Victor Bailey

Department of Mathematics University of Oklahoma

March 16, 2024

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Collaborators and Contributors to Dynamical Sampling

- Joint work with Carlos Cabrelli (Universidad de Buenos Aires).
- Main contributors to Dynamical Sampling: Aceska, Aldroubi, Bownik, Cabrelli, Çakmak, Christensen, Hasannasab, Huang, Kim, Kornelson, Krishtal, Molter, Paternostro, Petrosyan, Philipp, Stoeva, Tang.

Background

• $\{f_k\}_{k \in I} \subset H$ is a frame if \exists fixed constants $0 < C_1 \leq C_2$ such that for each $f \in H$,

$$C_1 \|f\|^2 \le \sum_k |\langle f, f_k \rangle|^2 \le C_2 \|f\|^2$$

- $U: l^2(I) \to H$ where $U\{c_k\}_k = \sum_k c_k f_k$ is the synthesis operator.
- $U^*: H \to I^2(I)$ where $U^*f = \{\langle f, f_k \rangle\}_k$ is the analysis operator.
- $\Psi = UU^* \in B(H)$ where $\Psi f = \sum_k \langle f, f_k \rangle f_k$ is the frame operator.
- The canonical dual frame is $\{\Psi^{-1}f_k\}_{k\in I}$. For all $f \in H$, $f = \sum_k \langle f, \Psi^{-1}f_k \rangle f_k = \sum_k \langle f, f_k \rangle \Psi^{-1}f_k$
- A Riesz sequence is a system {f_k}_k that forms a bounded unconditional basis for span{f_k}_k.

Dynamical Sampling in Infinite Dimensional Hilbert Spaces

- Let *H* be a separable infinite dimensional Hilbert space.
- We seek conditions on A, G, and L so that for any $f \in H$,

$$\{\langle A^n f, g \rangle\}_{0 \le n \le L(g), g \in G} = \{\langle f, (A^*)^n g \rangle\}_{0 \le n \le L(g), g \in G}$$

is enough information to allow stable reconstruction of f.

- Any $f \in H$ can be stably reconstructed from these samples iff $\{(A^*)^n g\}_{0 \le n \le L(g), g \in G}$ is a frame for H.
- Given an operator T ∈ B(H) and a vector φ ∈ H, what are conditions for the system {Tⁿφ}_{n≥0} to be a frame, basis, Bessel, complete, minimal etc.?

Dynamical Sampling in Infinite Dimensional Hilbert Spaces

- If T is normal, then {Tⁿφ}_{n≥0} can never be a basis. (Aldroubi, Cabrelli, Çakmak, Molter, Petrosyan)
- If T is unitary, then {Tⁿφ}_{n≥0} can never be a frame. (Aldroubi, Petrosyan)
- If T is compact, then {Tⁿφ}_{n≥0} can never be a frame. (Christensen, Hasannasab, Rashidi)
- If *T* is hypercyclic, then {*Tⁿφ*}_{n≥0} can never be a frame. (Christensen, Hasannasab)
- If T is self-adjoint, then { Tⁿφ / ||Tⁿφ||}_{n≥0} can never be a frame.
 Conjecture: this holds when T is normal. (Aldroubi, Cabrelli, Çakmak, Molter, Petrosyan)

Dynamical Sampling in Infinite Dimensional Hilbert Spaces

Theorem (Christensen, Hasannasab)

A frame $\{f_n\}_{n\in\mathbb{N}_0}$ admits the form $\{T^n\varphi\}_{n\geq 0}$ with $T\in B(H)$ iff $\{f_n\}_{n\in\mathbb{N}_0}$ is linearly independent and Ker(U) (the kernel of its synthesis operator) is an invariant subspace of the right shift operator, $R \in B(\ell^2(\mathbb{N}_0))$.

$$R(x_0, x_1, x_2...) = (0, x_0, x_1, x_2, ...).$$

■ This result connects Dynamical Sampling to the theory of Hardy Spaces and helps us find necessary and sufficient conditions for {Tⁿφ}_{n≥0} ⊂ H to be a frame.

Background

•
$$H^2(\mathbb{T}) = \{f \in L^2(\mathbb{T}) : \int_{\mathbb{T}} f(z)\overline{z}^n dz = 0 \text{ if } n < 0 \}.$$

Given
$$f \in H^2(\mathbb{T})$$
, $f(z) = \sum_{n \ge 0} c_n z^n$.

An inner function, θ , is a function in $H^2(\mathbb{T})$ such that $|\theta(z)| = 1$ almost everywhere.

Theorem (Beurling)

Every nontrivial invariant subspace of the shift operator $S \in B(H^2(\mathbb{T}))$, where Sf(z) = zf(z), is of the form $\theta H^2(\mathbb{T})$ for some inner function θ . Conversely, for any inner function θ , $\theta H^2(\mathbb{T})$ is invariant under S.

Theorem (VB)

Let $\{f_k\}_k$ be a linearly independent and overcomplete frame. Then $\{f_k\}_k = \{T^n \varphi\}_{n \ge 0}$ with $T \in B(H)$ iff $\{R^n c\}_{n \ge 0}$ is a Parseval frame for Ker(U) for some $c \in \ell^2(\mathbb{N}_0)$ whose image under $A : \ell^2(\mathbb{N}_0) \to H^2(\mathbb{T})$, where $A(c_0, c_1, \ldots) = \sum_{n \ge 0} c_n z^n$, is an inner function.

- Invariant subspaces of R correspond to invariant subspaces of S via the unitary map A.
- Beurling's theorem implies that Ker(U) corresponds to an invariant subspace of the form θH²(T). θH²(T) is a cyclic invariant subspace of S so that Ker(U) admits the form above.
- In fact, $\{R^n c\}_{n\geq 0}$ is an orthonormal basis frame for Ker(U).

Definition

A model space, \mathcal{K}_{θ} , is a subspace of $H^2(\mathbb{T})$ of the form $\mathcal{K}_{\theta} = H^2(\mathbb{T}) \ominus \theta H^2(\mathbb{T})$ for some shift-invariant subspace $\theta H^2(\mathbb{T})$.

Definition

The map $S_{\theta} = P_{K_{\theta}} S|_{K_{\theta}}$ is the compression of the shift to K_{θ} where $P_{K_{\theta}}$ is the orthogonal projection onto K_{θ} .

Definition

A finite Blaschke product is an inner function of the form $\phi(z) = c \prod_{j=1}^{k} \frac{\lambda_j - z}{1 - \overline{\lambda_j z}}$ where $\{\lambda_1, \dots \lambda_k\} \subset \mathbb{D}$ and $c \in \mathbb{T}$.

Definition

Let H, K be complex separable infinite-dimensional Hilbert Spaces. Given $T \in B(H)$ and $A \in B(K)$ we say the pairs (T, f) and (A, g) are similar and write $(T, f) \cong (A, g)$ if there exists $\Psi \in GL(H, K)$ such that $\Psi T \Psi^{-1} = A$ and $\Psi f = g$.

Lemma

Assume $(T, f) \cong (A, g)$. Then $\{T^n f\}_{n \ge 0}$ is a frame (overcomplete frame) for H if and only $\{A^n g\}_{n \ge 0}$ is a frame (overcomplete frame) for K.

Lemma

A model space $K_{\theta} = H^2(\mathbb{T}) \oplus \theta H^2(\mathbb{T})$ is of finite dimension if and only if the inner function θ is a finite Blaschke product.

Lemma

$$\{S_{\theta}^{n}P_{K_{\theta}}1_{\mathbb{T}}\}_{n\geq 0}$$
 is a overcomplete frame for K_{θ} .

Theorem (Christensen, Hasannasab, Philipp)

A system $\{T^n\varphi\}_{n\geq 0} \subset H$, with $T \in B(H)$ is an overcomplete frame if and only if $(T, \varphi) \cong (S_{\theta}, P_{K_{\theta}}1_{\mathbb{T}})$ for some unique inner function, θ , that is not a finite Blaschke product.

- If {Tⁿφ}_{n≥0} ⊂ H is an overcomplete frame and T ∈ B(H), then Ker(U) is nontrivial and right shift invariant. The kernel of the map V = UF, where F is the Fourier transform, is then an invariant subspace of S ∈ B(H²(T)). Thus Ker(V) = θH²(T) for some inner function θ by Beurling.
- As V is surjective, Ker(V) has infinite codimension. Setting $K_{\theta} = H^2(\mathbb{T}) \ominus \theta H^2(\mathbb{T})$ and $W = V|_{K_{\theta}}$ we have $W \in GL(K_{\theta}, H)$, $WP_{K_{\theta}}1_{\mathbb{T}} = \varphi$, and $WS_{\theta}W^{-1} = T$

- Let T₁, T₂ ∈ B(H) commute. We seek necessary and sufficient conditions for a system {T₁ⁱT₂^jf₀}_{i,j≥0} ⊂ H to be a frame.
- $H^2(\mathbb{T}^2) = \{f(z, w) \in L^2(\mathbb{T}^2) : \int_{\mathbb{T}^2} f(z, w) \overline{z}^m \overline{w}^n d\mu = 0 \text{ if } m < 0 \text{ or } n < 0 \}.$
- Given $f \in H^2(\mathbb{T}^2)$, $f(z, w) = \sum_{i,j \ge 0} c_{ij} z^i w^j$.
- A subspace $M \subseteq H^2(\mathbb{T}^2)$ is shift-invariant if it is invariant under both shift operators S_1 and S_2 . That is $S_1M = zM \subset M$ and $S_2M = wM \subset M$.
- An inner function, θ , is a function in $H^2(\mathbb{T}^2)$ such that $|\theta(z, w)| = 1$ almost everywhere.
- Beurling's characterization of invariant subspaces does not translate fully to H²(T²).

Theorem (Mandrekar)

A non-trivial shift-invariant subspace $M \subset H^2(\mathbb{T}^2)$ is of the form $\phi H^2(\mathbb{T}^2)$ with $\phi(z, w)$ inner if and only if S_1 and S_2 doubly commute on M.

Lemma

Let $\{T_1^i T_2^j f_0\}_{i,j\geq 0}$ be an overcomplete frame for H where $T_1, T_2 \in B(H)$ commute. Let $U : \ell^2(\mathbb{N}_0 \times \mathbb{N}_0) \to H$ be the synthesis operator. Let $R_1, R_2 \in B(\ell^2(\mathbb{N}_0 \times \mathbb{N}_0))$ be the right shift in the first and second components respectively. If R_1, R_2 doubly commute on Ker(U), then the invariant subspace Ker(V) = Ker(UF) $\subset H^2(\mathbb{T}^2)$ is of the form $\phi H^2(\mathbb{T}^2)$, where $\phi(z, w)$ is an inner function.

- By Argawal, Clark, and Douglas when φ(z, w) is an inner function, any invariant subspace M ⊆ H²(T²) satisfies φM ⊆ M with equality if and only if φ is constant. Also, they show that every invariant subspace M ⊆ H²(T²) with finite codimension has full range.
- By Mandrekar, invariant subspaces of the form φH²(T²) do not have full range unless φ is constant. Thus, a Beurling type invariant subspace, φH²(T²), cannot have finite codimension unless φ constant. That is, invariant subspaces of the form φH²(T²) with φ(z, w) inner, satisfy dim(H²(T²) ⊕ φH²(T²)) = ∞ unless φH²(T²) = H²(T²).

Theorem (Cabrelli, VB)

Let $\{T_1^i T_2^j f_0\}_{i,j\geq 0} \subset H$, where $T_1, T_2 \in B(H)$ commute, satisfy the property that the operators R_1, R_2 doubly commute on Ker(U), where U is the synthesis operator for the sequence $\{T_1^i T_2^j f_0\}_{i,j\geq 0}$. Then $\{T_1^i T_2^j f_0\}_{i,j\geq 0}$ is an overcomplete frame iff there exists a nonconstant inner function, $\theta(z, w)$, such that $(T_1 T_2, f_0) \cong (S_{\theta_1} S_{\theta_2}, P_{K_{\theta}} 1_{\mathbb{T}^2})$ where $P_{K_{\theta}}$ is the orthogonal projection onto $K_{\theta} = H^2(\mathbb{T}^2) \oplus \theta H^2(\mathbb{T}^2)$ and $S_{\theta_1} = P_{K_{\theta}} S_1|_{K_{\theta}}$ and $S_{\theta_2} = P_{K_{\theta}} S_2|_{K_{\theta}}$.

- A more general version of this theorem holds without assuming double commuting property.
- Theorem provides characterization of frames obtained by iterations of pairs of commuting bounded operators.

Future Work on Frames via Operator Orbits

- Characterize bounded, commuting operators T₁, T₂ that for some φ ∈ H, admit double commuting property on Ker(U).
- Find necessary and sufficient conditions for systems given by iterations of bounded operators that do not necessarily commute to be a frame.
- Characterize set of vectors $\varphi \in H$ such that $\{T_1^i T_2^j \varphi\}_{i,j \ge 0}$ is a frame for H.

- Agrawal, O.P., Clark, D., and Douglas, R., Invariant subspaces in the polydisk *Pacific Journal of Mathematics*, 121, (1986), 1-11.
- Aldroubi, A., Cabrelli, C., Molter, U., and Tang, S.: Dynamical Sampling. Appl. Comput. Harmon. Anal. 42, no. 3, 378–401 (2017)
- Bailey, V.: Frames via Operator Orbits: Structure of Subspaces Determining Boundedness. Preprint, *arXiv:2201.09757* (2022)
- Christensen, O., Hasannasab, M., and Philipp, F.: Frame Properties of Operator Orbits. *Math. Nachr. 293, no. 1,* 52–66, (2020)
- Garcia, S.R., Mashreghi, J., and Ross, W.: Introduction to Model Spaces and their Operators, *Cambridge University Press*, (2016)
- Mandrekar, V.: The Validity of Beurling Theorems in Polydiscs. Proc. Amer. Math. Soc. 103, No. 1, 145-148, (1988)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00