measure is a function
ρ : M → R satisfying:

a) ρ(∅) = 0,
b) ρ takes at most one of the values +∞,−∞,
c) if (En)∞n=1 is a disjoint sequence of measurable sets, then

∑∞
n=1 ρ(En) converges

to ρ(
⋃∞
n=1 En), and the sum is absolutely convergent if ρ(

⋃∞
n=1En) is finite.

/

Remark 18.2. Actually, the statement about absolute convergence in (c) is an imme-
diate consequence of the Riemann rearrangement theorem. �
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The main result of this section is the Jordan decomposition theorem, which says that
every signed measure is canonically the difference of two (unsigned) measures µ and ν.
There is a natural partial order on the set of finite measures on (X,M ), determined by
µ ≥ ν if and only if µ− ν is a positive measure.

Example 18.3. Consider a measure space (X,M , µ) and let f : X → R belong to
L1(µ). The quantity

µf (E) :=

∫
E

f dµ (44)

then defines a signed measure on (X,M ). Indeed, decomposing f = f+ − f− into its
positive and negative parts f = f+ − f−, where f+ = max(f, 0) and f− = −min(f, 0),
the signed measure µf can be written as ρ = µf+ − µf− where µf± denotes the measure

µf±(E) =

∫
E

f± dµ. (45)

In fact this construction will work as long as f is semi-integrable (that is, at least one
of f+, f− is integrable). 4

It is not hard to show that monotone and dominated convergence for sets still hold
for signed measures.

Proposition 18.4. Let ρ be a signed measure. If (En)∞n=1 is an increasing sequence of
measurable sets, then ρ(

⋃∞
n=1 En) = limn→∞ ρ(En). If En is a decreasing sequence of

measurable sets and ρ(E1) is finite, then ρ(
⋂∞
n=1En) = limn→∞ ρ(En). †

Proof. The proof is essentially the same as in the unsigned case (using the disjointifica-
tion trick) and is left as an exercise (Problem 19.18). �

Before going further we introduce some notation and a couple of definitions. If ρ
is a signed measure on the measurable space (X,M ) and Y ⊂ X is a measurable set,
we let ρ|Y denote the measure on M defined by ρ|Y (E) := ρ(Y ∩ E). A set E totally
positive for ρ if ρ|E ≥ 0. As is easily verified, E is totally positive for ρ if and only if
ρ(F ) ≥ 0 for all F ⊂ E if and only if for all measurable F ⊂ E, we have ρ(F ) ≤ ρ(E).
(Consider E \ F ). The set E totally negative for ρ if ρ|E ≤ 0 and totally null if ρ|E = 0.
It is immediate that E is totally null for ρ if and only if it is both totally positive and
totally negative. Finally, if (En)n is a sequence of totally positive sets, then ∪En is also
totally positive.

Note that when we decompose a real-valued function f into its positive and negative
parts f = f+ − f−, the sets X+ := {x : f+(x) > 0} and X− := {x : f−(x) > 0} are
disjoint, and f |X+ ≥ 0, f |X− ≤ 0. (Compare with Example (18.3).) A similar statement
holds for signed measures.

Theorem 18.5 (Hahn Decomposition Theorem). Let ρ be a signed measure. Then there
exists a partition of X into disjoint measurable sets X = X+ ∪X− such that ρ|X+ ≥ 0
and ρ|X− ≤ 0. Moreover if X ′+, X

′
− is another such pair, then X+∆X ′+ and X−∆X ′− are

totally null for ρ.
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The following lemma will be used in the proof of Theorem 18.5

Lemma 18.6. Let ρ be a signed measure which omits the value +∞. If ρ(G) > 0, then
there exists a subset E ⊂ G such that E is totally positive and ρ(E) > 0. †

Proof. For notational convenience, let E1 = G. If E1 is totally positive, then there is
nothing to prove. Accordingly, suppose E1 is not totally positive. Thus E1 contains a
subset F of strictly larger positive measure. In particular, the set

J1 = {n ∈ N+ : there is an F ⊂ E1 such that ρ(F ) ≥ ρ(E1) +
1

n
}

is nonempty and thus has a smallest element n1. In particular, if m < n1 and F ⊂ E1 is
measurable, then ρ(F ) < ρ(E1)+ 1

m
. Choose any E2 ⊂ E1 such that ρ(E2) ≥ ρ(E1)+1/n1.

Now, if E2 were totally positive, then the proof is complete. Otherwise, let n2 denote
the smallest element of

J2 = {n ∈ N+ : there is an F ⊂ E2 such that ρ(F ) ≥ ρ(E2) +
1

n
}

and choose E3 ⊂ E2 such that ρ(E3) ≥ ρ(E2) + 1/n2. Continuing by induction produces
a totally positive subset E of G with ρ(E) > 0 or a decreasing sequence of measurable
sets Ej+1 ⊂ Ej and a sequence of integers nj such that ρ(Ej) > 0 for all j and

ρ(Ej+1) ≥ ρ(Ej) +
1

nj
;

and

nj = min{n ∈ N+ : there is an F ⊂ Ej such that ρ(F ) ≥ ρ(Ej) +
1

n
}. (46)

Assuming this latter case, let E =
⋂∞
j=1 Ej. We will show that ρ(E) > 0 and E is totally

positive. By Proposition 18.4, ρ(Ej) increases to ρ(E) and in particular the set E has
finite positive measure (recall ρ omits the value +∞). Since ρ(E) is finite, the nj go to
infinity. To show that E must be totally positive, suppose, by way of contradiction, there
exists an F ⊂ E such that ρ(F ) > ρ(E) and it can be assumed that ρ(F ) > ρ(E) + 1

m
where

m = min{n ∈ N+ : there is an F ⊂ E such that ρ(F ) ≥ ρ(E) +
1

n
}.

Thus F ⊂ Ej for every j and ρ(F ) ≥ ρ(E) + 1/m ≥ ρ(Ej) + 1/m, which, since the nj
go to infinity, contradicts (46) once j is large enough. �

Proof of Theorem 18.5. We may assume ρ avoids the value +∞. The idea of the proof is
to select X+ to be a maximal totally positive set for ρ, and then show that X− := X \X+

is totally negative. The set X+ is obtained by a greedy algorithm. Let M denote the
supremum of ρ(E) over all totally positive sets E. Choose a sequence of sets En so
that M = lim ρ(En). Since each En is totally positive, the union X+ :=

⋃∞
n=1En is also

totally positive, and by construction ρ(X+) = M . (In particular, M is finite.)

The proof is finished if we can show that X− := X \X+ is totally negative. By way
of contradiction, suppose it is not. In this case there exists a G ⊂ X− with ρ(G) > 0.
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By Lemma 18.6, there exists a set E ⊂ G such that E is totally positive and ρ(E) > 0.
Now X+∪E is totally positive and ρ(X+∪E) > ρ(X+), contradicting the choice of X+.

The uniqueness statement in the theorem is left as an exercise (Problem 19.19). �

A set E is a support set for a signed measure ρ if Ec is totally null for ρ. Two signed
measures ρ, σ are mutually singular, denoted ρ⊥σ, if they have disjoint support sets; i.e.,
there exists disjoint measurable sets E and F such that Ec is totally null for ρ and F c is
totally null for σ. In the case ρ, σ are unsigned measures, they are mutually singular if
and only if there exists disjoint (measurable) sets E and F such that ρ(Ec) = 0 = σ(F c)
(in which case it can be assumed that F = Ec if desired).

Theorem 18.7 (Jordan Decomposition). If ρ is a signed measure on (X,M ), then there
exist unique positive measures ρ+, ρ− such that ρ+⊥ρ− and ρ = ρ+ − ρ−.

Proof. Let X = X+∪X− be a Hahn decomposition for ρ and put ρ+ = ρ|X+ , ρ− = −ρ|X− .
It is immediate from the properties of the Hahn decomposition that ρ+, ρ− have the
desired properties; uniqueness is left as an exercise (Problem 19.20). �

Example 18.8. Referring to Example 18.3, it is now immediate that the decomposition
mf = mf+ − mf− is the Jordan decomposition of mf ; i.e., m+

f = mf+ and likewise

m−f = mf− . Thus the Jordan decomposition theorem should be seen as a generalization
of the decomposition of a real-valued function into its positive and negative parts. 4

Let ρ be a signed measure and ρ = ρ+ − ρ− its Jordan decomposition. By analogy
with the identity |f | = f+ + f−, we can define a measure |ρ| := ρ+ + ρ−; this is called
the absolute value or total variation of ρ. The latter name is explained by the following
proposition.

Proposition 18.9. Let ρ be a signed measure on the measure space (X,M ). For each
measurable set E we have |ρ|(E) = sup

∑∞
n=1 |ρ(En)|, where the supremum is taken over

all measurable partitions E =
⋃∞
n=1En. †

Proof. The proof is an exercise (Problem 19.22). �

Warning: A moment’s thought shows that in general |ρ(E)| 6= |ρ|(E). As an
exercise, prove that |ρ(E)| ≤ |ρ|(E) always, with equality if and only if E is either
totally positive, totally negative, or totally null for ρ.

We can now define a signed measure ρ to be finite or σ-finite according as |ρ| is finite
or σ-finite. It is not hard to show that ρ is finite if and only if ρ(E) is finite for every E,
if and only if ρ+, ρ− are finite unsigned measures. It is evident from this that the space
of finite signed measures on (X,M ) is a real vector space, denoted M(X). (We will see
later in the course that the quantity ‖ρ‖ := |ρ|(X) defines a norm on M(X), called the
total variation norm.)

A few remarks about integration against signed measures are in order. If ρ is a
signed measure, then L1(ρ) is defined to be L1(|ρ|); note that L1(|ρ|) = L1(ρ+)∩L1(ρ−).
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For f ∈ L1(ρ) define ∫
f dρ :=

∫
f dρ+ −

∫
f dρ−. (47)

Proposition 18.10. Let ρ be a signed measure on (X,M ).

(a) If f ∈ L1(ρ), then
∣∣∫ f dρ∣∣ ≤ ∫ |f | d|ρ|.

(b) If E ∈M , then |ρ|(E) = sup{
∣∣∫
E
f dρ

∣∣ : |f | ≤ 1}.
†

Proof. Problem 19.23. �

18.2. The Lebesgue-Radon-Nikodym theorem. Fix for reference a measurable space
(X,M ) and an unsigned measure m on this space. (In this section all measures are de-
fined on the same σ-algebra M .) For an unsigned measurable function f , we have the
measure

mf (E) =

∫
E

f dm. (48)

The map f → mf is thus a map from the space of unsigned measurable functions into
the space of nonnegative measures on (X,M ). Likewise the mapping f → mf maps
L1(µ) into the space of finite signed measures on X. One may ask if every finite measure
µ on X may be expressed as mf for some f , but one can quickly see this is not the case
in general. Indeed, if µ = mf then µ(E) = 0 whenever m(E) = 0, which need not always
be the case (e.g., m is Lebesgue measure on R and µ is the point mass at 0.) However,
when the measures involved are σ-finite, it turns out this is the only obstruction.

Theorem 18.11. Let m be an unsigned σ-finite measure on (X,M ). If µ a signed
σ-finite measure, then there is a unique decomposition µ = mf + µs where f is semi-
integrable with respect to m and µs⊥m. Moreover, if µ is unsigned, then f and µs are
as well, and if µ is finite, then µs is finite and f ∈ L1(m).

The proof will make use of a few lemmas.

Lemma 18.12. Let (X,M ,m) be a measure space. If f is an unsigned measurable
function, then

mf (E) :=

∫
E

f dm (49)

defines a measure on M , and if g ∈ L1(mf ), then gf ∈ L1(m) and∫
g dmf =

∫
gf dm. (50)

†

The lemma is Problem 13.18.

Lemma 18.13. Suppose m is a σ-finite measure. If f, g : X → R belong to L1(m), then
mf = mg if and only if f = g m-a.e. †
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Proof. Suppose mf = mg. Thus mf (E) = mg(E) for each measurable set E. Since f
and g are in L1(m), both mf (E) and mg(E) are finite and f, g are finite m-a.e. and we
conclude that ∫

E

(f − g) dm = 0

for all E. Hence, by Proposition 11.2, f − g = 0 m-a.e. Reversing the argument proves
the converse. �

Lemma 18.14. If µ and ν are finite positive measures on (X,M ), then either µ⊥ν, or
else there exist ε > 0 and a measurable set E such that µ(E) > 0 and ν ≥ εµ on E (that
is, E is totally positive for ν − εµ). †

Proof. For each n ≥ 1, let X = Xn
+ ∪ Xn

− be a Hahn decomposition for ν − 1
n
µ. Let

P =
⋃∞
n=1 X

n
+ and N =

⋂∞
n=1X

n
−. In particular N = P c. Since N is totally negative for

ν− 1
n
µ for all n, it follows that ν(N) = 0. If µ(P ) = 0, then µ⊥ν. Otherwise, µ(Xn

+) > 0

for some n, and by construction Xn
+ is totally positive for ν − 1

n
µ (thus we take ε = 1

n
,

E = Xn
+). �

Proof of Theorem 18.11. We prove this only for the case that µ,m are finite; the exten-
sion to the σ-finite case is left as an exercise. Using the Jordan decomposition theorem,
we may additionally assume that µ is unsigned.

We first prove existence of f and µs. As before, f is selected by a “greedy algorithm.”
Let S denote the set of unsigned f such that mf ≤ µ and observe 0 ∈ S . Let M be
the supremum of the set {

∫
X
f dm : f ∈ S }. Note that M is finite, since µ is. Choose a

sequence fn so that
∫
X
fn dm→M . Define gn = max1≤k≤n fk and note that fn ≤ gn and

the gn are increasing. An exercise shows if g, h ∈ S , then mϕ ≤ µ where ϕ = max{g, h}
from which mgn ≤ µ follows. Hence each gn ∈ S . Since (gn) is pointwise increasing, it
converges pointwise (in [0,∞]) to some unsigned measurable g. Since,

∫
E
gn dm ≤ µ(E)

for each E and n, the MCT implies g ∈ S (and in particular g is finite a.e.). Since∫
X
fn dm ≤

∫
X
gn dm ≤M for each n, it follows that the sequence (

∫
X
gn dm) converges

to M and hence

M =

∫
X

g dm.

Now choose any f ∈ S that achieves this maximum M . In particular, f is unsigned
and in L1(m) (its integral is finite). Moreover, µs := µ − mf is totally positive since
f ∈ S . The proof is finished by showing µs is singular to m. If not, then by Lemma 18.14
there is an ε > 0 and an E such that m(E) > 0 and µs − εm|E ≥ 0, equivalently µs ≥
εm|E. Hence µ ≥ mf+ε1E , contradicting the maximality of f since

∫
X

(f + ε1E) dm =∫
X
f dm+ εm(E) > M .

Finally, to see that f and µs are unique, suppose µ = mg + νs with νs an unsigned
measure singular to m and g is semi-integrable. In particular, there is a set S of m
measure zero such that νs(S

c) = 0 and ∞ > µ(S) = mg(S) = mg(X). Moreover, for
any measurable subset E of S it follows that mg(E) = µ(E) ≥ 0. The conclusion is
that g is nonnegative (m-a.e.) and is in L1(m). Since f, g ∈ L1(m) we have mf−g =
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mf −mg = νs−µs. Observe that since µs and νs are both singular to m, then so is their
difference (see Problem 19.21). But this means that mf−g is singular to m. Hence, by
Lemma 18.13, f − g = 0 a.e. It now follows that νs = µs. �

The function f is called the Radon-Nikodym derivative of µ with respect to m,
denoted dµ

dm
= f . The basic manipulations suggested by the derivative notation are

valid. For example it is easy to check that d(µ1 +µ2)/dm = dµ1/dm+ dµ2/dm. We will
see in a moment that the chain rule is valid.

As a corollary of the Lebesgue-Radon-Nikodym theorem (combined with earlier
results) we obtain the following:

Corollary 18.15. For m be an unsigned σ-finite measure and µ a signed σ-finite mea-
sure, the following are equivalent.

(a) µ = mf for some semi-integrable (w.r.t. µ) function f .
(b) µ(E) = 0 whenever m(E) = 0.

If in addition µ is finite, then (a) and (b) are equivalent to

(c) For every ε > 0, there exists a δ > 0 such that |µ(E)| < ε whenever m(E) < δ.

†

Proof. If µ is a finite positive measure, then f is unsigned and in L1(m) and the impli-
cation (a) implies (c) follows from Lemma 12.15 (absolute continuity of the integral).
That (c) and (a) each separately implies (b) in any case (µ finite or σ-finite) is trivial.
For (b) implies (a), apply Theorem 18.11 to µ to obtain µ = mf + µs, where µs⊥µ and
µs is unsigned. In particular, there is an E such that m(E) = 0 and µs(E

c) = 0. By (b)
µ(E) = 0. Hence µs(E) = µ(E)−mf (E) = 0 so µs is trivial and µ = mf . �

When any of the conditions of Corollary 18.15 holds, µ is absolutely continuous with
respect to m, written µ � m. It is straightforward to verify that µ � m if and only
if |µ| � m, and µ⊥m if and only if |µ|⊥m. In this language, the Lebesgue-Radon-
Nikodym Theorem (Theorem 18.11) says that µ can be decomposed uniquely as a sum
of two measures, one absolutely continuous with respect to m and one singular to m.
Evidently, using condition (b) in the corollary, if µ� λ and λ� m, then µ� m.

We can now state and prove the chain rule for Radon-Nikodym derivatives.

Proposition 18.16 (Chain rule for Radon-Nikodym derivatives). Suppose m,λ are σ-
finite positive measures, µ is a σ-finite signed measure and µ� λ� m.

(i) If g ∈ L1(|µ|), then g dµ
dλ
∈ L1(λ) and∫

X

g dµ =

∫
X

g
dµ

dλ
dλ. (51)

(ii)
dµ

dm
=
dµ

dλ

dλ

dm
m-a.e. (52)
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†

Proof. By treating µ+, µ− separately, we may assume µ ≥ 0. In this case, f := dµ
dλ

and
dλ
dm

are both unsigned and in L1(λ) and L1(m) respectively. Since µ� λ by hypothesis,
we have, in the notation of this section µ = λf , so by (18.12)∫

X

g dµ =

∫
X

gf dλ (53)

proving (i). As a warm up for (ii), note that (i) gives, for g ∈ L1(λ),∫
X

g dλ =

∫
X

g
dλ

dm
dm.

With g = 1E
dµ
dλ

for a measurable set E,∫
E

dµ

dλ
dλ =

∫
E

dµ

dλ

dλ

dm
dm.

Since ∫
E

dµ

dλ
dλ =

∫
X

1E
dµ

dλ
dλ =

∫
X

1E dµ = µ(E)

it follows that

µ(E) =

∫
E

dµ

dλ

dλ

dm
dm. (54)

On the other hand, µ � m, and µ(E) =
∫
E

dµ
dm
dm by the definition of dµ

dm
. Comparing

this formula for µ(E) to that of equation (54) gives∫
E

dµ

dλ

dλ

dm
dm =

∫
E

dµ

dm
dm.

Since all the derivatives are unsigned and dµ
dm

is in L1(m), it follows that dµ
dm

= dµ
dλ

dλ
dm

a.e.
with respect to m. �

One important corollary of the Lebesgue-Radon-Nikodym theorem is the existence
of conditional expectations.

Proposition 18.17. Let (X,M , µ) be a σ-finite measure space (µ a positive measure),
N a sub-σ-algebra of M , and suppose ν = µ|N is σ-finite. If f ∈ L1(µ) then there
exists g ∈ L1(ν) (unique modulo ν-null sets) such that∫

E

f dµ =

∫
E

g dν

for all E ∈ N (g is called the conditional expectation of f on N ). †

Proof. Problem 19.27 �



D
RA
FT

MAA6616 COURSE NOTES FALL 2016 93

18.3. Lebesgue differentiation revisited. Finally, we describe the connection be-
tween Radon-Nikodym derivatives and Lebesgue differentiation on Rn. Recall a positive
measure µ is regular if

i) µ(K) <∞ for every compact K ⊂ Rn, and
ii) for every Borel set E ⊂ Rn, we have µ(E) = inf{µ(U) : U open , E ⊂ U}.

Theorem 18.18. Let µ be a regular Borel measure on Rn with Lebesgue decomposition

µ = mf + µs

with respect to Lebesgue measure m. For m-a.e. x ∈ Rn.

lim
r→0

µ(Br(x))

m(Br(x))
= f(x) (55)

Proof. By the regularity of µ, we see that the measure mf is locally finite, so f ∈ L1
loc.

One may verify that the measure mf is regular, and so µs is as well. Applying the
Lebesgue differentiation theorem, (55) holds already with µ = mf , so it suffices to prove
that

lim
r→0

µs(Br(x))

m(Br(x))
= 0 m− a.e. (56)

for the singular part µs.

Fix a Borel set E such that µs(E) = m(Ec) = 0 and let

Ek =

{
x ∈ E : ∀t > 0 ∃ 0 < r < t such that

µs(Br(x))

m(Br(x))
>

1

k

}
.

It will suffice to prove that m(Ek) = 0 for each integer k ≥ 1.

By regularity, for given ε > 0 there is an open set U containing E such that µs(U) <
ε. By the definition of Ek, for each x ∈ Ek there is a ball Bx centered at x such

that Bx ⊂ U and µs(Bx) >
m(Bx)
k

. Let V =
⋃
x∈Ek Bx be the union of these balls.

Fix a number c < m(V ) and apply Wiener’s covering lemma 17.6 to obtain points
x1, . . . xm ∈ Ek such that the balls B1, . . . Bm are disjoint and

c < 3n
m∑
j=1

m(Bj) ≤ 3nk
m∑
j=1

µs(Bj) ≤ 3nkµs(V ) ≤ 3nkµs(U) < 3nkε.

Thus m(V ) ≤ 3nkε, and since Ek ⊂ V and ε was arbitrary, we conclude m(Ek) = 0. �

19. Problems

19.1. Product measures.

Problem 19.1. Let µX denote counting measure on X. Prove that if X, Y are both at
most countable, then 2X ⊗ 2Y = 2X×Y and µX × µY = µX×Y .

Problem 19.2. Prove that the product measure construction is associative: that is, if
(Xj,Mj, µj), j = 1, 2, 3 are σ-finite measure spaces, then (M1 ⊗M2) ⊗M3 = M1 ⊗
(M2 ⊗M3), and (µ1 × µ2)× µ3 = µ1 × (µ2 × µ3).
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Problem 19.3. Let X = Y = [0, 1], M = B[0,1], N = 2R, let µ Lebesgue measure on
M , and let ν counting measure on N . Let ∆ denote the diagonal ∆ = {(x, x) : x ∈
[0, 1]} ⊂ [0, 1]× [0, 1]. Prove that ∆ ∈M ⊗N and∫

X

(∫
Y

1E(x, y) dν(y)

)
dµ(x),

∫
Y

(∫
X

1E(x, y) dµ(x)

)
dν(y) (57)

are unequal. Show that, for each P ∈ M ⊗ N , the functions f(x) = ν(Px) and
g(y) = µ(P y) are measurable (with respect to M and N respectively) and

τ(P ) =

∫
X

ν(Px) dµ, ρ(P ) =

∫
Y

µ(P y) dν

are both measures M ⊗N . (Note that Theorem 15.7 does not (directly) apply).

Problem 19.4. Prove Proposition 15.11.

Problem 19.5. Prove Corollary 15.8.

Problem 19.6. Prove Corollary 15.14.

19.2. Integration on Rn.

Problem 19.7. Compare the three integrals∫∫
[0,1]2

f dm2,

∫ 1

0

(∫ 1

0

f(x, y) dx

)
dy,

∫ 1

0

(∫ 1

0

f(x, y) dy

)
dx (58)

for the functions

a) f(x, y) =
x2 − y2

(x2 + y2)2

b) f(x, y) = (1− xy)−s, s > 0

Problem 19.8. Prove that if f ∈ L1[0, 1] and g(x) =
∫ 1

x
t−1f(t) dt, then g ∈ L1[0, 1]

and
∫ 1

0
g(x) dx =

∫ 1

0
f(x) dx.

Problem 19.9. Prove that
∫∞

0
| sinx
x
| dx = +∞, but the limit limb→+∞

∫ b
0

sinx
x
dx exists

and is finite. (For a bigger challenge, show that the value of the limit is π
2
.)

Problem 19.10. Prove Theorem 16.1.

Problem 19.11. Complete the proof of Theorem 16.6.

Problem 19.12. [The Gamma function] Define

Γ(x) :=

∫ ∞
0

tx−1e−t dt (59)

a) Prove that the function t → tx−1e−t is absolutely integrable for all fixed x > 0
(thus Γ(x) is defined for all x > 0).

b) Prove that Γ(x+ 1) = xΓ(x) for all x > 0.
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c) Compute Γ(1/2). (Hint: if you haven’t seen this before, first make the change of
variables u =

√
t, then evaluate the square of the resulting integral using Tonelli’s

theorem and polar coordinates.)
d) Using (b) and (c), conclude that Γ(n+ 1

2
) = (n− 1

2
)(n− 3

2
) · · · (1

2
)
√
π for all n ≥ 1.

Problem 19.13. Complete the following outline to prove that

σ(Sn−1) =
2πn/2

Γ(n/2)
. (60)

a) Show that if f ∈ L1(Rn) and f is a radial function (that is, f(x) = g(|x|) for
some function g : [0,∞)→ C), then∫

Rn
f(x) dx = σ(Sn−1)

∫ ∞
0

g(r)rn−1 dr. (61)

b) Show that for all c > 0, ∫
Rn
e−c|x|

2

dx =
(π
c

)n/2
. (62)

(Hint: write e−c|x|
2

=
∏n

j=1 e
−c|xj |2 and use Tonelli’s theorem.)

c) Finish by combining (a) and (b). (Using the results on the Gamma function
from the previous exercise, one finds that σ(Sn−1) is always a rational multiple
of an integer power of π.)

19.3. Differentiation theorems.

Problem 19.14. Prove that if 0 6= f ∈ L1(R), then there exist constants C,R > 0
(depending on f) such that

Mf (x) ≥ C

|x|
for all |x| > R. (63)

(Hint: reduce to the case f = 1E where E is a bounded set of positive measure.)
Conclude that Mf never belongs to L1(R) if f ∈ L1 is not a.e. 0.

Problem 19.15. The Lebesgue differentiation theorem says that for f ∈ L1(Rn), we
have Ar,f → f pointwise a.e. as r → 0. Prove that also Ar,f → f in the L1 norm.
(Hint: the proof can be done in three steps: first prove this under the assumption that
f is continuous with compact support. Then prove that for all f ∈ L1 and r > 0, the
functions Ar,f ∈ L1; in fact ‖Ar,f‖1 ≤ ‖f‖1 for all r. Tonelli’s theorem will help. Finally,
to pass to general L1 functions, use a density argument.)

Problem 19.16. Let E be a Borel set in R. Define the density of E at x to be

DE(x) = lim
r→0

m(E ∩B(x, r))

m(B(x, r))

whenever the limit exists.

a) Show that DE(x) = 1 for a.e. x ∈ E and DE(x) = 0 for a.e. x /∈ E.
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b) Give examples of E and x for which DE(x) = α (0 < α < 1) and for which
DE(x) does not exist.

Problem 19.17. Define the decentered Hardy-Littlewood maximal function for f ∈
L1(Rn) by

M∗
f (x) = sup

B

1

m(B)

∫
B

|f(x)| dx (64)

where the supremum is taken over all open balls containing x (not just those centered
at x). Prove that

Mf ≤M∗
f ≤ 2nMf . (65)

19.4. Signed measures and the Lebesgue-Radon-Nikodym theorem.

Problem 19.18. Prove Proposition 18.4.

Problem 19.19. Complete the proof of Theorem 18.5.

Problem 19.20. Prove the uniqueness statement in the Jordan decomposition theorem.
(Hint: if also ρ = σ+ − σ−, use σ± to obtain another Hahn decomposition of X.)

Problem 19.21. Prove that if νj⊥µ for j ∈ N then (
∑

j νj)⊥µ, and if νj � µ for j ∈ N
then (

∑
j νj)� µ.

Problem 19.22. Complete the proof of Proposition 18.9.

Problem 19.23. Prove Proposition 18.10.

Problem 19.24. Complete the proof of Theorem 18.11 in the σ-finite case.

Problem 19.25. Complete the proof of the (i) =⇒ (iii) implication in Corollary 18.15

Problem 19.26. Suppose ρ is a signed measure on (X,M ) and E ∈M . Prove that

a) ρ+(E) = sup{ρ(F ) : F ∈ M , F ⊂ E} and ρ−(E) = − inf{ρ(F ) : F ∈ M , F ⊂
E}

b) |ρ|(E) = sup{
∑n

1 |ρ(Ej)| : E1, . . . En are disjoint and ∪n1 Ej = E}

Problem 19.27. a) Prove Proposition 18.17. b) In the case µ = Lebesgue measure on
[0, 1), fix a positive integer k and let N be the sub-σ-algebra generated by the intervals
[ j
k
, j+1

k
) for j = 0, . . . k − 1. Give an explicit formula for the conditional expectation g

in terms of f . c) Show that the conclusion is false if the assumption that ν is σ-finite is
omitted.

19.5. The Riesz-Markov Theorem.

Problem 19.28. Explain how to construct Lebesgue measure on [0, 1] from the Riemann
integral and Theorem 14.2.

Problem 19.29. Suppose X is a locally compact abelian topological group (the defini-
tions are available online). Given y ∈ X, let ty : X → X denote translation by y so that
ty(x) = x + y (the group is abelian so the group operation is written as +). A linear
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functional λ : Cc(X)→ C is translation invariant if λ(f) = λ(f ◦ ty) for each y ∈ X and
f ∈ C(X). Prove, if λ is a positive linear functional which is translation invariant, then
the representing measure µ for λ from Theorem 14.2 is translation invariant.

Problem 19.30. Let X be a compact Hausdorff space. Fix p ∈ X and consider the
linear functional Ep : C(X) → C defined by Ep(f) = f(p). Show Ep is positive and
determine the representing measure for Ep.
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(En) converges to E pointwise, 10
F -length, 25
Fσ, 3
Gδ, 3∫
E
f dµ, 41∫

E
, 40

µ∗-measurable,, 12
µ∗-null, 13
µ× ν, 71
σ-algebra, 2
σ-algebra generated by E , 4
σ-finite, 8, 88
σ-finite measure, 8
1E , 10

a.e. µ, 36
absolute value, 88
absolutely continuous, 91
absolutely integrable, 46
almost everywhere, 36
atomic, 28
atomic σ-algebra, 59

Banach space, 63
Boolean algebra, 2
Borel, 33
Borel σ-algebra, 4
Borel measurable, 5, 33
Borel measure, 19
boxes, 76

Cantor measure, 27
Cantor set, 20
Cantor-Lebesgue function, 27
cardinality, 8
Cauchy in measure, 52
characteristic function, 10, 64
closed set, 3
closed support, 78
common refinement, 39
compact set, 3
compact support, 63
compactly supported, 78
complement, 2
complete, 37
complete measure, 10
completion, 11, 72
conditional expectation, 92
conditional expectations, 92
continuous, 3

converges almost uniformly, 49
converges essentially uniformly, 49
converges in L1, 50
converges in L∞, 49
converges in measure, 50
converges pointwise a.e., 49
convolutions, 79
countable, 36
counting measure, 8

decentered, 96
density, 95
density argument, 79
Devil’s Staircase, 27
dominated, 58
dyadic interval, 6

essentially uniformly, 49
extended Borel σ-algebra over R, 34

finite, 88
finite measure, 8

Hahn-Kolmogorov extension, 23
Hardy-Littlewood maximal function, 82
Hausdorff, 19
Heaviside function, 26
heights, 51

indicator function, 10, 64
inner regular, 19
integrable, 46
integral of f , 39, 46
integral of f with respect to µ, 41
interval, 15

Lebesgue, 76
Lebesgue differentiation theorem, 81
Lebesgue measurable, 33
Lebesgue measurable set, 16
Lebesgue measure, 17, 77
Lebesgue outer measure, 76
Lebesgue outer measure of A, 13
Lebesgue-Stieltjes measure, 26
linear functional, 63
locally compact, 19
locally finite, 24
locally integrable, 81

measurable, 2, 12, 33, 34
measurable partition, 37
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measurable rectangle, 7
measurable space, 2
measurable with respect to µ∗, 12
measure, 8
measure space, 8
measure, σ-finite, 8
measure, complete, 10
measure, finite, 8
measure, regular, 19
monotone class, 70
monotone class lemma, 5
mutually singular, 88

neighborhood, 19
nesting property, 6
norm, 48
normal, 64
null, 13
null set, 10

open, 34
open boxes, 7
open sets, 3
outer measurable, 12
outer measure, 11
outer regular, 19

partition, 37
pointwise almost everywhere, 49
pointwise positive, 63
positive, 63
premeasure, 21
product σ-algebra, 7
product measure, 71
product topology, 32
pull-back, 4
push-forward, 45

radial, 95
Radon-Nikodym derivative, 91
regular, 20, 63, 93
regular Borel measure, 19

semi-integrable, 46
semi-integrable , 86
signed measure, 85
simple, 37
singular, 27
singular continuous, 27
slice functions, 69
slice sets, 69
standard representation, 38

step function, 51
super Cauchy, 54
support, 31
support set, 88
support, closed, 78
supported, 78
symmetric difference, 29

tail supports, 51
topological group, 96
topological space, 2
topology, 2
total variation, 88
total variation norm, 88
totally negative, 86
totally null, 86
totally positive, 86
translation of f by h, 79

uniformly integrable, 55
unsigned, 37

widths, 51
Wiener covering lemma, 83
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