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Introduction

It is well known that any (closed) subspace of the Hardy space

H2(D) or the Bergman space A2(D) which is invariant under

multiplication by z (the z−invariant subspace) is also an invari-

ant subspace of any bounded analytic Toeplitz operator. The

converse is not in general true.

In this talk we consider analytic Toeplitz operators Mφ of multi-

plication by φ on the Hardy space H2(D) and the Bergman space

A2(D) with the property that the function which is a constant

(e.g. f(z) ≡ 1) is a cyclic vector for such operators. Such a

function φ we call a generator. We characterize such generators

in terms of Mφ− invariant subspaces which are also z−invariant.



The problem of determining whether a given bounded analytic

function in the the unit disk D is a generator is very hard. Some

important results in this direction in the case of Hardy space

were obtained in the paper by B. M. Solomyak [9].

In [7] and [8] Donald Sarason introduced a notion of a weak∗ gen-
erator of H∞. We show that each weak∗ generator is a generator
in our sense. If ψ is a weak∗ generator of H∞ then ψ−invariant
subspaces have some additional property, see Theorem 7 below.

Weak∗ generators often occur in the process of studying wander-

ing property of invariant subspaces of analytic Toeplitz operators.

We also consider this question for the case when the symbol of

the Toeplitz operator is a generator, see Theorem 3.



The condition that H∞ ∩ M is dense in the invariant subspace

M plays the crucial role in our work. In Section 3 we study this

condition in the case of invariant subspaces of the Hardy space

H2(D) and the Bergman space A2(D).



Generators

In what follows D denotes the unit disk and H denotes either

Hardy space H2(D) or Bergman space A2(D).
De�nition 1. A function φ ∈ H∞(D) is called a generator for H

if polynomials in φ are dense in H, i.e.

l.h.{φn : n = 0,1, . . .} = H (1)

where l.h. means linear hull and bar means closure in the norm

of H.

Condition (1) implies that a vector 1 (the constant function

1) is a cyclic vector for the analytic Toeplitz operator Mφ of

multiplication by φ.



Since in a locally convex space the weak closure of a subspace

coincides with its norm closure, a function φ is a generator if

polynomials in φ are weakly dense in H.

Clearly, φ is univalent. Indeed, if φ(z1) = φ(z2), z1, z2 ∈ D,
z1 ̸= z2, then P (φ(z1)) = P (φ(z2)) for any polynomial P . Con-

sequently, f(z1) = f(z2) for any f ∈ l.h.{φn : n = 0,1, . . .} which

contradicts (1).

A notion of a generator is closely related to the notion of weak∗

generator introduced by D. Sarason in [7] and [8].

A function ψ ∈ H∞ is called a weak∗ generator of H∞ if polyno-

mials in ψ are dense in the weak-star topology of H∞.



Theorem 1. 1. Every weak∗ generator is a generator in the

sense of De�nition 1.

2. There exist a bounded univalent function φ which is a gener-

ator in the sense of De�nition 1 but is not a weak∗ generator.

Proof. 1. Recall that the space H∞ is the dual to the quo-

tient space L1/H1
0, H

∞ = (L1/H1
0)

∗. A local basis of the weak∗

topology on H∞ at h0 ∈ H∞ is formed by the following sets{
h ∈ H∞ : |

1

2π

∫ 2π

0
[h(eit)− h0(e

it)]gj(e
it)dt| < ϵ, j = 1,2, . . . , n, gj ∈ L1

}
(2)

Let ψ be a weak∗ generator of H∞. Then any set of the form

(2) contains a polynomial in ψ for any h0 ∈ H∞. Taking gj = f̄j,



fj ∈ H1, we obtain that for any h0 ∈ H∞(D), for any ϵ > 0, and

for any fj ∈ H1(D), j = 1,2, . . . , n, there is a polynomial P (ψ) in

ψ such that

|
1

2π

2π∫
0

[
P (ψ(eit))− h0(e

it)
]
fj(eit)dt| < ϵ, j = 1.2. . . . , n. (3)

Since H2(D) ⊂ H1(D) we take fj ∈ H2(D) and (3) gives

| < P (ψ)− h0, fj >H2 | < ϵ,

that is the weak closure of polynomials in ψ contains all H∞. In

particular that closure contains all polynomials in z. Therefore

weak closure of polynomials in ψ coincides with H2(D), hence
the closure of polynomials in ψ in H2(D)-norm is H2(D). Conse-
quently any weak∗ generator of H∞(D) is a generator of H2(D).



Remark 1. Using similar arguments one can show that if ψ is a

weak∗ generator of H∞, then the of the set of polynomials in ψ
is dense in Hp for any 1 < p <∞.

2. Let φ be a bounded univalent function and put G = φ(D). It is
easily seen that the function φ is a generator of H2(D) if and only
if the polynomials are dense in H2(G) in the norm of H2(G). In
[1] J. Akeroyd constructed a bounded simply connected domain

G such that the polynomials are dense in H2(G). At the same

time the mapping function φ is not a weak∗ generator of H∞(D).
This statement follows from the fact that Akeroyd's domain is a

subset of the unit disk D and the following result of D. Sarason

(see [8], Corollary 2, page 527):

The function φ fails to be a weak∗ generator if there is a domain

B containing G properly such that

sup
z∈B

|f(z)| = sup
z∈G

|f(z)|.
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In the case of the Bergman space we note that the space (A1(D))∗

properly contains H∞(D). Let τ be the topology on H∞(D) de-
�ned by the family of seminorms

pf(ψ) = |
∫
D
ψ(z)f(ζ)dσ(z)|, ψ ∈ H∞(D), f ∈ A1(D), (4)

where σ is the normalized Lebesque measure of the unit disk

D. A function ψ ∈ H∞(D) is called a τ-generator of H∞(D) if

polynomials in ψ are dense in H∞ in τ−topology. Clearly the

topology τ is the Bergman space version of the weak∗ generator
of H∞(D) and a τ−generator of H∞ is the Bergman space version

of a weak∗ generator of H∞(D).

Applying the same arguments as above one concludes that every

τ− generator of H∞ is a generator of the Bergman space A2(D)
in the sense of De�nition 1. Suppose now that φ is a generator



of A2(D) in the sense of De�nition 1. Therefore polynomials

in φ are dense in A2(D) in the Bergman norm. In particular,

polynomials in φ are dense in A2(D) in the weak topology. This

means that for any ϵ > 0 and any h0 ∈ H∞, and for any �nite

set of functions fj ∈ A2(D) there is a polynomial P such that

|
∫
D
(P (φ(z))− h(z))fj(z)dσ(z)| < ϵ.

Since A1(D) contains functions that do not belong to A2(D), φ
is not a τ−generator of H∞(D).



A (closed) subspace of H is called φ-invariant if it is invariant

under the operator Mφ. We also denote by LatH(φ) the lattice

of φ-invariant subspaces of H.

For a set S ⊂ H we denote [S]φ the smallest φ− invariant subspace

containing S. Similarly, [S]z is the smallest z−invariant subspace
containing S.

The next theorem gives a characterization of a generator in terms

of its invariant subspaces.

Theorem 2. Let φ be a bounded univalent function in the unit

disk D. In order for φ to be a generator it is necessary that

every φ−invariant subspace M ⊂ H such that M ∩H∞ = M is

also z−invariant, and su�cient that the invariant subspace [1]φ
be z−invariant.



Proof. Suppose φ is a generator, f ∈ M∩H∞ and h ∈ M⊥. Since
M is φ−invariant, P (φ)f ∈ M for any polynomial P , that is

< P (φ)f, h >= 0.

The left side of the last equality can be written as < P (φ), f̄h >=<

P (φ), Tf̄h >, where Tf̄ is a Toeplitz operator on H. Since f ∈ H∞

the operator Tf̄ is bounded and Tf̄h ∈ H. Thus we have

0 =< P (φ)f, h >=< P (φ), Tf̄h > .

Now pick ϵ > 0. Because φ is a generator there is a polynomial

P such that

| < z − P (φ), Tf̄h > | < ϵ.

Since ϵ > 0 is arbitrary it follows that

0 =< z, Tf̄h >=< Mzf, h > .



HenceMzf ∈ M for any f ∈ M∩H∞ and, because this intersection

is dense in M one concludes that MzM ⊂ M.

To prove the converse statement consider the φ−invariant sub-
space [1]φ. Since this subspace is the closure in H of polynomials

in φ, functions from H∞ are dense in it. Consequently, [1]φ
is also z−invariant. But any z−invariant subspace of H which

contains the function 1 coincides with the whole H. Therefore

[1]φ = H, that is φ is a generator. 2

Remark 2. It was proved earlier that a bounded univalent function

ψ is a weak∗ generator of H∞ if and only if LatH(ψ) = LatH(z).

For the case H = H2(D) it was proved by D. Sarason in [7], for

H = A2(D) the statement was proved by P. Bourdon in [3].



Corollary 1.Let φ be a generator of H and let M be a φ−invariant
subspace. If dim M⊥ <∞ then the subspace M is z-invariant.

The corollary follows from the fact that H∞ is dense in H and the

statement below that was proved for the more general situation

in [6], Lemma 2.1:

Let a Banach space X be decomposed as the direct sum of a

subspace Y and a �nite-dimensional subspace Z:

X = Y +̇Z,

and L is a dense linear subset of X. Then Y ∩ L is dense in Y .



The following statement was proved in [4], Lemma 4.1.

Lemma 1. Let φ be a bounded univalent function on the unit

disk D with φ(0) = 0. If M is a z−invariant subspace of H, then

M⊖MzM = M⊖MφM.

Theorem 3. Let φ be a bounded univalent function on the unit

disk D with φ(0) = 0. Assume that φ is a generator of H and M

is a φ− invariant subspace of H such that:

(a) M ∩H∞(D) is dense in M;

(b) (M⊖ φM) ∩H∞(D) is dense in M⊖ φM.

Then

M = [M⊖ φM]φ . (5)



Proof. From Theorem 2 it follows that the subspace M is

Mz−invariant and Lemma 1 gives that M ⊖MzM = M ⊖MφM.

If H = H2(D) the fact that M = [M⊖MzM]z is the well known

Wold decomposition. If H = A2(D) then from the result of Ale-

man, Richter, and Sundberg(see [?]) it follows that M is the

smallest z−invariant subspace that contains M⊖MzM.

Observe that because φ ∈ H∞(D) we have [M⊖MφM]φ∩H
∞(D)

is dense in [M⊖MφM]φ. Since the last subspace is φ−invariant
we refer again to Theorem 2 and conclude that it is z−invariant,
and is a subspace of M. Therefore [M⊖MφM]φ = M. 2

Remark 3. If in Theorem 3 dim(M ⊖ φM) < ∞, then condition

(a) implies condition (b).

Let M be a φ−invariant subspace of H. In what follows the

quantity dim(M⊖φM) is called the φ−index of M. The z−index
of a z−invariant subspace is de�ned similarly.



Theorem 4. Let φ be a generator of H and φ(0) = 0. Assume

f ∈ (H ∩ H∞) and M = [f ]φ. Then the φ−index of M equals 1

and M = [f ]z. Consequently, the z−index of M is also 1.

Proof. The proof of the �rst statement of the theorem is,

in fact, repetition of the corresponding proof of Theorem 4,

Chapter 8, of [5]. We include it for completeness.

Represent f in the form f = f1 + f2, where f1 ∈ M ⊖ φM and

f2 ∈ φM. Choose an arbitrary g ∈ M ⊖ φM. Then g ∈ [f ]φ,
consequently there is a sequence of polynomials of φ, say Qn(φ),
such that ∥Qn(φ)f − g∥ → 0. De�ne h

(1)
n and and h

(2)
n by the

formulas

h
(1)
n = Qn(φ(0))f1 − g ∈ M⊖ φM,

h
(2)
n = (Qn(φ)−Qn(φ(0)))f1 +Qn(φ)f2 ∈ φM.



The second inclusion follows from the fact that Qn(φ)−Qn(φ(0)) =
(φ− φ(0))Rn(φ), Rn(ϕ) is a polynomial of φ and φ(0) = 0. We

have h
(1)
n + h

(2)
n = Qn(φ)f − g, therefore

∥h(1)n ∥2 + ∥h(2)n ∥2 = ∥Qn(φ)f − g∥2 → 0.

In particular, the property ∥h(1)n ∥ = ∥Qn(φ(0))f1− g∥ → 0 implies

g = λf1, and therefore the φ−index of M is 1.

From our assumptions and Theorem 2 it follows thatM is z−invariant.
Put M′ = [f ]z. Then M′ ⊂ M and M′ is z−invariant. Hence M′

is also a φ−invariant subspace which contains f . But M = [f ]φ
is the smallest φ−invariant subspace which contains f . Conse-

quently, M ⊂ M′. Hence M = M′.

Finally, any single-generated z-invariant subspace has z−index 1.
2



Density of H∞(D) in the Invariant Subspaces of a Generator

The previous considerations raise the following questions:

Let φ be a generator of H and M is a φ−invariant subspace of H

such that dim(H⊖M) = ∞.

Is it true that M ∩H∞ ̸= {0}?
Is M ∩H∞ dense in M?

For the case of H = A2(D) the answer is given by the following

theorem.

Theorem 5. For any function ψ analytic and bounded in the

unit disk D there is a single-generated ψ−invariant subspace M ⊂
A2(D) such that M ∩H∞(D) = {0}.



Proof. Let f ∈ A2(D) be such that its zeros do not satisfy

the Blaschke condition and put M = [f ]ψ. Clearly, zeros of any

function which belong to M also do not satisfy the Blaschke

condition, consequently, M ∩H∞(D) = {0}. 2

Now we consider the case H = H2(D). Let f ∈ H2(D) \H∞(D).
Then a function fT ∈ H∞ is called f−truncating, if fTf ∈ H∞.

There are many ways to construct an f−truncating function.

One of them is the following. De�ne a real valued function

ω(eit) as follows:

ω(eit) =

1 if |f(eit)| ≤ 1

1/|f(eit)| if |f(eit)| ≥ 1.

We have |ω(eit)| ≤ 1 and logω ∈ L1(T). Therefore there is an

outer function fT ∈ H∞ ⊂ H2 such that |fT (eit)| = ω(eit). It is

obvious that ffT ∈ H∞(D) and sup{|f(z)fT (z)| : |z| < 1} ≤ 1.



Assume now that φ is a generator. Therefore, there is a sequence

of polynomials of φ, say {Pn(φ)} such that ∥Pn(ϕ) − fT∥2 → 0.

Such a sequence {Pn(φ)} we shall call an f−truncating sequence.

Elements of such a sequence are functions from H∞(D). Since

2π∫
0

|Pn(φ(eit))− fT (e
it)|2dt→ 0

there is a subsequence Pnk(φ) such that Pnk(φ(e
it)) → fT (e

it) for

a.e. t ∈ [0,2π]. Without loss of generality we may assume that

{Pn(φ)} converges to fT almost everywhere on T. In particular

Pn(φ(eit))f(eit) → fT (e
it)f(eit) on the set of full measure on T.



Theorem 6. Let φ be a generator and let M be a φ−invariant
subspace of the Hardy space H2(D). Suppose f ∈ M is not

in H∞(D) and an f-truncating sequence {Pn(φ)} is uniformly

bounded in H∞-norm, that is supn ∥Pn(φ)∥∞ ≤ C < ∞. Then

M ∩H∞(D) ̸= {0}.

Proof. Let fT ∈ H2 ∩ H∞ be the f− truncating function con-

structed in the previous paragraph. We need to show that

Pn(φ)f → fTf in H2-norm. Since Pn(φ)f ∈ M this will prove

the statement. We have∫ 2π

0
|Pn(φ(eit))f(eit)− fT (e

it)f(eit)|2dt =∫ 2π

0
|Pn(φ(eit))− fT (e

it)|2|f(eit)|2dt.



The expression under integral sign converges to zero almost ev-

erywhere and is dominated by C|f |2 where C is a positive con-

stant. Now Lebesgue's dominated convergence theorem gives

the desired result. 2



Theorem 7. Let ψ be a weak∗ generator of H∞ and let M be a

ψ−invariant subspace of H2(D). Then M ∩H∞ is dense in M in

H2 norm.

Proof. Let the functions f ∈ M and fT be as in the previous

theorem. For any h ∈ H2(D) and any polynomial P we have

< P (ψ)f − fTf, h >=
1

2π

∫ 2π

0
(P (ψ(eit))− fT (e

it))f(eit)h(eit)dt.

Now pick ϵ > 0. Since fh̄ ∈ L1(T) and ψ is a weak-star generator

of H∞, there is a polynomial P in ψ such that the absolute value

of the last integral is less than ϵ. Since P (ψ)f ∈ M it means

that fTf belongs to the weak closure of M. Since weak closure

of a subspace coincides with its norm closure, it proves that

M ∩ H∞ ̸= {0}. Put M′ = c.l.h.{P (ψ)fTf : P is a polynomial}.
Then the subspace M′ has the following properties:



1. M′ ⊂ M;

2. M′ is ψ−invariant;

3. M′ ∩H∞ is dense in M′ in H2 norm.

Let Ω is the collection of all subspaces of M which have these

three properties. We have shown that Ω ̸= ∅. Partially order Ω

by the set inclusion. By the Hausdor�'s maximal principle there

exists a maximal totally ordered subcollection Ω′ of Ω. Denote

by M0 the union of all M′, where M′ is a member of Ω′. Then M0

is a maximal subspace of M which satis�es the three conditions

above.



We claim that M0 = M. Observe �rst that M \ M0 does not

contain any H∞ vectors. Suppose M0 ̸= M and pick h ∈ M⊖M0.

Then h /∈ H∞. Let hT be the h-truncating function. Then hTh ∈
H∞, hence hTh ∈ M0 and P (ψ)hTh ∈ M0 for any polynomial P .
Consequently,

1

2π

2π∫
0

P (ψ(eit))hT (e
it)|h(eit)|2dt = 0

for any polynomial P . Since hT |h| ∈ L1(T) and ψ is a weak-star

generator of H∞ from the last equality one easily deduces that

1

2π

2π∫
0

einthT (e
it)|h(eit)|2dt = 0, n = 0,1,2, . . .

from which it follows that

hT |h|2 = k, (6)



where k ∈ H1
0. Therefore

|h|2 =
k

hT
.

Since the left side is a real-valued function and right side is a

function of the Nevanlina class and k(0) = 0 one concludes that

that equality (5) is possible only for h = 0 and k = 0. It proves

our claim and the theorem. 2

Combining the last theorem with Theorem 2 we obtain the fol-

lowing statement.

Corollary 2. Let ψ be a bounded univalent function in the unit

disk D. Then ψ is a weak∗ generator of H∞ if and only if every

ψ−invariant subspace of H2(D) is also z−invariant.

The statement of the Corollary was obtained by D. Sarason [8]

using another method.
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